
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Taylor expansion of proofs and static analysis of
time complexity

Daniel de Carvalho

Innopolis University

Yaroslavl, 21st of June, 2018

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)

• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)

• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)

• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)

• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)

• Some consequences:
- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)

- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)

- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs

- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some ideas
• Proofs are programs (Curry, Howard, de Bruijn, Girard)
• Programs are continuous functions between domains (Scott)
• Sequential programs are stable functions between
dI-domains (Berry)
• Sequential programs are stable functions between coherence
spaces (Girard)
• What linear logic teaches us: Stable functions are linear
functions (!) (Girard)
• Some consequences:

- Refining stability: a) hypercoherences (Ehrhard)
b) game semantics for linear logic -> full abstraction of
PCF (Blass, Abramsky, Jagadeesan, Malacaria) (not
covered)
- Programs are smooth functions (Ehrhard)
- Foundations for verification of time complexity of
programs
- Logical implicit complexity (Girard, Lafont, Baillot,
Terui, Hofmann) (not covered)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (1): A trivial proof of (Int ⇒ Int)

Let us consider natural deduction for second-order intuitionistisc
logic.
Let Int be the formula (∀X)((X ⇒ X) ⇒ (X ⇒ X)).
There is a trivial proof of (Int ⇒ Int) (let us call it id):

t : Int ⊢ Int ⇒i, t⊢ (Int ⇒ Int)

There are many other proofs of this formula, but why should we
take an interest in them after all?!
Let us consider one of them.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (1): A trivial proof of (Int ⇒ Int)

Let us consider natural deduction for second-order intuitionistisc
logic.
Let Int be the formula (∀X)((X ⇒ X) ⇒ (X ⇒ X)).
There is a trivial proof of (Int ⇒ Int) (let us call it id):

t : Int ⊢ Int ⇒i, t⊢ (Int ⇒ Int)

There are many other proofs of this formula, but why should we
take an interest in them after all?!
Let us consider one of them.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (1): A trivial proof of (Int ⇒ Int)

Let us consider natural deduction for second-order intuitionistisc
logic.
Let Int be the formula (∀X)((X ⇒ X) ⇒ (X ⇒ X)).
There is a trivial proof of (Int ⇒ Int) (let us call it id):

t : Int ⊢ Int ⇒i, t⊢ (Int ⇒ Int)

There are many other proofs of this formula, but why should we
take an interest in them after all?!
Let us consider one of them.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (2): A non-trivial proof of (Int ⇒ Int)

Another proof of (Int ⇒ Int) (let us call it s):

y : Y ⊢ Y

t : Int ⊢ Int ∀et : Int ⊢ (Y ⇒ Y) y : Y ⊢ Y ⇒et : Int, y : Y ⊢ Y x : X ⊢ X ⇒e
Γ ⊢ X ⇒e

Γ ⊢ X ⇒i, xt : Int, y : Y ⊢ Y ⇒i, y
t : Int ⊢ (Y ⇒ Y)

∀it : Int ⊢ Int ⇒i, t
⊢ (Int ⇒ Int)

where Y = (X ⇒ X) and Γ = t : Int, y : Y, x : X.
What is the point to consider such a proof?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (3): Many proofs of Int

We have the following proof (let us call it 0):

x : X ⊢ X ⇒i, x⊢ (X ⇒ X) ⇒i, y⊢ ((X ⇒ X) ⇒ (X ⇒ X))
∀i⊢ Int

Also, we have the following proof (let us call it 1):

y : (X ⇒ X) ⊢ (X ⇒ X) x : X ⊢ X ⇒ey : (X ⇒ X), x : X ⊢ X ⇒i, xy : (X ⇒ X) ⊢ (X ⇒ X) ⇒i, y⊢ ((X ⇒ X) ⇒ (X ⇒ X))
∀i⊢ Int

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (3): Many proofs of Int

We have the following proof (let us call it 0):

x : X ⊢ X ⇒i, x⊢ (X ⇒ X) ⇒i, y⊢ ((X ⇒ X) ⇒ (X ⇒ X))
∀i⊢ Int

Also, we have the following proof (let us call it 1):

y : (X ⇒ X) ⊢ (X ⇒ X) x : X ⊢ X ⇒ey : (X ⇒ X), x : X ⊢ X ⇒i, xy : (X ⇒ X) ⊢ (X ⇒ X) ⇒i, y⊢ ((X ⇒ X) ⇒ (X ⇒ X))
∀i⊢ Int

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (4): Cuts

From a proof of (Int ⇒ Int) and a proof of Int, we can get a new
proof of Int.
For instance, taking s : (Int ⇒ Int) and 0 : Int, we get:

y : Y ⊢ Y

t : Int ⊢ Int ∀et : Int ⊢ (Y ⇒ Y) y : Y ⊢ Y
⇒e

t : Int, y : Y ⊢ Y x : X ⊢ X ⇒e
Γ ⊢ X ⇒e

Γ ⊢ X ⇒i, x
t : Int, y : Y ⊢ Y

⇒i, y
t : Int ⊢ (Y ⇒ Y)

∀it : Int ⊢ Int ⇒i, t
⊢ (Int ⇒ Int)

x : X ⊢ X ⇒i, x
⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int

⇒e
⊢ Int

where Y = (X ⇒ X) and Γ = t : Int, y : Y, x : X.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (4): Cuts

From a proof of (Int ⇒ Int) and a proof of Int, we can get a new
proof of Int.
For instance, taking s : (Int ⇒ Int) and 0 : Int, we get:

y : Y ⊢ Y

t : Int ⊢ Int ∀et : Int ⊢ (Y ⇒ Y) y : Y ⊢ Y
⇒e

t : Int, y : Y ⊢ Y x : X ⊢ X ⇒e
Γ ⊢ X ⇒e

Γ ⊢ X ⇒i, x
t : Int, y : Y ⊢ Y

⇒i, y
t : Int ⊢ (Y ⇒ Y)

∀it : Int ⊢ Int ⇒i, t
⊢ (Int ⇒ Int)

x : X ⊢ X ⇒i, x
⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int

⇒e
⊢ Int

where Y = (X ⇒ X) and Γ = t : Int, y : Y, x : X.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (5): Cut-elimination of s applied to 0

y : Y ⊢ Y

x : X ⊢ X ⇒i, x
⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int ∀e⊢ (Y ⇒ Y) y : Y ⊢ Y ⇒ey : Y ⊢ Y x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒i, xy : Y ⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int

where Y = (X ⇒ X).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (5): Cut-elimination of s applied to 0

y : Y ⊢ Y

x : X ⊢ X ⇒i, x
⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int ∀e⊢ (Y ⇒ Y) y : Y ⊢ Y ⇒ey : Y ⊢ Y x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒i, xy : Y ⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int

where Y = (X ⇒ X).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (5): Cut-elimination of s applied to 0

y : Y ⊢ Y

x : X ⊢ X ⇒i, x
⊢ Y ⇒i, y

⊢ (Y ⇒ Y) y : Y ⊢ Y ⇒ey : Y ⊢ Y x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒i, xy : Y ⊢ Y ⇒i, y
⊢ (Y ⇒ Y)

∀i⊢ Int

where Y = (X ⇒ X).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (5): Cut-elimination of s applied to 0

y : Y ⊢ Y

x : X ⊢ X ⇒i, x
⊢ Y ⇒i, y

⊢ (Y ⇒ Y) y : Y ⊢ Y ⇒ey : Y ⊢ Y x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒i, xy : Y ⊢ Y ⇒i, y
⊢ (Y ⇒ Y)

∀i⊢ Int

where Y = (X ⇒ X).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (5): Cut-elimination of s applied to 0

y : Y ⊢ Y

x : X ⊢ X ⇒i, x
⊢ Y x : X ⊢ X ⇒ex : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒i, xy : Y ⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int

where Y = (X ⇒ X).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (5): Cut-elimination of s applied to 0

y : Y ⊢ Y

x : X ⊢ X ⇒i, x
⊢ Y x : X ⊢ X ⇒ex : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒i, xy : Y ⊢ Y ⇒i, y

⊢ (Y ⇒ Y)
∀i⊢ Int

where Y = (X ⇒ X).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (5): Cut-elimination of s applied to 0

y : Y ⊢ Y x : X ⊢ X ⇒ey : Y, x : X ⊢ X ⇒i, xy : Y ⊢ Y ⇒i, y
⊢ (Y ⇒ Y)

∀i⊢ Int

where Y = (X ⇒ X).

This is the proof we called 1.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (6): Cut-elimination of id applied to 0

t : Int ⊢ Int ⇒i, t⊢ (Int ⇒ Int)

x : X ⊢ X ⇒i, x⊢ (X ⇒ X) ⇒i, y⊢ ((X ⇒ X) ⇒ (X ⇒ X))
∀i⊢ Int ⇒e⊢ Int

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (6): Cut-elimination of id applied to 0

t : Int ⊢ Int ⇒i, t⊢ (Int ⇒ Int)

x : X ⊢ X ⇒i, x⊢ (X ⇒ X) ⇒i, y⊢ ((X ⇒ X) ⇒ (X ⇒ X))
∀i⊢ Int ⇒e⊢ Int

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (6): Cut-elimination of id applied to 0

x : X ⊢ X ⇒i, x⊢ (X ⇒ X) ⇒i, y⊢ ((X ⇒ X) ⇒ (X ⇒ X))
∀i⊢ Int

This is the proof we called 0.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (7): Cut-elimination
We saw that

• s : (Int ⇒ Int) applied to 0 : Int reduces to 1 : Int.
• id : (Int ⇒ Int) applied to 0 : Int reduces to the 0 : Int.

More generally, we could define n : Int for any n ∈ N and show that
• s : (Int ⇒ Int) applied to n : Int reduces to n + 1 : Int.
• id : (Int ⇒ Int) applied to n : Int reduces to n : Int.

• The proof s : (Int ⇒ Int) behaves like a program that
computes the successor of any integer.
• The proof id : (Int ⇒ Int) behaves like a program that
returns its argument.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (7): Cut-elimination
We saw that

• s : (Int ⇒ Int) applied to 0 : Int reduces to 1 : Int.
• id : (Int ⇒ Int) applied to 0 : Int reduces to the 0 : Int.

More generally, we could define n : Int for any n ∈ N and show that
• s : (Int ⇒ Int) applied to n : Int reduces to n + 1 : Int.
• id : (Int ⇒ Int) applied to n : Int reduces to n : Int.

• The proof s : (Int ⇒ Int) behaves like a program that
computes the successor of any integer.
• The proof id : (Int ⇒ Int) behaves like a program that
returns its argument.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (7): Cut-elimination
We saw that

• s : (Int ⇒ Int) applied to 0 : Int reduces to 1 : Int.
• id : (Int ⇒ Int) applied to 0 : Int reduces to the 0 : Int.

More generally, we could define n : Int for any n ∈ N and show that
• s : (Int ⇒ Int) applied to n : Int reduces to n + 1 : Int.
• id : (Int ⇒ Int) applied to n : Int reduces to n : Int.

• The proof s : (Int ⇒ Int) behaves like a program that
computes the successor of any integer.
• The proof id : (Int ⇒ Int) behaves like a program that
returns its argument.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (8): The formulae-as-types correspondence

Cut-elimination always terminates (Girard 1971). Before, it was
shown by Gentzen (1934) that cut-elimination terminates in
(classical) propositional logic.

Nevertheless, notice that:
• Cut-elimination terminates in natural deduction for
intuitionistic propositional logic and is confluent.
• Cut-elimination terminates in sequent calculus for
intuitionistic propositional logic (LJ), but is not confluent.

Cut-elimination in LJ behaves bad because equality between LJ
proofs is “evil” (i.e. too fine).

Conclusion: Proofs in (intuitionistic) natural deduction are
programs, where formulae are types and cut-elimination is their
execution.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (8): The formulae-as-types correspondence

Cut-elimination always terminates (Girard 1971). Before, it was
shown by Gentzen (1934) that cut-elimination terminates in
(classical) propositional logic. Nevertheless, notice that:

• Cut-elimination terminates in natural deduction for
intuitionistic propositional logic and is confluent.
• Cut-elimination terminates in sequent calculus for
intuitionistic propositional logic (LJ), but is not confluent.

Cut-elimination in LJ behaves bad because equality between LJ
proofs is “evil” (i.e. too fine).

Conclusion: Proofs in (intuitionistic) natural deduction are
programs, where formulae are types and cut-elimination is their
execution.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (8): The formulae-as-types correspondence

Cut-elimination always terminates (Girard 1971). Before, it was
shown by Gentzen (1934) that cut-elimination terminates in
(classical) propositional logic. Nevertheless, notice that:

• Cut-elimination terminates in natural deduction for
intuitionistic propositional logic and is confluent.
• Cut-elimination terminates in sequent calculus for
intuitionistic propositional logic (LJ), but is not confluent.

Cut-elimination in LJ behaves bad because equality between LJ
proofs is “evil” (i.e. too fine).

Conclusion: Proofs in (intuitionistic) natural deduction are
programs, where formulae are types and cut-elimination is their
execution.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs matter (8): The formulae-as-types correspondence

Cut-elimination always terminates (Girard 1971). Before, it was
shown by Gentzen (1934) that cut-elimination terminates in
(classical) propositional logic. Nevertheless, notice that:

• Cut-elimination terminates in natural deduction for
intuitionistic propositional logic and is confluent.
• Cut-elimination terminates in sequent calculus for
intuitionistic propositional logic (LJ), but is not confluent.

Cut-elimination in LJ behaves bad because equality between LJ
proofs is “evil” (i.e. too fine).

Conclusion: Proofs in (intuitionistic) natural deduction are
programs, where formulae are types and cut-elimination is their
execution.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Untyped λ-calculus
Proofs in intuitionistic natural deduction can be represented by
typed λ-terms.

But what about untyped λ-calculus? It was introduced in 1936
(Church) without any denotational semantics.
Simply typed λ-calculus has a standard denotational semantics:
types are sets and terms are functions.
But in untyped λ-calculus terms can be applied to themselves and
the set of functions D → D cannot be embedded into D (unless
D ≃ {∗}).

Scott (1972): Building a topological space D that is
homeomorphic to the space of continuous functions D → D.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Untyped λ-calculus
Proofs in intuitionistic natural deduction can be represented by
typed λ-terms.

But what about untyped λ-calculus? It was introduced in 1936
(Church) without any denotational semantics.

Simply typed λ-calculus has a standard denotational semantics:
types are sets and terms are functions.
But in untyped λ-calculus terms can be applied to themselves and
the set of functions D → D cannot be embedded into D (unless
D ≃ {∗}).

Scott (1972): Building a topological space D that is
homeomorphic to the space of continuous functions D → D.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Untyped λ-calculus
Proofs in intuitionistic natural deduction can be represented by
typed λ-terms.

But what about untyped λ-calculus? It was introduced in 1936
(Church) without any denotational semantics.
Simply typed λ-calculus has a standard denotational semantics:
types are sets and terms are functions.
But in untyped λ-calculus terms can be applied to themselves and
the set of functions D → D cannot be embedded into D (unless
D ≃ {∗}).

Scott (1972): Building a topological space D that is
homeomorphic to the space of continuous functions D → D.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Untyped λ-calculus
Proofs in intuitionistic natural deduction can be represented by
typed λ-terms.

But what about untyped λ-calculus? It was introduced in 1936
(Church) without any denotational semantics.
Simply typed λ-calculus has a standard denotational semantics:
types are sets and terms are functions.
But in untyped λ-calculus terms can be applied to themselves and
the set of functions D → D cannot be embedded into D (unless
D ≃ {∗}).

Scott (1972): Building a topological space D that is
homeomorphic to the space of continuous functions D → D.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kolmogorov spaces
A Kolmogorov space X is a topological space where distinct points
are topologically distinguishable:

• (∀x, y ∈ X)(NX(x) = NX(y) ⇒ x = y)
• i.e. (∀x, y ∈ X)({x} = {y} ⇒ x = y)

We have a faifthul functor from the category of Kolmogorov spaces
to the category of posets by the specialisation functor:

(x ≤X y ⇔ NX(x) ⊆ NX(y))

i.e.(x ≤X y ⇔ {x} ⊆ {y})

Given a poset (E,≤), the set E can be endowed with several
topologies Ω such that

• (E,Ω) is a Kolmogorov space
• and the specialisation order on (E,Ω) is (E,≤).

One of these topologies is the Scott topology.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kolmogorov spaces
A Kolmogorov space X is a topological space where distinct points
are topologically distinguishable:

• (∀x, y ∈ X)(NX(x) = NX(y) ⇒ x = y)
• i.e. (∀x, y ∈ X)({x} = {y} ⇒ x = y)

We have a faifthul functor from the category of Kolmogorov spaces
to the category of posets by the specialisation functor:

(x ≤X y ⇔ NX(x) ⊆ NX(y))

i.e.(x ≤X y ⇔ {x} ⊆ {y})

Given a poset (E,≤), the set E can be endowed with several
topologies Ω such that

• (E,Ω) is a Kolmogorov space
• and the specialisation order on (E,Ω) is (E,≤).

One of these topologies is the Scott topology.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kolmogorov spaces
A Kolmogorov space X is a topological space where distinct points
are topologically distinguishable:

• (∀x, y ∈ X)(NX(x) = NX(y) ⇒ x = y)
• i.e. (∀x, y ∈ X)({x} = {y} ⇒ x = y)

We have a faifthul functor from the category of Kolmogorov spaces
to the category of posets by the specialisation functor:

(x ≤X y ⇔ NX(x) ⊆ NX(y))

i.e.(x ≤X y ⇔ {x} ⊆ {y})

Given a poset (E,≤), the set E can be endowed with several
topologies Ω such that

• (E,Ω) is a Kolmogorov space
• and the specialisation order on (E,Ω) is (E,≤).

One of these topologies is the Scott topology.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Kolmogorov spaces
A Kolmogorov space X is a topological space where distinct points
are topologically distinguishable:

• (∀x, y ∈ X)(NX(x) = NX(y) ⇒ x = y)
• i.e. (∀x, y ∈ X)({x} = {y} ⇒ x = y)

We have a faifthul functor from the category of Kolmogorov spaces
to the category of posets by the specialisation functor:

(x ≤X y ⇔ NX(x) ⊆ NX(y))

i.e.(x ≤X y ⇔ {x} ⊆ {y})

Given a poset (E,≤), the set E can be endowed with several
topologies Ω such that

• (E,Ω) is a Kolmogorov space
• and the specialisation order on (E,Ω) is (E,≤).

One of these topologies is the Scott topology.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scott topology
Scott opens of (E,≤) are upper sets that are inaccessible by
directed joins, i.e. subsets U of E such that

• (∀x ∈ U)(∀y ∈ E)(x ≤ y ⇒ y ∈ U)
• (∀∆ ⊆dir E)(

∨
∆ ∈ U ⇒ ∆ ∩ U ̸= ∅)

Theorem.
(i) Scott opens of (E,≤) form a topology Ω on E.
(ii) The specialisation order on this topology is the order ≤.

Proof. (i) is trivial.
For (ii), notice (∀x ∈ E){y ∈ E;¬y ≤ x} ∈ Ω.
Example. B = {T,F,⊥}, B = (B,≤B), where
(x ≤B y ⇔ (x = y ∨ x = ⊥)), and B = (B,Ω) with
Ω = P({T,F,⊥}) \ {{⊥}} the Scott topology of B.
If f : {T,F,⊥} → {T,F,⊥} s.t. f(⊥) ̸= ⊥ and f(T) = ⊥, then f is
not a continuous function B → B.
Intuition: If f(⊥) ̸= ⊥, then f denotes a program that does not
read its argument and thus should be constant.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scott topology
Scott opens of (E,≤) are upper sets that are inaccessible by
directed joins, i.e. subsets U of E such that

• (∀x ∈ U)(∀y ∈ E)(x ≤ y ⇒ y ∈ U)
• (∀∆ ⊆dir E)(

∨
∆ ∈ U ⇒ ∆ ∩ U ̸= ∅)

Theorem.
(i) Scott opens of (E,≤) form a topology Ω on E.
(ii) The specialisation order on this topology is the order ≤.

Proof. (i) is trivial.
For (ii), notice (∀x ∈ E){y ∈ E;¬y ≤ x} ∈ Ω.

Example. B = {T,F,⊥}, B = (B,≤B), where
(x ≤B y ⇔ (x = y ∨ x = ⊥)), and B = (B,Ω) with
Ω = P({T,F,⊥}) \ {{⊥}} the Scott topology of B.
If f : {T,F,⊥} → {T,F,⊥} s.t. f(⊥) ̸= ⊥ and f(T) = ⊥, then f is
not a continuous function B → B.
Intuition: If f(⊥) ̸= ⊥, then f denotes a program that does not
read its argument and thus should be constant.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scott topology
Scott opens of (E,≤) are upper sets that are inaccessible by
directed joins, i.e. subsets U of E such that

• (∀x ∈ U)(∀y ∈ E)(x ≤ y ⇒ y ∈ U)
• (∀∆ ⊆dir E)(

∨
∆ ∈ U ⇒ ∆ ∩ U ̸= ∅)

Theorem.
(i) Scott opens of (E,≤) form a topology Ω on E.
(ii) The specialisation order on this topology is the order ≤.

Proof. (i) is trivial.
For (ii), notice (∀x ∈ E){y ∈ E;¬y ≤ x} ∈ Ω.
Example. B = {T,F,⊥}, B = (B,≤B), where
(x ≤B y ⇔ (x = y ∨ x = ⊥)), and B = (B,Ω) with
Ω = P({T,F,⊥}) \ {{⊥}} the Scott topology of B.
If f : {T,F,⊥} → {T,F,⊥} s.t. f(⊥) ̸= ⊥ and f(T) = ⊥, then f is
not a continuous function B → B.
Intuition: If f(⊥) ̸= ⊥, then f denotes a program that does not
read its argument and thus should be constant.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A model of untyped λ-calculus

Scott (1972) has been able to build a special lattice D endowed
with the Scott topology that has the property

(D ⇒ D) ≃ D

where (D ⇒ D) is the space of continuous functions D → D.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stability
Let B× B be the Scott topology on the product order B × B. We
have a continuous function p : B× B → B as follows:

• (p(x, y) = T ⇔ T ∈ {x, y})
• (p(x, y) = F ⇔ {x, y} = {F})

But there is no sequential program denoted by p.

Berry (1978) introduced dI-domains (which are posets with some
“good” properties) and stable functions between them, which are
continuous functions with some “good” property, as a model of
PCF, which is a sequential programming language based on
λ-calculus.

B× B and B are dI-domains. The function p is not stable, because
• (T,⊥) ∨ (⊥,T) exists
• and p(T,⊥) ∧ p(⊥,T) = T ̸= ⊥ = p((T,⊥) ∧ (⊥,T))

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stability
Let B× B be the Scott topology on the product order B × B. We
have a continuous function p : B× B → B as follows:

• (p(x, y) = T ⇔ T ∈ {x, y})
• (p(x, y) = F ⇔ {x, y} = {F})

But there is no sequential program denoted by p.

Berry (1978) introduced dI-domains (which are posets with some
“good” properties) and stable functions between them, which are
continuous functions with some “good” property, as a model of
PCF, which is a sequential programming language based on
λ-calculus.

B× B and B are dI-domains. The function p is not stable, because
• (T,⊥) ∨ (⊥,T) exists
• and p(T,⊥) ∧ p(⊥,T) = T ̸= ⊥ = p((T,⊥) ∧ (⊥,T))

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stability
Let B× B be the Scott topology on the product order B × B. We
have a continuous function p : B× B → B as follows:

• (p(x, y) = T ⇔ T ∈ {x, y})
• (p(x, y) = F ⇔ {x, y} = {F})

But there is no sequential program denoted by p.

Berry (1978) introduced dI-domains (which are posets with some
“good” properties) and stable functions between them, which are
continuous functions with some “good” property, as a model of
PCF, which is a sequential programming language based on
λ-calculus.

B× B and B are dI-domains. The function p is not stable, because
• (T,⊥) ∨ (⊥,T) exists
• and p(T,⊥) ∧ p(⊥,T) = T ̸= ⊥ = p((T,⊥) ∧ (⊥,T))

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Coherence spaces
Girard (1986) introduced coherence spaces, which are special
dI-domains, and showed that coherence spaces with stable
functions are a model of second-order intuitionistisc logic.

A coherence space (A,¨) is a set A endowed with a symmetric
reflexive relation ¨ (a coherence relation) on A. Thet set C(A,¨)
of its cliques (i.e. complete subgraphs) endowed with the inclusion
is a dI-domain (and, in particular, a poset).

Example. The binary relation ¨B defined on {t, f} by x ¨B y iff
x = y is reflexive and symmetric. The cliques of ({t, f},¨B) are:

• ⊥ = ∅
• T = {t}
• F = {f}

We recover the poset B = (B,≤B) by taking ≤B=⊆.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Coherence spaces
Girard (1986) introduced coherence spaces, which are special
dI-domains, and showed that coherence spaces with stable
functions are a model of second-order intuitionistisc logic.

A coherence space (A,¨) is a set A endowed with a symmetric
reflexive relation ¨ (a coherence relation) on A. Thet set C(A,¨)
of its cliques (i.e. complete subgraphs) endowed with the inclusion
is a dI-domain (and, in particular, a poset).

Example. The binary relation ¨B defined on {t, f} by x ¨B y iff
x = y is reflexive and symmetric. The cliques of ({t, f},¨B) are:

• ⊥ = ∅
• T = {t}
• F = {f}

We recover the poset B = (B,≤B) by taking ≤B=⊆.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stable functions between coherence spaces

Proposition. Given two coherence spaces A and B, a continuous
function (C(A),ΩA) → (C(B),ΩB), where ΩA is the Scott
topology of (C(A),⊆), is a function f : C(A) → C(B) such that

• (a′ ⊆ a ⇒ f(a′) ⊆ f(a))
• and, if ∆ is a directed subset of (C(A),⊆), then
f(
∪
∆) =

∪
f[∆]

Definition. A stable function A → B is a continuous function
f : (C(A),ΩA) → (C(B),ΩB) such that

(∀a, a′ ∈ C(A))(a ∪ a′ ∈ C(A) ⇒ f(a ∩ a′) = f(a) ∩ f(a′))

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stable functions between coherence spaces

Proposition. Given two coherence spaces A and B, a continuous
function (C(A),ΩA) → (C(B),ΩB), where ΩA is the Scott
topology of (C(A),⊆), is a function f : C(A) → C(B) such that

• (a′ ⊆ a ⇒ f(a′) ⊆ f(a))
• and, if ∆ is a directed subset of (C(A),⊆), then
f(
∪
∆) =

∪
f[∆]

Definition. A stable function A → B is a continuous function
f : (C(A),ΩA) → (C(B),ΩB) such that

(∀a, a′ ∈ C(A))(a ∪ a′ ∈ C(A) ⇒ f(a ∩ a′) = f(a) ∩ f(a′))

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Product of coherence spaces
Given two coherence spaces A1 = (A1,¨1) and A2 = (A2,¨2),
the product A1&A2 is (({1} × A1) ∪ ({2} × A2),¨), where

((i, a) ¨ (j, b) ⇔ (i = j ⇒ a ¨i b))

Example. The cliques of ({t, f},¨B)&({t, f},¨B) are:
• (⊥,⊥) = ∅
• (T,⊥) = {(1, t)}
• (⊥,T) = {(2, t)}
• (F,⊥) = {(1, f)}
• (⊥,F) = {(2, f)}
• (T,T) = {(1, t), (2, t)}
• (T,F) = {(1, t), (2, f)}
• (F,T) = {(1, f), (2, t)}
• (F,F) = {(1, f), (2, f)}

The function p is not a stable function

({t, f},¨B)&({t, f},¨B) → ({t, f},¨B)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Product of coherence spaces
Given two coherence spaces A1 = (A1,¨1) and A2 = (A2,¨2),
the product A1&A2 is (({1} × A1) ∪ ({2} × A2),¨), where

((i, a) ¨ (j, b) ⇔ (i = j ⇒ a ¨i b))

Example. The cliques of ({t, f},¨B)&({t, f},¨B) are:
• (⊥,⊥) = ∅
• (T,⊥) = {(1, t)}
• (⊥,T) = {(2, t)}
• (F,⊥) = {(1, f)}
• (⊥,F) = {(2, f)}
• (T,T) = {(1, t), (2, t)}
• (T,F) = {(1, t), (2, f)}
• (F,T) = {(1, f), (2, t)}
• (F,F) = {(1, f), (2, f)}

The function p is not a stable function

({t, f},¨B)&({t, f},¨B) → ({t, f},¨B)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The coherence space of stable functions
Proposition. Let f : A → B be a stable function. Then, for any
a ∈ C(A), for any β ∈ f(a), there exists a0 ⊆fin a such that

• β ∈ f(a0)

• and (∀a′ ⊆ ao)(β ∈ f(a′) ⇒ a′ = a0).

One can then endow the set Cfin(A)× B with a coherence relation
¨ to define the space A ⇒ B. We thus get a cartesian closed
category (i.e. a model of the simply typed λ-calculus). What is
striking is that this construction can be made up of two
constructions:

• Given a coherence space A, one can get a new coherence
space !A on the set Cfin(A).
• Given two coherence spaces A = (A,¨A) and B = (B,¨B),
one can get a new coherence space A (B on the set A × B.

The decomposition of the intuitionnistic arrow A ⇒ B into !A (B
gave rise to the discovery of linear logic (LL).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The coherence space of stable functions
Proposition. Let f : A → B be a stable function. Then, for any
a ∈ C(A), for any β ∈ f(a), there exists a0 ⊆fin a such that

• β ∈ f(a0)

• and (∀a′ ⊆ ao)(β ∈ f(a′) ⇒ a′ = a0).
One can then endow the set Cfin(A)× B with a coherence relation
¨ to define the space A ⇒ B. We thus get a cartesian closed
category (i.e. a model of the simply typed λ-calculus). What is
striking is that this construction can be made up of two
constructions:

• Given a coherence space A, one can get a new coherence
space !A on the set Cfin(A).
• Given two coherence spaces A = (A,¨A) and B = (B,¨B),
one can get a new coherence space A (B on the set A × B.

The decomposition of the intuitionnistic arrow A ⇒ B into !A (B
gave rise to the discovery of linear logic (LL).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear logic
The linear implication A (B can itself be decomposed into
A⊥ ` B (like in classical logic!) with an involutive linear negation.
The negation corresponds to reversing the coherence relation ¨
and the two implications (⇒ and () to two closed categories:

• The category Stab of stable functions between coherence
spaces: A model of intuitionistic logic.
• And the category Lin of linear functions between coherence
spaces: A model of linear logic.

Lin(!(A,A), (B,B)) ≃ Stab((A,A), (B,B))

Grammar of the formulae of propositional linear logic:

T ::= X |X⊥ | 1 | ⊥ |(T⊗T) | (T`T) | !T | ?T |(T&T) |(T⊕T) | 0 |⊤

with the de Morgan laws:
• (A ⊗ B)⊥ = (A⊥ ` B⊥) and (A ` B)⊥ = (A⊥ ⊗ B⊥)

• (!A)⊥ =?A⊥ and (?A)⊥ = !A⊥

• (A&B)⊥ = (A⊥ ⊕ B⊥) and (A ⊕ B)⊥ = (A⊥&B⊥)

• (X⊥)⊥ = X, 1⊥ = ⊥, ⊥⊥ = 1, 0⊥ = ⊤ and ⊤⊥ = 0

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear logic
The linear implication A (B can itself be decomposed into
A⊥ ` B (like in classical logic!) with an involutive linear negation.
The negation corresponds to reversing the coherence relation ¨
and the two implications (⇒ and () to two closed categories:

• The category Stab of stable functions between coherence
spaces: A model of intuitionistic logic.
• And the category Lin of linear functions between coherence
spaces: A model of linear logic.

Lin(!(A,A), (B,B)) ≃ Stab((A,A), (B,B))
Grammar of the formulae of propositional linear logic:

T ::= X |X⊥ | 1 | ⊥ |(T⊗T) | (T`T) | !T | ?T |(T&T) |(T⊕T) | 0 |⊤

with the de Morgan laws:
• (A ⊗ B)⊥ = (A⊥ ` B⊥) and (A ` B)⊥ = (A⊥ ⊗ B⊥)

• (!A)⊥ =?A⊥ and (?A)⊥ = !A⊥

• (A&B)⊥ = (A⊥ ⊕ B⊥) and (A ⊕ B)⊥ = (A⊥&B⊥)

• (X⊥)⊥ = X, 1⊥ = ⊥, ⊥⊥ = 1, 0⊥ = ⊤ and ⊤⊥ = 0

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The problem of canonicity of proofs

Intuitionistic sequent calculus (LJ) Natural deduction
MELL sequent calculus Girard proof-nets?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The problem of canonicity of proofs

Danos-Regnier proof-nets (1995) are an improvement of Girard
proof-nets.

Intuitionistic sequent calculus (LJ) Natural deduction
MELL sequent calculus Danos-Regnier proof-nets?

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sequent calculus proofs

⊢ A, A⊥ ⊢ B, B⊥
⊗

⊢ (A ⊗ B), A⊥, B⊥
`

⊢ (A ⊗ B), (A⊥ ` B⊥) ⊢ A, A⊥
⊗

⊢ ((A ⊗ B) ⊗ A), (A⊥ ` B⊥), A⊥

Figure: Proof π1

⊢ A, A⊥ ⊢ B, B⊥
⊗

⊢ (A ⊗ B), A⊥, B⊥ ⊢ A, A⊥
⊗

⊢ ((A ⊗ B) ⊗ A), A⊥, B⊥, A⊥
`

⊢ ((A ⊗ B) ⊗ A), (A⊥ ` B⊥), A⊥

Figure: Proof π2

⊢ A, A⊥ ⊢ B, B⊥
⊗

⊢ (A ⊗ B), A⊥, B⊥ ⊢ A, A⊥
⊗

⊢ ((A ⊗ B) ⊗ A), A⊥, B⊥, A⊥
`

⊢ ((A ⊗ B) ⊗ A), (A⊥ ` B⊥), A⊥

Figure: Proof π3

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof-nets

⊗

⊗

ax

ax

ax

((A ⊗ B)⊗ A)

A

B

A⊥

B⊥

`
(A⊥ ` B⊥)

A⊥A

⊗

⊗

ax

axA A⊥

ax

((A ⊗ B)⊗ A)

B B⊥

`
(A⊥ ` B⊥)

A A⊥

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A proof-net with boxes

A proof of (((⊥⊗⊥)` !⊥)`?!1):

?

!

1

`

`

⊗

⊥ ⊥

!

1

⊥

!

(((⊥⊗⊥)` !⊥)`?!1)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finiteness spaces
On a set A, one defines the binary relation ⊥ on P(A) by a ⊥ b iff
Card (a ∩ b) ≤ 1. For any A ∈ P(P(A)), we set
A⊥ = {b ⊆ A; (∀a ∈ A)a ⊥ b}.
A coherence space (A,¨) is a set A ∈ P(P(A)) such that
A = A⊥⊥ (with C(A,¨) = A).

Definition. (Ehrhard 2005) Taking instead for ⊥ the relation
defined by a ⊥ b iff a ∩ b is finite, one gets finiteness spaces (A,A)
instead of coherence spaces, which provide a new model of LL.
Examples.

• If A is finite, then (A,A) is a finiteness space iff A = P(A).
• N = (N,Pfin(N))
• N⊥ = (N,P(N))
• !N = (Mfin(N), {a ⊆ Mfin(N); (∃u ∈ Pfin(N))(∀µ ∈
a)Supp(µ) ⊆ u})
• (!N)⊥ = (Mfin(N), {a ⊆ Mfin(N); (∀u ∈ Pfin(N))#{µ ∈
a;Supp(µ) ⊆ u} < ∞})

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Finiteness spaces
On a set A, one defines the binary relation ⊥ on P(A) by a ⊥ b iff
Card (a ∩ b) ≤ 1. For any A ∈ P(P(A)), we set
A⊥ = {b ⊆ A; (∀a ∈ A)a ⊥ b}.
A coherence space (A,¨) is a set A ∈ P(P(A)) such that
A = A⊥⊥ (with C(A,¨) = A).
Definition. (Ehrhard 2005) Taking instead for ⊥ the relation
defined by a ⊥ b iff a ∩ b is finite, one gets finiteness spaces (A,A)
instead of coherence spaces, which provide a new model of LL.
Examples.

• If A is finite, then (A,A) is a finiteness space iff A = P(A).
• N = (N,Pfin(N))
• N⊥ = (N,P(N))
• !N = (Mfin(N), {a ⊆ Mfin(N); (∃u ∈ Pfin(N))(∀µ ∈
a)Supp(µ) ⊆ u})
• (!N)⊥ = (Mfin(N), {a ⊆ Mfin(N); (∀u ∈ Pfin(N))#{µ ∈
a;Supp(µ) ⊆ u} < ∞})

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topological modules associated with finiteness spaces
Given a commutative (semi-)field R endowed with the discrete
topology, each finiteness space (A,A) gives rise to a topological
R-module R⟨A⟩: vectors are the v ∈ kA s.t.
Supp(v) = {α ∈ a; v(α) ̸= 0} ∈ A and the topology is the
Lefschetz topology (1942).
For any vector v, we have v =

∑
α∈A v(α) · α.

Example. Let 2 be the semi-ring {0, 1} with 1 + 1 = 1.
We have the following continuous linear function

succ : 2⟨!N⟩ → 2⟨N⟩
For any u ∈ Pfin(N), for any (λµ)µ∈Mfin(u) ∈ {0, 1}Mfin(u), we have

succ(
∑

µ∈Mfin(u)
λµ · µ) =

∑
n∈N
λ[n]=1

1 · [n + 1]

It denotes a program that computes the successor function and
reads exactly once its argument.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topological modules associated with finiteness spaces
Given a commutative (semi-)field R endowed with the discrete
topology, each finiteness space (A,A) gives rise to a topological
R-module R⟨A⟩: vectors are the v ∈ kA s.t.
Supp(v) = {α ∈ a; v(α) ̸= 0} ∈ A and the topology is the
Lefschetz topology (1942).
For any vector v, we have v =

∑
α∈A v(α) · α.

Example. Let 2 be the semi-ring {0, 1} with 1 + 1 = 1.
We have the following continuous linear function

succ : 2⟨!N⟩ → 2⟨N⟩
For any u ∈ Pfin(N), for any (λµ)µ∈Mfin(u) ∈ {0, 1}Mfin(u), we have

succ(
∑

µ∈Mfin(u)
λµ · µ) =

∑
n∈N
λ[n]=1

1 · [n + 1]

It denotes a program that computes the successor function and
reads exactly once its argument.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-uniformity

Consider the following program:
λx.if x then True

else if x then True else False

It can be seen as a continuous linear function g : 2⟨!B⟩ → 2⟨B⟩,
where B is the finiteness space ({T,F},P({T,F})): We have

• g([T]) = T
• g([F]) = 0
• g([T,T]) = 0
• g([F,F]) = F
• g([T] + [F,F]) = T + F
• g([F,T]) = T: non-uniformity of the semantics
• etc...

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-uniformity

Consider the following program:
λx.if x then True

else if x then True else False

It can be seen as a continuous linear function g : 2⟨!B⟩ → 2⟨B⟩,
where B is the finiteness space ({T,F},P({T,F})): We have

• g([T]) = T
• g([F]) = 0
• g([T,T]) = 0
• g([F,F]) = F
• g([T] + [F,F]) = T + F
• g([F,T]) = T: non-uniformity of the semantics
• etc...

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Kleisli category

Let us recall the situation with coherence spaces:

Lin(!(A,A), (B,B)) ≃ Stab((A,A), (B,B))

The category Stab is the Kleisli category of the comonad !.

Same situation with finiteness spaces:

A continuous linear function f : R⟨!(A,A)⟩ → R⟨(B,B)⟩ can be
seen as a power series f from R⟨(A,A)⟩ to R⟨(B,B)⟩ such that
f(0) = f([]).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Kleisli category

Let us recall the situation with coherence spaces:

Lin(!(A,A), (B,B)) ≃ Stab((A,A), (B,B))

The category Stab is the Kleisli category of the comonad !.

Same situation with finiteness spaces:
A continuous linear function f : R⟨!(A,A)⟩ → R⟨(B,B)⟩ can be
seen as a power series f from R⟨(A,A)⟩ to R⟨(B,B)⟩ such that
f(0) = f([]).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivatives
Given a continuous linear function f : R⟨!(A,A)⟩ → R⟨(B,B)⟩, the
derivative at 0 of f is f′(0) = f ◦ cod : R⟨(A,A)⟩ → R⟨(B,B)⟩,
where cod : R⟨(A,A)⟩ → R⟨!(A,A)⟩ is defined by

(∀v ∈ R⟨(A,A)⟩)cod(v) =
∑

α∈Supp(v)
v(α) · [α]

Examples.
• The derivative at 0 of succ is succ′(0) : 2⟨N⟩ → 2⟨N⟩
defined by

succ′(0)(
∑
n∈N

λn · n) =
∑
n∈N

λn · (n + 1)

• The derivative at 0 of g is g′(0) : 2⟨B⟩ → 2⟨B⟩ defined by

g′(0)(λ1 · T + λ2 · F)) = λ1 · T

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivatives
Given a continuous linear function f : R⟨!(A,A)⟩ → R⟨(B,B)⟩, the
derivative at 0 of f is f′(0) = f ◦ cod : R⟨(A,A)⟩ → R⟨(B,B)⟩,
where cod : R⟨(A,A)⟩ → R⟨!(A,A)⟩ is defined by

(∀v ∈ R⟨(A,A)⟩)cod(v) =
∑

α∈Supp(v)
v(α) · [α]

Examples.
• The derivative at 0 of succ is succ′(0) : 2⟨N⟩ → 2⟨N⟩
defined by

succ′(0)(
∑
n∈N

λn · n) =
∑
n∈N

λn · (n + 1)

• The derivative at 0 of g is g′(0) : 2⟨B⟩ → 2⟨B⟩ defined by

g′(0)(λ1 · T + λ2 · F)) = λ1 · T

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivatives
Given a continuous linear function f : R⟨!(A,A)⟩ → R⟨(B,B)⟩, the
derivative at 0 of f is f′(0) = f ◦ cod : R⟨(A,A)⟩ → R⟨(B,B)⟩,
where cod : R⟨(A,A)⟩ → R⟨!(A,A)⟩ is defined by

(∀v ∈ R⟨(A,A)⟩)cod(v) =
∑

α∈Supp(v)
v(α) · [α]

Examples.
• The derivative at 0 of succ is succ′(0) : 2⟨N⟩ → 2⟨N⟩
defined by

succ′(0)(
∑
n∈N

λn · n) =
∑
n∈N

λn · (n + 1)

• The derivative at 0 of g is g′(0) : 2⟨B⟩ → 2⟨B⟩ defined by

g′(0)(λ1 · T + λ2 · F)) = λ1 · T

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Differential nets

Differential nets (Ehrhard-Regnier 2006) allow to express the
Taylor expansion of any linear logic proof in the syntax.
We have no box any more but a new kind of cells (cocontractions):
A A· · ·

!

!A (with 0 premises, we get coderelictions)
and we have sums of nets (which express non-determinism). For
Taylor expansion, we need infinite sums: infinite sums are not
strictly speaking syntactical objets but lie in between syntax (we
have cut-elimination) and semantics (we have infinite objects).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivatives of constant functions semantically

The continuous linear function w(A,A) : R⟨!(A,A)⟩ → R is defined
by (∀v ∈ R⟨!(A,A)⟩)w(A,A)(v) = v([]).
If f : R → R⟨(B,B)⟩, then we have the continuous linear function
f ◦ w!(A,A) : R⟨!(A,A)⟩ → R⟨(B,B)⟩ with

(∀v ∈ R⟨!(A,A)⟩)(f ◦ w(A,A))(v) = v([]) · f(1)

which corresponds to the constant power series f ◦ w!(A,A) from
R⟨(A,A)⟩ to R⟨(B,B)⟩ with

(∀v ∈ R⟨(A,A)⟩)(f ◦ w(A,A))(v) = f(1)

The derivative at 0 of a constant function should be the zero
function. Let us check:For any v ∈ R⟨(A,A)⟩, one has
(f ◦ w(A,A) ◦ cod(A,A))(v) = (f ◦ w(A,A))(

∑
α∈Supp(v) v(α) · [α])

= 0 · f(1) = 0.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivatives of constant functions semantically

The continuous linear function w(A,A) : R⟨!(A,A)⟩ → R is defined
by (∀v ∈ R⟨!(A,A)⟩)w(A,A)(v) = v([]).
If f : R → R⟨(B,B)⟩, then we have the continuous linear function
f ◦ w!(A,A) : R⟨!(A,A)⟩ → R⟨(B,B)⟩ with

(∀v ∈ R⟨!(A,A)⟩)(f ◦ w(A,A))(v) = v([]) · f(1)

which corresponds to the constant power series f ◦ w!(A,A) from
R⟨(A,A)⟩ to R⟨(B,B)⟩ with

(∀v ∈ R⟨(A,A)⟩)(f ◦ w(A,A))(v) = f(1)

The derivative at 0 of a constant function should be the zero
function. Let us check:

For any v ∈ R⟨(A,A)⟩, one has
(f ◦ w(A,A) ◦ cod(A,A))(v) = (f ◦ w(A,A))(

∑
α∈Supp(v) v(α) · [α])

= 0 · f(1) = 0.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivatives of constant functions semantically

The continuous linear function w(A,A) : R⟨!(A,A)⟩ → R is defined
by (∀v ∈ R⟨!(A,A)⟩)w(A,A)(v) = v([]).
If f : R → R⟨(B,B)⟩, then we have the continuous linear function
f ◦ w!(A,A) : R⟨!(A,A)⟩ → R⟨(B,B)⟩ with

(∀v ∈ R⟨!(A,A)⟩)(f ◦ w(A,A))(v) = v([]) · f(1)

which corresponds to the constant power series f ◦ w!(A,A) from
R⟨(A,A)⟩ to R⟨(B,B)⟩ with

(∀v ∈ R⟨(A,A)⟩)(f ◦ w(A,A))(v) = f(1)

The derivative at 0 of a constant function should be the zero
function. Let us check:For any v ∈ R⟨(A,A)⟩, one has
(f ◦ w(A,A) ◦ cod(A,A))(v) = (f ◦ w(A,A))(

∑
α∈Supp(v) v(α) · [α])

= 0 · f(1) = 0.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Derivatives of constant functions syntactically

B

AA⊥
ax

?A
!

!A
?

f

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Cut-elimination of differential nets

The continuous linear function w(A,A) ◦ cod(A,A) : (A,A) → R is
the zero function, which corresponds to the fact that derivatives of
constant functions are zero functions.

This explains that the cut

A
!

!A
?

?A
reduces to 0.

And so on...

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Cut-elimination of differential nets

The continuous linear function w(A,A) ◦ cod(A,A) : (A,A) → R is
the zero function, which corresponds to the fact that derivatives of
constant functions are zero functions.

This explains that the cut

A
!

!A
?

?A
reduces to 0.

And so on...

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Cut-elimination of differential nets

The continuous linear function w(A,A) ◦ cod(A,A) : (A,A) → R is
the zero function, which corresponds to the fact that derivatives of
constant functions are zero functions.

This explains that the cut

A
!

!A
?

?A
reduces to 0.

And so on...

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Taylor expansion

For lambda-terms u and v, we have

(u)v =
∑
n∈N

1
n! (D

nu)(0) · vn

The Taylor expansion of any linear logic proof can be defined in
the syntax of differential nets. Then a natural question arises:

Are two linear logic proofs having the same Taylor expansion
equal? (the invertibility problem of Taylor expansion)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Taylor expansion

For lambda-terms u and v, we have

(u)v =
∑
n∈N

1
n! (D

nu)(0) · vn

The Taylor expansion of any linear logic proof can be defined in
the syntax of differential nets. Then a natural question arises:
Are two linear logic proofs having the same Taylor expansion
equal? (the invertibility problem of Taylor expansion)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An example

!

?

⊥

1

? ?

⊥

1

? ?

!

⊗

⊥

! !

1

!

⊥

⊗

?!1?!⊥
? ? ? ?

?⊥

?
?

` `⊥

?1`?1 ?1
?(!⊥⊗ !⊥)?⊥

!

⊥ ⊥1

!

1 ⊥

⊥

⊥ ⊥

!

1⊥

p1 p2
p3 p4 p5

p6 p7

o1
o2 o3

o4

o o′ o o′

q

q2p1 p2

p3 p4

p5

There exists a 10-heterogeneous experiment f of this proof-net π
s.t.
• f#(o1) = {10223}
• f#(o2) = {10}
• f#(o3) = {10224}
• f#(o4) = {100}
• f#((o2, o)) = {103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012}
• f#((o2, o′)) =
{1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022}
• f#((o4, o)) = {1023, . . . , 10122}
• f#((o4, o′)) = {10123, . . . , 10222}

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

T (f)[0]

!

⊥ ⊥

!

⊥ ⊥

!!

⊥⊥ ⊥ ⊥
1 1 ⊥ ⊥ 11

!

11

!

11

!

11

!

⊥ ⊥

! ⊥ ⊥

!

⊥ ⊥

!

⊥ ⊥

!
?

1

?

`

?

?

1

?

`
1

? ?

1

? ?

`

?

⊥

?⊥

…
11

⊥

?

?(!⊥⊗ !⊥) ?!1?!⊥

? ? ?

?⊥
?

?1

⊗ ⊗

10223 10 10224
… … … … ∑222

j=3 10j

…

1013 1022

…… 10123 10222

……

10 100
… …

10
…

100
…

103

…

1012

…

…

1023

10122

…

10223

10224…
…

…

∑12
j=3 10j

+
∑122

j=23 10j

?(?1 ` ?1)

100

`

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Relational model
By taking for R the semi-ring 2 = {0, 1} with 1 + 1 = 1, a
continuous linear function R⟨(A,A)⟩ → R⟨(B,B)⟩ is essentially a
subset of A × B. One thus retrieves a well-known model of linear
logic since the 90’s: the relational model.

At that time, it was conjectured that two linear logic proofs are
β-equivalent iff they are equal in the relational model (the
injectivity problem of the relational model).
Cf. Friedman’s completeness result for λ-calculus (1975): For any
two simply typed λ-terms v and u, we have

(v ≃βη u ⇔ JvK = JuK)
where J−K is the interpretation in the full typed structure MX over
an infinite set X (i.e. the standard model of sets and functions,
where propositional variables are interpreted by an infinite set).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Relational model
By taking for R the semi-ring 2 = {0, 1} with 1 + 1 = 1, a
continuous linear function R⟨(A,A)⟩ → R⟨(B,B)⟩ is essentially a
subset of A × B. One thus retrieves a well-known model of linear
logic since the 90’s: the relational model.

At that time, it was conjectured that two linear logic proofs are
β-equivalent iff they are equal in the relational model (the
injectivity problem of the relational model).

Cf. Friedman’s completeness result for λ-calculus (1975): For any
two simply typed λ-terms v and u, we have

(v ≃βη u ⇔ JvK = JuK)
where J−K is the interpretation in the full typed structure MX over
an infinite set X (i.e. the standard model of sets and functions,
where propositional variables are interpreted by an infinite set).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Relational model
By taking for R the semi-ring 2 = {0, 1} with 1 + 1 = 1, a
continuous linear function R⟨(A,A)⟩ → R⟨(B,B)⟩ is essentially a
subset of A × B. One thus retrieves a well-known model of linear
logic since the 90’s: the relational model.

At that time, it was conjectured that two linear logic proofs are
β-equivalent iff they are equal in the relational model (the
injectivity problem of the relational model).
Cf. Friedman’s completeness result for λ-calculus (1975): For any
two simply typed λ-terms v and u, we have

(v ≃βη u ⇔ JvK = JuK)
where J−K is the interpretation in the full typed structure MX over
an infinite set X (i.e. the standard model of sets and functions,
where propositional variables are interpreted by an infinite set).

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Injectivity of the relational model and invertibility of the
Taylor expansion

Remark. If the invertibility of Taylor expansion holds, then the
injectivity of the relational model trivially holds, which shows that
the invertibility problem of Taylor expansion is not trivial.

Theorem. (C. 2018) The Taylor expansion of linear logic proofs
is invertible.
Corollary. (C. 2016) The relational model is injective.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Injectivity of the relational model and invertibility of the
Taylor expansion

Remark. If the invertibility of Taylor expansion holds, then the
injectivity of the relational model trivially holds, which shows that
the invertibility problem of Taylor expansion is not trivial.

Theorem. (C. 2018) The Taylor expansion of linear logic proofs
is invertible.
Corollary. (C. 2016) The relational model is injective.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-idempotent intersection types

Idempotent intersection types have been introduced in the 70’s by
Coppo and Dezani to characterise normalisable untyped λ-terms.

The relational model of linear logic induces a model of the simply
typed λ-calculus, which induces, through the resolution of the
equation (D ⇒ D)E D, a model of the untyped λ-calculus, which
induces non-idempotent intersection types:
D := A | (Mfin(D)× D)

If t is closed, then JtK is the set of its types.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Non-idempotent intersection types

Idempotent intersection types have been introduced in the 70’s by
Coppo and Dezani to characterise normalisable untyped λ-terms.
The relational model of linear logic induces a model of the simply
typed λ-calculus, which induces, through the resolution of the
equation (D ⇒ D)E D, a model of the untyped λ-calculus, which
induces non-idempotent intersection types:
D := A | (Mfin(D)× D)

If t is closed, then JtK is the set of its types.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Execution time

The relation between Taylor expansion and the Krivine machine
inspired the following theorem:
Theorem. (C. 2007, C. 2017) For any two closed normal λ-terms
u and v, the number of steps of the Krivine machine to compute
(v)u is

inf{|(a, α)|+ |a′|+ 1; ((a, α), a′) ∈ Ue(JvK, JuK)}
where Ue(X,Y) is the set

{((a, α), a′) ∈ (X\A)×Mfin(Y); (∃σ ∈ S)(σ(a) = σ(a′)∧σ(α) ∈ De}

with De the set of intersection types with no [] in positive position.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A short bibliography
• Scott, Continuous lattices, 1972
• Girard, The System F of variables types fifteen years later,
1986
• Girard, Linear logic, 1987
• Girard, Linear logic: its syntax and semantics, 1995
• Ehrhard, Finiteness spaces, 2005
• Ehrhard and Regnier, Differential interaction nets, 2006
• C., The Relational Model Is Injective for Multiplicative
Exponential Linear Logic, CSL 2016
• C., Execution time of λ-terms via denotational semantics
and intersection types, MSCS, 2017
• C., Taylor expansion in linear logic is invertible, LMCS, 2018
• Grellois and Melliès, Relational Semantics of Linear Logic
and Higher-order Model Checking, 2015
• Vial’s PhD thesis, 2017
• Chouquet and Vaux, An application of parallel cut
elimination in unit-free multiplicative linear logic to the Taylor
expansion of proof nets, 2018

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Acknowledgement

I acknowledge Lionel Vaux for his comments about a preliminary
version of these slides.

