Towards Measuring the

Abstractness of Statemachines based on
Mutation-Testing

Thomas Baar

thomas.baar@htw-berlin.de

JTT

Hochschule fiir Technik
und Wirtschaft Berlin

University of Applied Sciences

Workshop PSSV (Program Semantics, Specification and Verification:
Theory and Applications), Moscow, June 26™, 2017

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 1

A Typical Student Assignment

Develop a state model (e.g. expressed using UML State
Machines) for a given application

Example: e.

(PacMan)

PSSV-2017 T.Baar: Abstractness of SM

Environment Model
(Define the Incoming Events)

«system»
down PacMan
left s
right 7’ Remaining Task:
¢ ’ Develop statemodel for
)\ ? ’ PMController
Player u /
y up «system»
tick down PacMan
{ila_l_ctor» C— / left
mer 7’ right L N_
. Dots
7 ~ «singleton» eat
pg Q ~ _|IPMControllei hitGhost
First Version ,)\
7’
P 4 Player \ /
y 4 i gameobjects
PA 7’ tick Ghost
«singleton» Grain
Timer
]] Hero
Refined Version

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing.

Statemodel for PacMan-Controller

o

ﬂlfﬂﬁvz.wiwlaxPuinlb-—ﬁﬁﬁﬂ

W '
‘l pacmanAlive
after i‘Jh:QfJSccands
"
.
~.
hitGhost{lves==0|
pacmanRunning
pressArrow[points<maxPoints] | deo .]
» runinLasiDirection
. x ¥
Reasonable solution:

given by students
(Keller, Bromer,
Vaterrodt)

eatDots[points==maxPoins]

A 4

—
[pacmanDead)

do
playDeathMusic

i —

eatDots[points<maxPoints)/points+=50

hitGhost [lives=C]/resetPositonlives-=1

¥y
(" tinsh)

entry
closeBoard

[pacmanWins }

PSSV-2I

P exit
openMenue
do
\saveHighscare

Statemodel for PacMan-Controller

(useless) solution -
not submitted yet,
but imaginable

eatDots

running

/N
pressArrow hitGhos

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 5

(My) Problems when Judging
Students’ Submissions

Q1: Is the statemachine correct?

- Does the implementation really behaves as described?
Q2: Is the statemachine too trivial/too abstract?

- Have all important states of the implementation been captured by
the statemachine?

Though these are central questions when assessing the quality
of modeling artefacts wrt. an implemented system,
| could not find any tool helping to answer them!

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing.

Goal of the Paper

Define a machinery for
measuring correctness and abstractness
of statemachines wrt. a given implementation

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 7

Statemachines - Syntax/Semantics

® /num=0
A statemachine is a tuple states, events,
variables, and transitions. A transition
connects two states and is optionally
annotated with a guard and list of
variable updates.

push/n

pop[num==1}/num-=1

nonempty

An execution state of the statemachine /—\
a state combined with a binding of all [_empty
variables to concrete values. @

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 8

Statemachines - Syntax/Semantics

The statespace of a statemachine is the
set of all possible execution states

A trace is defined for a given sequence of
events as a sequence of execution states, in
which each state is connected with its
successor by a fired transition. Each trace
starts with an execution state satisfying the
start condition.

InputEvents: [push, push, pop]
PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 9

Implementation

The implementation is written in an OO
implementation language. We assume a Facade-
class offering methods with same names as the
events of state machine.

We assume the Facade-class to control the
execution flow: Whenever a method on the
Facade-class is invoked, the system executes
the method and waits for the next method call.

A trace is defined for the sequence of method

calls on the Facade-class. The trace consists of
those implementation states when the system is
waiting for the next method call. Often, all

relevant information about the implementation ' PUS"

Stack

push()
pop()

I public

private List<Item> items =

public void push(Item i

public
if (items.isEmpty())
return null;
lastIndex =

class Stackl |

items.add(i);
Item pop() {

int lastInde

return items.remove

new ArraylList<Item>(};

items.size()-1;

lastIndex) ;

public int ger_Leﬁgtht}{)
item i

i

- {m1)
m2()

return ems.size():

attributes on the Facade-class.

3. pop
:Stack |—»-| :Stack
llen=1 llen=2
. push

state can be captured by additional derived ‘@
ﬂﬁiiql'
N

:Stack

flen=3

InputEvents: [push, push, pop]

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing.

10

Bridging Statemachine and Impl.

A bridge is a relation over the both statespaces Statespace of statemachine
(statemachine and implementation).

We define the bridge by attaching a predicate
on each state, for example:

| NSt ate(enpty) -> nunel en
| NSt at e(nonenpty) -> nunel en

flen=0 flen=1 flen=2 flen=3

Statespace of implementation
PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 11

Correctness

We call a statemachine a valid abstraction of an / ampty\
implementation wrt. a given bridge, iff for each sequence W
of events, corresponding states in the traces of
statemachine and implementation are in the relation
defined by the bridge

Remark: since there are infinitely many input
sequences, we can only test few of them.

flen=2 flen=3

InputEvents: [push, push, pop]

Q1 is answered (but requires in practice the definition of a bridge)

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 12

Idea for Measuring Abstractness
Repeating Runs on Mutated Implementations

Idea: The runs certifying the correctness of a fomon N
statemachine are repeated on changed N
(mutated) implementations.

[Lempty
H2. push 3. pop
InputEvents: [push, push, pop] —
[ompty ™\

S " Implementation - Mutation 1
' Original Implementation '
m m m m /,‘) [[enZO flen=1 {len=2 flen=3
/len=0 flen=1 flen=2 flen=3 — e
Implementation - Mutation 2 Implementation - Mutation n’
.ﬂngﬂ Nlen=1 flen=2 flen=3 o [I I] {IngG Nlen=1 Nlen=2 flen=3 o

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testiné. 13

Computing the Abstractness

A statemachine is considered more abstract wrt. an implementation
and a bridge, the more traces are still correct. So, we define the
abstractness as follows:

number of correct traces_on mutated implementation
abstractness(sm) = number of all traces on mutated implementation

Examples:

- abstracness(sm) = O
= All traces on all mutations fail.
- abstractness(sm) = 1

= All traces are still correct (statemachine works fine for all

mutated versions of the implementation!)
PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 14

Problems/Things to discuss

Correctness: There are infinitely many sequences
of events!

- How to become confident that statemachine is
correct for ALL possible input(event) sequences?

Abstractness: For the computation of
abstractness, not all traces can be taken into
account!

- How to select the representative cases?

* If a mutated implementation fails for [el,e2,...,ek], it will

also fail for [ele2,....ek, ..., en]
PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing.

15

Summary

We addressed a problem of quality assessment

- If models are too abstract, they don't tell any
interesting story

Abstraction measurement of statemachines is in
literature done using structural criteria (counting
states, transitions, etc.)

- Our approach needs working implementation and formally
defined bridge.

PSSV-2017 T.Baar: Abstractness of SMs based on Mutation Testing. 16

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16

