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A Typical Student Assignment

Develop a state model (e.g. expressed using UML State
Machines) for a given application

Example: e.

(PacMan)
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Statemodel for PacMan-Controller
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Statemodel for PacMan-Controller
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(My) Problems when Judging
Students’ Submissions

Q1: Is the statemachine correct?

- Does the implementation really behaves as described?
Q2: Is the statemachine too trivial/too abstract?

- Have all important states of the implementation been captured by
the statemachine?

Though these are central questions when assessing the quality
of modeling artefacts wrt. an implemented system,
| could not find any tool helping to answer them!
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Goal of the Paper

Define a machinery for
measuring correctness and abstractness
of statemachines wrt. a given implementation
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Statemachines - Syntax/Semantics

® /num=0
A statemachine is a tuple states, events,
variables, and transitions. A transition
connects two states and is optionally
annotated with a guard and list of
variable updates.

push/n

pop[num==1}/num-=1

nonempty

An execution state of the statemachine /—\
a state combined with a binding of all [ _empty
variables to concrete values. @
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Statemachines - Syntax/Semantics

The statespace of a statemachine is the
set of all possible execution states

A trace is defined for a given sequence of
events as a sequence of execution states, in
which each state is connected with its
successor by a fired transition. Each trace
starts with an execution state satisfying the
start condition.

InputEvents: [push, push, pop]
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Implementation

The implementation is written in an OO
implementation language. We assume a Facade-
class offering methods with same names as the
events of state machine.

We assume the Facade-class to control the
execution flow: Whenever a method on the
Facade-class is invoked, the system executes
the method and waits for the next method call.

A trace is defined for the sequence of method

calls on the Facade-class. The trace consists of
those implementation states when the system is
waiting for the next method call. Often, all

relevant information about the implementation ' PUS"

Stack
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InputEvents: [push, push, pop]
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Bridging Statemachine and Impl.

A bridge is a relation over the both statespaces Statespace of statemachine
(statemachine and implementation).

We define the bridge by attaching a predicate
on each state, for example:

| NSt ate(enpty) -> nunel en
| NSt at e( nonenpty) -> nunel en

flen=0 flen=1 flen=2 flen=3

Statespace of implementation
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Correctness

We call a statemachine a valid abstraction of an / ampty\
implementation wrt. a given bridge, iff for each sequence W
of events, corresponding states in the traces of
statemachine and implementation are in the relation
defined by the bridge

Remark: since there are infinitely many input
sequences, we can only test few of them.

flen=2 flen=3

InputEvents: [push, push, pop]

Q1 is answered (but requires in practice the definition of a bridge)
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Idea for Measuring Abstractness
Repeating Runs on Mutated Implementations

Idea: The runs certifying the correctness of a fomon N
statemachine are repeated on changed N
(mutated) implementations.
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[ ompty ™\
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Computing the Abstractness

A statemachine is considered more abstract wrt. an implementation
and a bridge, the more traces are still correct. So, we define the
abstractness as follows:

number of correct traces_on mutated implementation
abstractness(sm) = number of all traces on mutated implementation

Examples:

- abstracness(sm) = O
= All traces on all mutations fail.
- abstractness(sm) = 1

= All traces are still correct (statemachine works fine for all

mutated versions of the implementation!)
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Problems/Things to discuss

Correctness: There are infinitely many sequences
of events!

- How to become confident that statemachine is
correct for ALL possible input(event) sequences?

Abstractness: For the computation of
abstractness, not all traces can be taken into
account!

- How to select the representative cases?

* If a mutated implementation fails for [el,e2,...,ek], it will

also fail for [ele2,....ek, ..., en]
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Summary

We addressed a problem of quality assessment

- If models are too abstract, they don't tell any
interesting story

Abstraction measurement of statemachines is in
literature done using structural criteria (counting
states, transitions, etc.)

- Our approach needs working implementation and formally
defined bridge.
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