
Well-structured Model Checking
of Multiagent Systems?

N.V. Shilov, N.O. Garanina

Institute of Informatics Systems, Russian Academy of Science
6, Lavrentiev ave., 630090, Novosibirsk, Russia

shilov, garanina@iis.nsk.su

Abstract. We address model checking problem for combination of Com-
putation Tree Logic (CTL) and Propositional Logic of Knowledge (PLK)
in finite systems with the perfect recall synchronous semantics. We have
published already an (update+abstraction)-algorithm for model checking
with detailed time upper bound. This algorithm reduces model check-
ing of combined logic to model checking of CTL in a finite abstract
space (that consists of some finite trees). Unfortunately, the known up-
per bound for size of the abstract space (i.e. number of trees) is a
non-elementary function of the size of the background system. Thus
a straightforward use of a model checker for CTL for model checking
the combined logic seems to be infeasible. Hence it makes sense to try
to apply techniques, which have been developed for infinite-state model
checking. In the present paper we demonstrate that the abstract space
provided with some partial order on trees is a well-structured labeled
transition system where every property expressible in the propositional
µ-Calculus, can be characterized by a finite computable set of maximal
elements. We tried feasibility of this approach to model checking of the
combined logic in perfect recall synchronous environment by automatic
model checking a parameterized example.

1 Introduction

Combinations of traditional program logics [20, 8, 25] with logics of knowledge
[9, 24] become a current research topic due to the importance of study of inter-
actions between knowledge and actions for reasoning about multiagent systems.
A number of techniques for (semi)automatic processing of a number of combined
logics have been under study [15, 6, 7, 23, 14, 16, 17, 13].

Paper [13] has studied the model checking problem in trace-based synchron-
ous perfect recall systems for pairwise fusion of the program logics Computation
Tree Logic extended by actions (Act-CTL) and the propositional µ-Calculus
(µC) with the epistemic logics Propositional Logic of Knowledge for n agents
(PLKn) and Propositional Logic of Common Knowledge for n agents (PLCn).

? Supported by joint grant RFBR 05-01-04003-a (DFG project COMO, GZ: 436 RUS
113/829/0-1) and by grant RFBR 06-01-00464-a.

‘Trace-based’ means that semantics of formulas is defined on traces, i.e. finite
sequences of states and actions1. Each element of a trace represents a state of the
system at some moment of time. So, ‘synchronous’ means that agents distinguish
traces of different lengths. ‘Perfect recall’ means that every agent can distinguish
traces with different sequences of information available for him/her. If L stands
for any of acronym of program logics Act-CTL or µC, and PLX stands for any
of acronym of epistemic logics PLKn or PLCn, then let acronym L-X stand
for fusion of logics L and PLXn. For example, Act-CTL-Kn denotes fusion of
Act-CTL and PLKn.

It has been demonstrated in [13] that the model checking problem in the
class of finitely-generated trace-based synchronous systems with perfect recall
is undecidable for Act-CTL-Cn, µPLKn, and µPLCn (where n > 1), but is
decidable for Act-CTL-Kn (with a non-elementary lower bound). It was a ‘deci-
dability in principle’, and is not oriented towards any implementation.

Paper [26] presents a ‘direct’ (update+abstraction)-algorithm for model chec-
king Act-CTL-Kn in perfect recall synchronous environments. This (update+ab-
straction)-algorithm has been inspirited by [21]. It is based on a simple transfor-
mation of Act-CTL-Kn formulas into formulas of Act+n-CTL (i.e. Act-CTL with
n fresh action symbols) and on a reduction of infinite synchronous perfect recall
system to finite model TRk(E) which consists of k-trees (special finite trees of
height k). Thus the resulting model checking algorithm simply solves formulas
of Act+n-CTL on k-trees.

Unfortunately, the upper bound for size of this finite model is a non-element-
ary function of the size of the background finite system [26]. Hence a straightfor-
ward use of a model checker for CTL for model checking Act+n-CTL on k-trees
is likely to be a non-feasible task. Roughly speaking, this space is too big to be
treated as a finite. It implies that for model checking Act+n-CTL on k-trees it
makes sense to try techniques which have been developed for infinite-state model
checking.

A very popular approach to infinite-state model checking is formalism of well-
structured labeled transition systems. Fundamental papers [1, 10] have proved
the decidability of liveness (reachability) and progress (eventuality) properties
in well-structured single action labeled transition systems. Roughly speaking,
a well-structured single action labeled transition system is provided with (pre-
)order where transition ‘preserves’ this (pre-)order, and its labeling forms cones
with respect to this (pre-)order. Paper [19] has generalized cited decidability
results for disjunctive formulas of the propositional µ-Calculus [18] in well-
structured labeled multi-action transition systems.

In the present paper we demonstrate that model TRk(E) provided with a
special sub-tree partial order forms a well-structured labeled transition system
where every property expressible in the µ-Calculus can be characterized by a fi-
nite computable set of maximal trees that enjoy the property. We tried feasibility

1 Let us remark that we work with traces that are finite sequences. Every finite se-
quence represents current state of the system (that is the last element of the se-
quence) and system’s past (that is maximal prefix of the sequence).

of this approach to model checking of Act-CTL-Kn in trace-based synchronous
perfect recall synchronous environment by automatic model checking simple, but
big example2.

2 Background Logics and their Fusion

Logics we are going to discuss are propositional polymodal logics. Semantics of
these logics is defined in models which are called Kripke structures or labeled
transition systems (LTS); it is defined in terms of satisfiability relation |=.

Definition 1. Let {true, false} be Boolean constants, Prp and Rlt be disjoint
finite alphabets of propositional variables and relational symbols. Syntax of our
logics consists of formulas which are constructed from Boolean constants, propo-
sitional variables, and connectives3 ¬, ∧, ∨ and some modalities.

Definition 2. A transition system (synonym: Kripke frame) is a tuple (D, I),
where the domain D is a non-empty set of elements that are called states (or
worlds), and the interpretation I is a total mapping I : Rlt → 2D×D. For every
r ∈ Rlt an r-run is a maximal sequence of states ws = s1 . . . sisi+1 . . . such that
for all adjacent states within the sequence (si, si+1) ∈ I(r). For every finite i
within ws let wsi stands for the element si. Kripke model or labeled transition
system (LTS) M is a triple (D, I, V), where (D, I) is a Kripke frame, and the
valuation VM maps propositional variables into subsets of D.

Definition 3. A satisfiability relation |= between models, worlds, and formulas
can be defined inductively with respect to a structure of formulas as follows4 .
For Boolean constants w |=M true and w |=/ Mfalse for any world w and model
M = (D, I, V). For propositional variables we have: w |=M p iff w ∈ V (p). For
connectives |= is defined in the standard manner: w |=M ¬φ iff w |=/ Mφ, w |=M

φ∧ψ iff w |=M φ and w |=M ψ, w |=M φ∨ψ iff w |=M φ or w |=M ψ. Definition
of |= for modalities is specific for every particular propositional polymodal logic.

A particular example of propositional polymodal logics is Propositional Logic
of Knowledge (PLK) [9]. It is the simplest epistemic logic. Informally speaking,
PLK is a polymodal variant of the basic propositional modal logic S5 [3]. A
special terminology, notation and models are used in this framework.

Definition 4. (of Propositional Logic of Knowledge for n agents PLKn)
Let n > 0 be an integer. The alphabet of relational symbols consists of a set
of natural numbers [1..n] representing names of agents. Notation for modalities
is: if i ∈ [1..n] and φ is a formula, then (Kiφ) and (Siφ) are formulas5. For

2 The size of the initial background environment E is 120000 and the size of the
corresponding generated finite model TRk(E) is about 1036000.

3 Standard abbreviations → and ↔ are admissible too.
4 Throughout the paper 6|= stays for negation of |=.
5 They are read as ‘(an agent) i knows φ’ and ‘(an agent) i supposes φ’.

every agent i ∈ [1..n] in every model M = (D, I, V) interpretation I(i) is an
equivalence, i.e. a symmetric, reflexive, and transitive binary relation on D.
Every model M , where all agents in [1..n] are interpreted in this way, is denoted
as (D,

1∼, . . . ,
n∼, V) instead of (D, I, V) with I(i) = i∼ for every i ∈ [1..n]. In

particular, for every i ∈ [1..n] and every φ,

– w |=M (Siφ) iff for some w′: w
i∼ w′ and w′ |=M φ,

– w |=M (Kiφ) iff for every w′: w
i∼ w′ implies w′ |=M φ.

Another propositional polymodal logic Act-CTL is a variant of the basic
propositional branching time temporal logic Computational Tree Logic (CTL)
[8, 4, 5] extended by action symbols.

Definition 5. (of Act-CTL)
In the case of Act-CTL the alphabet of relational symbols consists of action
symbols Act. Notation for basic modalities is: if a ∈ Act and φ is a formula,
then (AXaφ) and (EXaφ) are formulas. Syntax of Act-CTL has also some other
special constructs associated with action symbols: if a ∈ Act, φ and ψ are for-
mulas, then (AGaφ), (AFaφ), (EGaφ), (EFaφ), (AφUaψ), and (EφUaψ)6 are
formulas too. For every model M = (D, I, V) semantics of ‘universal’ special
constructors follows:

– w |=M AXaφ iff ws2 |=M φ for every a-run ws with ws1 = w,
– w |=M AGaφ iff wsj |=M φ for every a-run ws with ws1 = w

and every 1 ≤ j ≤ |ws|,
– w |=M AFaφ iff wsj |=M φ for every a-run ws with ws1 = w

and some 1 ≤ j ≤ |ws|,
– w |=M A(φUaψ) iff wsj |=M φ and wsk |=M ψ

for every a-run ws with ws1 = w,
for some 1 ≤ k ≤ |ws| and every 1 ≤ j < k,

Semantics of ‘existential’ constructors EXa, EGa, EFa, EUa is similar but
refers to some a-run.

The standard CTL is Act-CTL with a singleton alphabet Act.
We are going to define a combined Propositional Logic of Knowledge and

Branching Time Act-CTL-Kn.

Definition 6. (of Act-CTL-Kn)
Let [1..n] be a set of agents (n > 0), and Act be a finite alphabet of action
symbols. Syntax of Act-CTL-Kn admits all knowledge modalities Ki, and Si for
i ∈ [1..n], and all branching-time constructs AXa, AGa, AFa, AUa, EXa, EGa,
EFa, EUa. Semantics is defined in terms of satisfiability |=. An environment
is a tuple E = (D,

1∼, . . . ,
n∼, I, V) such that (D,

1∼, . . . ,
n∼, V) is a model for

PLKn and (D, I, V) is a model for Act-CTL. Satisfiability is defined by induction

6 A is read as ‘for all futures’, E – ‘for some futures’, X – ‘next time’, G – ‘always’,
F – ‘sometime’, U – ‘until’, and a sup-index a is read as ‘in a-run(s)’.

according to semantics of propositional (def. 3), knowledge (def. 4), and bran-
ching time constructs (def. 5). For every environment E and every formula φ let
E(φ) be the set {w | w |=E φ} of all worlds that satisfies formula φ in E.

We are mostly interested in trace-based perfect recall synchronous environ-
ments generated from background finite environments. In these environments
states are sequences of worlds of initial environments with history of actions
that generate them. Agent does not distinguish these sequences if the background
system performs the same sequence of actions, and if these sequences have the
same number of worlds, and agent can not distinguish these sequences world
by world (in the background environment). We can transit from a sequence to
another one with respect to an action a by extending the sequence by a state
that can be reached by a from the last state of the sequence. Propositionals are
evaluated at the last state of sequences with respect to their evaluations in the
background environment.

Definition 7. (of Perfect Recall Synchronous environment)
Let E be an environment (D,

1∼, . . . ,
n∼, I, V). A trace-based Perfect Recall Syn-

chronous environment generated by E is another environment (DPRS(E),
1∼prs ,

. . . , n∼prs , IPRS(E), VPRS(E)), where

– DPRS(E) is the set of all pairs (ws, as), where7

ws ∈ D+, as ∈ Act∗, |ws| = |as|+ 1, and
(wsj , wsj+1) ∈ I(asj) for every j ∈ [1..|as|];

– for every i ∈ [1..n] and for all (ws′, as′), (ws′′, as′′) ∈ DPRS(E),

(ws′, as′) i∼prs (ws′′, as′′) iff
as′ = as′′ and ws′j

i∼ ws′′j for every j ∈ [1..|ws|];
– for every a ∈ Act and for all (ws′, as′), (ws′′, as′′) ∈ DPRS(E),

((ws′, as′), (ws′′, as′′)) ∈ IPRS(E)(a) iff8

as′′ = as′∧a, and ws′′ = ws′∧w′′, (w′, w′′) ∈ I(a), where w′ is the last
element in ws′;

– for every p ∈ Prp and for every (ws, as) ∈ DPRS(E),
(ws, as) ∈ VPRS(E)(p) iff ws|ws| ∈ V (p).

3 Bounded Knowledge Update and Abstraction

Below in this section we recall definitions and results from [26] (slightly refor-
mulated for the lack of space) that lead to (update+abstraction)-algorithm and
evaluation of its non-elementary complexity. We examine the model checking
problem for Act-CTL-Kn in perfect recall synchronous environments generated
from finite environments. The following formalization of the problem has been
introduced in [26].
7 For every set S let S+ be the set of all non-empty finite sequences over S and S∗ be

the set of all finite sequences over S.
8 Operation ∧ stands for the concatenation of finite words.

Definition 8. (of the model checking problem)
The model checking problem for Act-CTL-Kn in perfect recall synchronous envi-
ronments is to validate or refute (ws, as) |=PRS(E) φ, i.e. whether φ is satisfiable
on (ws, as) in PRS(E), where E is a finite environment, (ws, as) ∈ DPRS(E), φ
is a formula of Act-CTL-Kn.

Definition 9. The knowledge depth of a formula is the maximal nesting of
knowledge operators in that formula. For every k ≥ 0 let Act-CTL-Kk

n be
sublogic of Act-CTL-Kn with knowledge depth bounded by k.

It is obvious that Act-CTL-Kn =
⋃

k≥0 Act-CTL-Kk
n.

For every integer k ≥ 0 we define by mutual recursion a set Tk of k-trees over
E, and a set Fk of forests of k-trees over E.

Definition 10. Let T0 be a set of all tuples of the form (w, ∅, . . . , ∅), where w
is a world and the number of copies of the empty set ∅ is equal to the number
of agents n. Once Tk has been defined, let Fk be the set of all subsets of Tk.
Now, define Tk+1 as the set of all tuples of the form (w, U1, . . . , Un), where w is
a world and Ui 6= ∅ is in Fk for each i ∈ [1..n]. Let us denote

⋃
k≥0 Tk by T .

Intuitively, a k-tree is a finite tree of height k whose vertices are labeled
by worlds of the environment E and edges are labeled by agents. In a tuple
(w, U1, . . . , Un), the world w represents the actual state of the universe, and for
each i ∈ [1..n] the set Ui represents knowledge of the agent i.

The following update functions Ga
k generate k-trees obtained from some k-

tree after action a taking into account knowledge of every agent.

Definition 11. For every number k ≥ 0, a ∈ Act and i ∈ [1..n], functions
Ga

k : Tk ×D → Tk and Ha
k,i : Fk ×D → Fk, are defined by induction on k and

mutual recursion. Let Ga
0(tr, w) = (w, ∅, . . . , ∅) iff9 (root(tr), w) ∈ I(a). Once

Ga
k has been defined, we can define for each i ∈ [1..n] the function Ha

k,i(U,w) =

{Ga
k(tr, w′) | tr ∈ U and w′ i∼ w}. Now let Ga

k+1((w, U1, . . . , Un), w′) be

(w′ ,Ha
k,1(U1, w

′), . . . , Ha
k,n(Un, w′)) iff (w, w′) ∈ I(a).

The following model can be associated with the synchronous environment
with perfect recall PRS(E).

Definition 12. (of model TRk(E))
For every k ≥ 0 let TRk(E) be the following model (DTRk(E), ITRk(E), VTRk(E)):

– DTRk(E) is the set of all 0-, . . . , k-trees over E for n agents;
– for a ∈ Act: ITRk(E)(a) = {(tr′, tr′′) ∈ DTRk(E) ×DTRk(E) |

tr′′ = Ga
j (tr′, w) for some j ∈ [0..k] and some w ∈ DE };

for i ∈ [1..n]: ITRk(E)(i) = {(tr′, tr′′) ∈ DTRk(E) ×DTRk(E) |
tr′′ ∈ Ui and tr′ = (w, U1, . . . , Un) for some w ∈ DE };

9 Operation root on trees returns the root of the argument. In particular, for a k-tree
root(w, U1, . . . , Un) returns w.

– VTRk(E)(p) = {tr | root(tr) ∈ VE(p)} for p ∈ Prp.

Definition 13. (of Act+n-CTL)
Let Act+n be Act ∪ [1..n]. A natural translation of formulas of Act-CTL-Kn to
formulas of Act+n-CTL is simple: just replace every instance of Ki and Si by
corresponding AXi and EXi, respectively (i ∈ [1..n]). For every formula φ of
Act-CTL-Kn, let us denote by φ+n the resulting formula of Act+n-CTL.

Definition 14. Complete tree is a k-tree (w, U1, ..., Un) such that {root(tr)|tr ∈
Ui} = {w′ ∈ D|w i∼ w′} and all trees in Ui are complete trees for every i ∈ [1..n].
Since a state in the root of a complete tree defines the tree uniquely, let us denote
the complete tree with root w by tr(w).

Definition 15. Let E be an environment, and k ≥ 0. A correspondence treek

between DPRS(E) and k-trees treek : (ws, as) 7→ treek(ws, as) is defined by the
following.

1. Let tr1 be complete k-tree tr(ws1);
2. for every l ∈ [2..|ws|] let trl be G

asl−1
k (trl−1, wsl);

3. let treek(ws, as) be tr|ws|.

The following proposition summarizes propositions 4, 5, and 6 from [26].

Proposition 1.
For every integer k ≥ 0 and n ≥ 1 and every environment E, for every for-
mula φ of Act-CTL-Kn with the knowledge depth k at most there exists bijective
correspondence treek : DPRS(E) → DTRk(E) that

(ws, as) |=PRS(E) φ iff treek(ws, as) |=TRk(E) φ+n.

The following (update+abstraction) model checking algorithm is based on
the above proposition 1:

1. Input a formula φ of Act-CTL-Kn and count its knowledge depth k;
2. convert φ into the corresponding formula ψ ≡ φ+n of Act+n-CTL;
3. input a finite environment E and construct the finite model TRk(E);
4. input a trace (ws, as) and construct the corresponding k-tree tr;
5. model check ψ on tr in TRk(E).

Its correctness immediately follows from the proposition. In contrasts, complexi-
ty of the algorithm is not so straightforward. Paper [26] has proved that its upper
bound nonelementary depends on the size of the formula, the number of states,
the knowledge depth k and the number of agents n.

4 TRk as Ideal-based Model

In principle size of TRk(E) is finite, but it is simply too big to be treated
as finite. Due to this reason for model checking TRk(E) we would like to try

techniques that are in use for model checking infinite systems. In particular, we
try a formalism of well-structured labeled transition systems [1, 10] that is a very
popular approach to infinite-state model checking.

In well-structured labeled transition systems we can represent a set of states
(that is semantics of some formula) by some subset that is usually much smaller
than the set itself. Usually this representative subset is a collection of minimal or
maximal elements of the set of interest. In this case model checking can compute
representative subsets and then restore complete semantics of formulas.

Definition 16. Let D be a set. A partial order is a reflexive, transitive, and
antisymmetric binary relation R on D. A preorder is a reflexive and transitive
binary relation R on D. We use prefix, infix and postfix notation for preorders:
R(d′, d′′), d′(R)d′′ (or d′Rd′′) , and (d′, d′′) ∈ R. A well-preorder is a preorder R
where every infinite sequence d1, . . . di, . . . of elements of D contains a pair of
elements dm and dn so that m < n and dm(R)dn.

Definition 17. Let (D,R) be a well-preordered set (i.e. a set D provided with
a well-preorder R). An ideal (synonym: cone) is an upward closed subset of D,
i.e. a set C ⊆ D such that for all d′, d′′ ∈ D, if d′(R)d′′ and d′ ∈ C then d′′ ∈ C.
Every d ∈ D generates a cone (↑ d) ≡ {e ∈ D | d(R)e}. For every subset S ⊆ D,
a basis of S is a subset B ⊆ S such that for every s ∈ S there exists b ∈ B that
b(R)s.

Definition 18. A well-preordered transition system (WPTS) is a triple (D, R,
I) such that (D, R) is a well-preordered set and (D, I) is a Kripke frame.

We are mostly interested in well-preordered transition systems with decidable
and compatible well-preorder and interpretation. The standard decidability con-
dition for the well-preorder is straightforward: R ⊆ D ×D is decidable.

Definition 19. Let (D, R, I) be a WPTS.

– Decidability (tractable past) condition: there exists a computable total func-
tion BasPre : D ×Act → 2D such that for every w ∈ D, for every a ∈ Act,
BasPre(w, a) is a finite basis of {u ∈ D | (u, v) ∈ I(a) and w(R)v}.

– Compatibility condition: preorder R is compatible with interpretation I(a) of
every action symbol a ∈ Act. (Three equivalent definitions for compatibility
of R and I(a) are presented in Tab. 1.)

Definition 20. (of ideal-based model)
A well preordered transition system is said to be well-structured transition sys-
tem (WSTS) iff its preorder is decidable, it meets tractable past and compatibili-
ty conditions. A well-structured labeled transition system (WSLTS) is a quadru-
ple (D, R, I, V), where (D, I, V) is a labeled transition system, and (D,R, I) is
a well-structured transition system. An ideal-based model is a well-structured
labeled transition system (D, R, I, V), where V interprets every propositional
variable p ∈ Prp by a cone.

notation

∀s′1, s′′1 , s′2 ∃s′′2 :

logic s′1
I(a)−→ s′′1 & R(s′1, s

′
2) ⇒

⇒ s′2
I(a)−→ s′′2 & R(s′′1 , s′′2)

diagram

s′′1 (R). . . s′′2↑ ↑
|
|

s′1 (R) s′2
algebraic R− ◦ I(a) ⊆ I(a) ◦R−

Table 1. Equivalent compatibility conditions

The µ-Calculus of D.Kozen (µC) [18] is a very powerful propositional program
logic with fixpoints. It is widely used for specification and verification of proper-
ties of finite state systems. We would like to skip formal definition of µC due to
space limitations. Please, refer to [25] for the elementary introduction to µC. A
comprehensive definition of µC can be found in a monograph [2]. Paper [19] has
demonstrated that model checking problem in ideal-based models is decidable
for µC formulas without negation, conjunction, boxes, and greatest fixpoints.

In the following we assume we are given an environment E and k, n ≥ 0.

Definition 21. Let us define binary relation Â on DTRk(E). For all trees of
equal height tr′ = (w′, U ′

1, . . . , U
′
n) and tr′′ = (w′′, U ′′

1 , . . . , U ′′
n) in DTRk(E), let

us write tr′ Â tr′′ (and say that tr′ has a subtree tr′′) iff w′ = w′′ and for every
i ∈ [1..n], for every st′′ ∈ U ′′

i there exists st′ ∈ U ′
i that st′ Â st′′.

Theorem 1. Binary relation Â is a partial order on k-trees such that model
TRk(E) provided with this partial order becomes an ideal-based model, where
semantics of every formula of µC is a cone with computable finite basis.

Proof.
First, Â is a partial order since tr′ Â tr′′ iff all branches in both trees have

equal length and the set of vertexes and edges of tr′′ is a subset of the set of
vertexes and edges of tr′ (i.e. just some branches are skipped). It is decidable
relation due to the same argument. It is also a well-preorder since DTRk(E) is
finite.

Second, Â enjoy tractable past since, in principle, we can find preimage of
every tree for every ‘action’ transition and for every ‘knowledge’ transition (de-
fined by ITRk(E)(a) and ITRk(E)(i), respectively for a ∈ Act and i ∈ [1..n], in
def. 12) by scanning finite space TRk(E). But there is more effective technic to
find preimages based on the notion of complete trees. More efficient algorithm
follows. Let (w,U1, ...Un) be a k-tree. If a ∈ Act then for every state u such that
(u,w) ∈ I(a) construct complete tree tr(u); collect all subtrees tr of any of these
complete tr(u) (i.e. tr(u) º tr) such that (w, U1, ...Un) º Ga

k(tr, w). If i ∈ [1..n]
is an agent then just collect all tr ∈ Ui.

But the most efficient10 algorithm can be described as follows. We consider
the case of one agent only, which is easily generalized to the case of n agents. Let
us find preimage by induction on a height of a tree. Let tr = (w, ∅) be a tree of
height 0. Its preimage with respect to an action a is the set of trees of height 0
with roots which are in the preimage for w: Prea(tr) = {(w′, ∅)|(w′, w) ∈ I(a)}.
Let tr = (w, U) be a tree of height k, where root w is a world, and U is a
set of trees, which roots are in the set roots(U) = {s|s = root(t), t ∈ U}. Its
preimage with respect to action a Prea(tr) = Tr′1 ∪ Tr′2 ∪ Tr′ includes all trees
of form tr′1 = (w′, U ′

1) ∈ Tr′1 and tr′2 = (w′, U ′
2) ∈ Tr′2, such that (w′, w) ∈ I(a)

and U ′
1 = {(s′, V ′)|s′ ∼ w′, and ∃s ∈ root(U) : Ga

k−1((s
′, V ′), s) ∈ U}, and

U ′
2 = U ′

1 ∪ {(s′, tr(s′)|s′ ∼ w′, and ∀s′′ ∈ a(s′) : s′′ � w} (Note that each
tree of Tr′1 is k-subtree of some tree in Tr′2). The set Tr′ is defined as follows:
Tr′ = {tr′|tr′1 ≺ tr′ ≺ tr′2 for some tr′1 ∈ Tr′1 and tr′2 ∈ Tr′2}. So, roots of trees
in U ′

1 are all worlds s′, which the agent can not distinguish with w′, and there
exists a world s ∈ roots(U), such that (s′, s) ∈ I(a), and subtrees of these trees
are computed in according to induction assumption. Roots of trees in U ′

2 are
roots(U1) supplemented by worlds s′′ whose images a(s′′) are distinguished with
w by the agent, and subtrees corresponding to these roots s′′ are complete trees.
In addition, preimage includes all ”intermediate” trees. We can compute these
trees easily due to finiteness of D. Due to definition of update function, it is
obvious that tr = Ga

1(tr′, w) for every tr′ ∈ Prea(tr). There are no other trees
in preimage since other roots are impossible, and U ′

2 can be extended only by
trees with roots which are transformed by action a to worlds indistinguishable
with w, but the images of such trees include tr as a subtree.

Third, Â is compatible with all ‘action’ transitions and all ‘knowledge’ tran-
sitions. For every action a ∈ Act, and for every pair of trees tr′ Â tr′′ there
exists some sup-tree tr which is a-image of the greater tree tr′ and this sup-
tree includes a-image of the smaller tree tr′′ because a-images are computed
recursively by processing each vertex of trees (def. 11). Again we consider the
case of one agent only, which is easily generalized to the case of n agents. Let
tr1 = (w,U1) and tr2 = (w, U2) be trees of height k and tr1 ≺ tr2. Note that
for every t1 ∈ U1 there exists t2 ∈ U2 such that t1 ≺ t2 by definition of ≺. Let
tr′1 = (w′, U ′

1) ∈ Ga
k(tr1, w

′). Let us find tr′2 = (w′, U ′
2) ∈ Ga

k(tr2, w
′), such that

tr′1 ≺ tr′2. Due to def. 11, (w, w′) ∈ I(a) and U ′
1 = {Ga

k−1(tr, w
′′)|tr ∈ U1 and

w′′ ∼ w′}. By the same definition U ′
2 = {Ga

k−1(tr, w
′′)|tr ∈ U2 and w′′ ∼ w′}.

Then it is obvious that for every t′1 ∈ U ′
1 there exists t′2 ∈ U ′

2 such that t′1 ≺ t′2,
hence tr′1 ≺ tr′2.

For every ‘knowledge’ action i ∈ [1..n], and for every pair of trees tr′ Â tr′′

there exists some sup-tree tr which is i-image of the greater tree tr′ and this
sup-tree includes i-image of the smaller tree tr′′ because computing of i-images
of some tree is based on transition to subtrees of this tree (def. 12). Once again
we consider the case of one agent only. Let tr1 = (w, U1) and tr2 = (w, U2) be
trees of height k and tr1 ≺ tr2. Note that for every t1 ∈ U1 there exists t2 ∈ U2

such that t1 ≺ t2 by definition of ≺. (tr1, t1) ∈ ITRk(E)(1) holds for every t1 ∈ U1

10 to the best of our knowledge

and (tr2, t2) ∈ ITRk(E)(1) holds for every t2 ∈ U2 due to def. 12. it is obviously
implies that ≺ is compatible with ‘knowledge’ transitions.

Fourth, TRk(E) is an ideal-based model. It is obvious that valuation of every
propositional variable forms a cone with basis consisting of complete trees with
roots which are states where this propositional variable holds, due to def. 12:
VTRk(E)(p) = {tr|root(tr) ∈ VE(p)} = ↑ {tr(w)|w ∈ VE(p)} for p ∈ Prp since
p is satisfiable in every k-subtree of every tr ∈ VTRk(E)(p). There are no other
trees with this property since the set includes all complete trees with these roots.
Note, that negation of propositional variable is a cone also: VTRk(E)(¬p) =↑
{tr(w)|w /∈ VE(p)} for p ∈ Prp.

Finally we prove that semantics of every formula of µC is a cone with com-
putable finite basis by induction on structure of normal formulas in which nega-
tion is used in literals11 only. (Every µC formula is equivalent to some normal
formula [25].) Induction basis deals with literals; for propositional variables it is
proved already, for their negations proof is similar. Induction step consists of a
number of cases: for disjunction ∨, conjunction ∧, box [] and diamond 〈 〉.

Basis of disjunction of formulas is union of bases of these formulas.
Basis of conjunction of formulas consists of maximal trees which are subtrees

of trees from bases of these formulas simultaneously. Let basis of formula φ be
Bφ and basis of formula ψ – Bψ. Hence, the set Bφ∧ψ = {tr|tr ≺ trφ ∈ Bφ and
tr ≺ trψ ∈ Bψ} is computable and finite due to finiteness of sets Bφ and Bψ.
This set is a basis for semantics of φ ∧ ψ.

Bases of a box- or diamond-formula is a computable cone due to properties
of tractable past and compatibility. Let us find basis of semantics of formula
φ = 〈a〉ψ12. For simplicity let basis of ψ consists of single tree: Bψ = {tr}.
Denote preimage of tr with respect to action a as Prea(tr), defined above. Hence,
preimage of all trees in semantics of ψ with respect to action a is the set of all
k-subtrees from Prea(tr) = Tr′1∪Tr′2∪Tr′. Every tree in Tr′1∪Tr′ is k-subtree
of some tree in Tr′2. Hence, basis of preimage of semantics of ψ with respect to
action a is the finite set Prea(ψ) = Tr′2, due to definition of Tr′2 and knowledge
update function a-image of every k-subtree of every tree in Tr′2 is some tree in
the cone generated by tree tr. By definition of diamond modality this set is a
basis of semantics of formula φ = 〈a〉ψ also.

The least µx.φ and the greatest fixpoints νx.φ in finite models13 are equiv-
alent to ‘infinite disjunctions’ and ‘infinite conjunctions’:

– false ∨ φx(false) ∨ φx(φx(false)) ∨ . . . =
∨

j≥0 φj
x(false),

– true ∧ φx(true) ∧ φx(φx(true)) ∧ . . . =
∧

j≥0 φj(true),

where φx(ψ) is a result of substitution of a formula ψ instead of x, φ0
x(ψ) is ψ,

and φj+1
x (ψ) is φx(φj

x(ψ)) for j ≥ 0. In TRk(E) one can assume these infinite
disjunctions and conjunctions to be finite and bounded by the number of k-trees

11 A literal is a propositional variable or its negation.
12 Basis of semantics of [a]ψ is treated analogously.
13 by the finite-case Tarski-Knaster fixpoint theorem

in TRk(E). This observation reduces the case of fixpoints to combination of
cases for disjunction, conjunction, box and diamond that are proved already. ¥

Note that semantics of every formula of µC in model TRk(E) is a computable
cone in contrast to [19] where arbitrary ideal-based models have been studied.

It is well-known that standard CTL is expressible in µC (see for example
[25]). This translation of CTL to µC can be generalized easily to Act-CTL.

AXaϕ ↔ [a]ϕ EXaϕ ↔ 〈a〉ϕ
AGaϕ ↔ νx. (ϕ ∧ [a]x) AFaϕ ↔ µx. (ϕ ∨ [a]x)
EGaϕ ↔ νx. (ϕ ∧ 〈a〉x) EFaϕ ↔ µx. (ϕ ∨ 〈a〉x)
A(ϕUaψ) ↔ µx. (ψ ∨ (ϕ ∧ [a]x)) E(ϕUaψ) ↔ µx. (ψ ∨ (ϕ ∧ 〈a〉x))

It implies the following corollary.

Corollary 1. Semantics of every formula of Act+n-CTL in TRk(E) is a cone
with respect to Â with computable finite bases.

5 Conclusion

In this paper we have shown that space TRk(E) provided with sub-tree par-
tial order forms a well-structured labeled transition system where every prop-
erty expressible in the propositional µ-Calculus, can be characterized by a finite
computable set of maximal trees that enjoy the property. We tried feasibility
of this approach to model checking of Act-CTL-Kn in trace-based synchronous
perfect recall synchronous environment by automatic model checking simple, but
big example (the size of model TRk is about 1036000). Data structures that are
used in the experiment are so-called vector-affine trees [12]. A presentation of a
background theory and of our experimental model checker is a topic for a future
publication.

To the best of our knowledge, the only reported (experimental) model checker
for perfect recall synchronous systems is MCK [11]. It works in a linear as well
as branching time settings. For perfect recall synchronous systems in temporal
dimension MCK supports ‘next’ operator only, but neither ‘always’, ‘sometimes’,
nor ‘until’ (although the model checking theory for the full combination of knowl-
edge with Propositional Logic of Linear Time has been already developed [22]).
The present paper has developed a technique that may lead to practical model
checking the full combination of knowledge with branching time logics (a là Com-
putation Tree Logic) with ‘next’ operator as well as with ‘always’, ‘sometimes’,
and ‘until’.

References

1. Abdulla P.A., Ĉerâns K., Jonsson B., and Tsay Yih-Kuen. Algorithmic analy-
sis of programs with well quasi-ordered domains. Information and Computation,
v.160(1-2), 2000, p.109-127.

2. Arnold A. and Niwinski D. Rudiments of µ-calculus. North Holland, 2001.

3. Bull R.A., Segerberg K. Basic Modal Logic. In: Handbook of Philosophical Logic.
Vol.II. Reidel Publishing Company, 1984 (1-st ed.), Kluwer Academic Publishers,
1994 (2-nd ed.). p. 1–88.

4. Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang L.J. Symbolic Model
Checking: 1020 states and beyond. Information and Computation, 1992. v.98(2),
p. 142–170.

5. Clarke E.M., Grumberg O., Peled D. Model Checking. MIT Press, 1999.
6. Dixon C., Fernandez Gago M-C., Fisher M., and van der Hoek W. Using Tem-

poral Logics of Knowledge in the Formal Verification of Security Protocols. In:
Proceedings of TIME 2004, 1st-3rd July 2004, Tatihou, Normandie, France. IEEE.

7. Dixon C., Nalon C. and Fisher M. Tableau for Logics of Time and Knowledge
with Interactions Relating to Synchrony, Journal of Applied Non-Classical Logics,
v.14, n.4, p.397-445, 2004.

8. Emerson E.A. Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science. v.B, Elsevier and MIT Press, 1990, p. 995–1072.

9. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y. Reasoning about Knowledge. MIT
Press, 1995.

10. Finkel A., Schnoebelen Ph. Well-structured transition systems everywhere! Theor.
Comp. Sci., v.256(1-2), 2001, p.63-92.

11. Gammie P. and van der Meyden R. MCK: Model Checking the Logic of Knowl-
edge. Springer-Verlag Lect. Notes Comp. Sci., v.3114, 2004, p.479-483.

12. Garanina N.O. Verification of Distributed Systems on base of Affine Data repre-
sentation and Logics of Knowledge and Actions. Ph.D Thesis, A.P. Ershov Insti-
tute of Informatics Systems, 2004 (in Russian).

13. Garanina N.O., Kalinina N.A. and Shilov N.V. Model checking knowledge, actions
and fixpoints. Proc. of Concurrency, Specification and Programming Workshop
CS&P’2004, Germany, 2004, Humboldt Universitat, Berlin, Informatik-Bericht
Nr.170, v.2, p.351-357.

14. Halpern J. Y., van der Meyden R., and Vardi M. Y. Complete Axiomatizations
for Reasoning about Knowledge and Time. SIAM Journal on Computing, v.33(3),
2004, p. 674-703.

15. van der Hoek W. and Wooldridge M.J. Model Checking Knowledge and Time.
Lecture Notes in Computer Science, v.2318, p.95-111, 2002.

16. Kacprzak M., Lomuscio A., Penczek W. Unbounded Model Checking for Knowl-
edge and Time. Proceedings of the CS&P’2003 Workshop, Warsaw University,
v.1, p.251-264.

17. Kacprzak M., Penczek W. Model Checking for Alternating-Time mu-Calculus
via Translation to SAT. Proc. of Concurrency, Specification and Programming
Workshop CS&P’2004, Germany, 2004, Humboldt Universitat, Berlin, Informatik-
Bericht Nr.170, v.2.

18. Kozen D. Results on the Propositional Mu-Calculus. Theoretical Computer Sci-
ence, v.27, n.3, 1983, p.333-354.

19. Kouzmin E.V., Shilov N.V., Sokolov V.A. Model Checking µ-Calculau in Well-
Structured Transition Systems. Proceedings of 11th International Symposium on
Temporal Representation and Reasoning (TIME 2004), France 2004, IEEE Press,
p. 152-155.

20. Kozen D., Tiuryn J. Logics of Programs. In: Handbook of Theoretical Computer
Science, v.B., Elsevier and MIT Press, 1990, p. 789–840.

21. van der Meyden R. Common Knowledge and Update in Finite Environments.
Information and Computation, 1998, v.140(2), p. 115–157.

22. van der Meyden R., Shilov N.V. Model Checking Knowledge and Time in Sys-
tems with Perfect Recall. Springer-Verlag Lect. Notes Comput. Sci., 1999, v.1738,
p. 432–445.

23. van der Meyden R. and Wong K. Complete Axiomatizations for Reasoning about
Knowledge and Branching Time. Studia Logica, v.75(1), 2003, p. 93-123.

24. Rescher N. Epistemic Logic. A Survey of the Logic of Knowledge. University of
Pitsburgh Press, 2005.

25. Shilov N.V. and Yi K. How to find a coin: propositional program logics made
easy. In: Current Trends in Theoretical Computer Science, World Scientific, v. 2,
2004, p.181-213.

26. Shilov N.V., Garanina N.O., and Choe K.-M. 2.7. Update and Abstraction in
Model Checking of Knowledge and Branching Time. Fundameta Informaticae,
v.72, n.1-3, 2006, p.347-361.

