
PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 1

Towards Measuring the

Abstractness of Statemachines based on
Mutation-Testing

Thomas Baar
thomas.baar@htw-berlin.de

Workshop PSSV (Program Semantics, Specification and Verification:
Theory and Applications), Moscow, June 26th, 2017

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 2

A Typical Student Assignment
Develop a state model (e.g. expressed using UML State
Machines) for a given application

Example:
 (PacMan)

Ghosts
(collisions to be avoided)

Walls

Hero (Puck)
(controlled by user via keys)

Grains
(to be eaten by the Hero)

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 3

Environment Model
(Define the Incoming Events)

First Version

Remaining Task:
Develop statemodel for
PMController

Refined Version

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 4

Statemodel for PacMan-Controller

Reasonable solution:
given by students
(Keller, Brömer,
Vaterrodt)

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 5

Statemodel for PacMan-Controller
(useless) solution -
not submitted yet,
but imaginable

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 6

(My) Problems when Judging
Students' Submissions

Q1: Is the statemachine correct?

- Does the implementation really behaves as described?

Q2: Is the statemachine too trivial/too abstract?

- Have all important states of the implementation been captured by
the statemachine?

Though these are central questions when assessing the quality
of modeling artefacts wrt. an implemented system,
I could not find any tool helping to answer them!

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 7

Goal of the Paper

Define a machinery for
measuring correctness and abstractness

of statemachines wrt. a given implementation

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 8

Statemachines – Syntax/Semantics

A statemachine is a tuple states, events,
variables, and transitions. A transition
connects two states and is optionally
annotated with a guard and list of
variable updates.

An execution state of the statemachine
a state combined with a binding of all
variables to concrete values.

state

transition

event

variable

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 9

Statemachines – Syntax/Semantics

The statespace of a statemachine is the
set of all possible execution states

A trace is defined for a given sequence of
events as a sequence of execution states, in
which each state is connected with its
successor by a fired transition. Each trace
starts with an execution state satisfying the
start condition.

InputEvents: [push, push, pop]

1. push

3. pop2. push

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 10

Implementation
The implementation is written in an OO
implementation language. We assume a Facade-
class offering methods with same names as the
events of state machine.

We assume the Facade-class to control the
execution flow: Whenever a method on the
Facade-class is invoked, the system executes
the method and waits for the next method call.

A trace is defined for the sequence of method
calls on the Facade-class. The trace consists of
those implementation states when the system is
waiting for the next method call. Often, all
relevant information about the implementation
state can be captured by additional derived
attributes on the Facade-class.

1. push

2. push

3. pop

Facade-class

Methods have same name as events

InputEvents: [push, push, pop]

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 11

Bridging Statemachine and Impl.
A bridge is a relation over the both statespaces
(statemachine and implementation).

We define the bridge by attaching a predicate
on each state, for example:

inState(empty) -> num=len

inState(nonempty) -> num=len

Statespace of statemachine

Statespace of implementation

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 12

Correctness
We call a statemachine a valid abstraction of an
implementation wrt. a given bridge, iff for each sequence
of events, corresponding states in the traces of
statemachine and implementation are in the relation
defined by the bridge

Remark: Since there are infinitely many input
sequences, we can only test few of them.

InputEvents: [push, push, pop]

1. push

3. pop2. push

1. push

2. push

3. pop

Q1 is answered (but requires in practice the definition of a bridge)

✔ ✔
✔

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 13

Idea for Measuring Abstractness
Repeating Runs on Mutated Implementations
Idea: The runs certifying the correctness of a
statemachine are repeated on changed
(mutated) implementations.

Original Implementation
Implementation - Mutation 1

Implementation - Mutation 2

...
Implementation - Mutation n

InputEvents: [push, push, pop]

1. push

3. pop2. push

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 14

Computing the Abstractness
A statemachine is considered more abstract wrt. an implementation
and a bridge, the more traces are still correct. So, we define the
abstractness as follows:

Examples:

- abstracness(sm) = 0

 All traces on all mutations fail.

- abstractness(sm) = 1

 All traces are still correct (statemachine works fine for all
mutated versions of the implementation!)

 number of correct traces on mutated implementation
abstractness(sm) = number of all traces on mutated implementation

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 15

Problems/Things to discuss
Correctness: There are infinitely many sequences
of events!

- How to become confident that statemachine is
correct for ALL possible input(event) sequences?

Abstractness: For the computation of
abstractness, not all traces can be taken into
account!

- How to select the representative cases?
 If a mutated implementation fails for [e1,e2,...,ek], it will

also fail for [e1,e2,...,ek, ..., en]

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 16

Summary
• We addressed a problem of quality assessment

- If models are too abstract, they don't tell any
interesting story

• Abstraction measurement of statemachines is in
literature done using structural criteria (counting
states, transitions, etc.)

- Our approach needs working implementation and formally
defined bridge.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16

