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Abstract—We consider the Cartesian decomposition of rela-
tional data sets, i.e. the problem of finding two or several
data sets such that their unordered Cartesian product equals
the source set. In terms of relational databases, this means
reversing the SQL CROSS JOIN operator. We describe a
polytime algorithm for computing a Cartesian decomposition
based on factorization of boolean polynomials. We provide an
implementation of the algorithm in Transact SQL and discuss
some generalizations of the Cartesian decomposition.

Index Terms—Databases, Data Analysis, Partitioning Algo-
rithms

1. Introduction

The analysis of big data sets of different origin is an
important problem of modern theoretical and applied infor-
matics. Detecting the Cartesian property of a data set, i.e.
whether it can be given as an unordered Cartesian product of
two (or several) data sets appears to be important in at least
three out of the six classes of data analysis problems (Data
Mining), as defined by the classics in the domain [1], namely
anomaly detection, dependency modeling and constructing a
more compact data representation. In this paper, we consider
the problem of Cartesian decomposition for the relational
data model.

Only for the first twenty-five years after Codd had
developed his relational data model, more than 100 types
of dependencies were described in the literature [2]. Carte-
sian decomposition underlies the definitions of the major
dependency types encompassed by the theory of relational
databases. This is because numerous concepts of depen-
dency are based on the join operation, which is inverse to
Cartesian decomposition. Recall that the join dependency
is the most common kind of dependencies considered in
the framework of the fifth normal form [3]. A relation R
satisfies the join dependency ./ (A1, . . . , An) for a family
of subsets of its attributes {A1, . . . , An} if R is the union
of the projections on the subsets Ai, 1 6 i 6 n. Thus, if
Ai are disjoint, we have the Cartesian decomposition of the
relation R into the corresponding components–projections.

For the case n = 2 the join dependency is known
in the context of the fourth normal form under the name
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multivalued dependency. A relation R for a family of sub-
sets of its attributes {A0, A1, A2} satisfies the multivalued
dependency A0 7→ A1 iff R satisfies the join dependency
./ (A0∪A1, A0∪A2). Thus for each A0-tuple of values, the
projection of R onto A1∪A2 has a Cartesian decomposition.
Historically, multivalued dependencies were introduced ear-
lier than join dependencies [4] and attracted wide attention
in the literature as they are natural variant thereof.

An important task is the development of efficient algo-
rithms for solving the computationally challenging problem
of finding dependencies in data. A lot of research has been
devoted to mining functional dependencies (see surveys [5],
[6]), while the detection of more general dependencies, like
the multivalued ones, has been less studied. In [7], the
authors propose a method based on directed enumeration of
assumptions/conclusions of multivalued dependencies (ex-
ploring the properties of these dependencies to narrow the
search space) with checking satisfaction of the generated
dependencies on the relation of interest. In [8], the authors
employ an enumeration procedure based on the refinement
of assumptions/conclusions of the dependencies considered
as hypotheses. Notice that when searching for functional
dependencies A 7→ B on a relation R, once an assumption
A is guessed, the conclusion B can be efficiently found. For
multivalued dependencies, this property is not trivial and
leads to the question of efficient recognition of Cartesian
decomposition (of the projection of R on the attributes not
contained in A). Thus, the algorithmic results presented in
this paper can be viewed as a foundation for the development
of new methods for detecting the general kind dependencies,
in particular, multivalued and join dependencies.

Let us consider the Cartesian product of two relations
given in the form of tables:

A B
x y
x z

×
C D E
x u p
y u q
z v r

=

A B C D E
x y x u p
x y y u q
x y z v r
x z x u p
x z y u q
x z z v r

B E D A C
z q u x y
y q u x y
y r v x z
z r v x z
y p u x x
z p u x x

In the first representation of the product result, where the
natural order of rows and columns is preserved, a careful



reader can easily recognize the cartesian structure of the
table. However, this is not so easy to do for the second
representation, where the rows and columns are randomly
shuffled, even though the table is small. In the sequel, we
only consider the relations having no surrogate key of any
kind and assume that the tuples found in the relations are
all different.

A highly important topic in database research is data
security. For a long time, it was handled through data
encryption. The disadvantage of this approach, however,
was degradation of query performance. In [9], the authors
proposed to use a distributed table storage for relational
databases (see also [10]). It is quite evident that in the most
general case, taking into account integrity constraints and
query efficiency, the problem is computationally hard (see,
for example, [11]), therefore, to solve it heuristic algorithms
were proposed (see ibid.). It should be noted that in the
mid–1980s a similar topic was developed, namely, vertical
database partitioning, where the objective was the optimiza-
tion of operation performance and access parallelization
[12], [13].

In [14], [15], the authors described an algorithm for fac-
torization of polylinear polynomials over the finite field of
the order 2 (Boolean polynomials) with the time complexity
O(l3), where l is the length of the polynomial given as a
string. It is based on checking whether the partial derivatives
of some auxiliary polynomial constructed from the original
one are equal to zero. Using this algorithm the authors
showed that the problem of conjunctive decomposition of
boolean functions given in full DNF and positive DNF is
solvable in polynomial time. The algorithm was obtained
independently of the result of Shpilka and Volkovich pre-
sented in [16], which gives a different algorithm of the same
complexity. Also, in [17] the author proposed an algorithm
with the complexity O(n5N) for the decomposition of
monotone boolean functions given in DNF, where n is the
number of variables and N is the number of conjuncts.

The relationship between the problems of cartesian de-
composition and factorization of boolean polynomials is
easily established. Each tuple of the relation is a monomial
of a polynomial, where the attribute values play the role
of variables. Importantly, the attributes of the same type are
considered as different. Thus, if in a tuple different attributes
of the same type have equal values, the corresponding
variables are different. NULL is also typed and appears as
a different variable. For example, for the relation above the
corresponding polynomial is

zB · q · u · xA · yC + yB · q · u · xA · yC +
yB · r · v · xA · zC + zB · r · v · xA · zC +
yB · p · u · xA · xC + zB · p · u · xA · xC =

xA ·(yB + zB)·(q · u · yC + r · v · zC + p · u · xC)

In the following, we use this correspondence between rela-
tional tables and polynomials.

2. Algorithm for Factorization of Boolean
Polynomials

Let us briefly mention the factorization algorithm given
in [14], [15]. It is assumed that the input polynomial F has
no trivial divisors and contains at least two variables.

1) Take an arbitrary variable x from F .
2) Let Σsame := {x},Σother := ∅, and Fsame :=

0, Fother := 0.
3) Compute G := Fx=0 · F ′

x.
4) For each variable y ∈ V ar(F ) \ {x}:

if G′
y = 0 then Σother := Σother ∪ {y}

else Σsame := Σsame ∪ {y}.
5) If Σother=∅, then output Fsame := F, Fother := 1

and stop.
6) Restrict each monomial of F onto Σsame and add

every obtained monomial to Fsame if Fsame does
not contain it.

7) Restrict each monomial of F onto Σother and add
every obtained monomial to Fother if Fother does
not contain it.

8) Check which of the products (Fsame+c1)(Fother+
c2), c1, c2 = 0, 1, gives the original polynomial F
and output these components.

Notice that for the decomposition of relations of relational
databases it suffices to consider the case c1 = c2 = 0.

3. Implementation of the Decomposition Algo-
rithm in SQL

The decomposition algorithm for relational tables im-
plements the steps of the factorization algorithm described
above.

In terms of polynomials, it is easy to formulate and prove
the following property: if two variables always appear in
different monomials (i.e., there is no monomial, in which
they appear simultaneously) then these variables appear in
different monomials of the same decomposition component
if a decomposition exists. A direct consequence of this
observation is that for each relation attribute it is enough to
consider just one value of this attribute because the others
must belong to the same decomposition component (in case
it exists).

In the following, we assume that the input table name is
stored in the variable @TableName. All auxiliary variables
are assumed to be declared.

3.1. Trivial Attribute Elimination

If some attribute of a relation has only one value then
we have a case of trivial decomposition. In terms of poly-
nomials, this condition can be written as F = x · F ′

x. This
attribute can be extracted into a separate table. Further we
assume that there are no such trivial attributes. Extraction
of trivial attributes can be easily done within SQL, so we
omit details of its implementation.



3.2. Preliminary Manipulations

At the first step, we need to select a variable x, with
respect to which decomposition will be constructed. We
need to find two sets of attributes forming the tables as
decomposition components. As mentioned above, we can
take an arbitrary value of an arbitrary attribute of the table.
In the SQL-script given below, the first value of the first
table attribute is selected. They are stored in @FirstName
and @FirstValue. Note that the optimal choice of this
variable is an interesting problem, which has not been solved
satisfactorily yet.

SET @Query =
N’SET @FirstName = ’
+’(SELECT TOP(1) sysTbl.COLUMN_NAME’
+’ FROM INFORMATION_SCHEMA.COLUMNS sysTbl’
+’ WHERE sysTbl.TABLE_NAME=’’’+@TableName+’’’)’

EXEC sp_executesql @Query,
N’@FirstName NVARCHAR(max) out’,
@FirstName = @FirstName out

SET @Query =
N’SET @FirstValue = ’ +
+’(SELECT TOP(1) ’ + @FirstName
+’ FROM ’ + @TableName + ’)’

EXEC sp_executesql @Query,
N’@FirstValue NVARCHAR(max) out’,
@FirstValue = @FirstValue out

With the help of the next query, the string @Columns
is created. It represents table attributes and their aliases
corresponding to the product Fx=0 · F ′

x (in the terms of
polynomials). The prefixes F and S correspond to Fx=0

and F ′
x. The product constructed below contains information

about the distribution of variables between components and
is essential for computing decomposition. We note that some
string manipulations used in the SQL-code can be DBMS–
dependent.

SET @Query =
N’SET @Columns = ’
+’(SELECT ’’,F.’’ + sysTbl.COLUMN_NAME
+ ’’ AS F_’’ + sysTbl.COLUMN_NAME + ’
+ ’’’,S.’’ + sysTbl.COLUMN_NAME
+ ’’ AS S_’’ + sysTbl.COLUMN_NAME ’
+’ FROM INFORMATION_SCHEMA.COLUMNS AS sysTbl’
+’ WHERE sysTbl.TABLE_NAME = ’’’

+ @TableName +’’’’
+’ AND sysTbl.COLUMN_NAME!= ’’’

+ @FirstName +’’’’
+’ FOR XML PATH(’’’’))’

EXEC sp_executesql @Query,
N’@Columns NVARCHAR(max) out’,
@Columns = @Columns out

SET @Columns = SUBSTRING(@Columns,2,LEN(@Columns))

With the help of the following query, the string @Du-
plicates is created, which represents a condition (a logical
expression) allowing us to reduce the size of the table-
product through the exclusion of duplicate rows. In the terms
of polynomials, these are the monomials of the polynomial-
product with the coefficient 2, which can obviously be
omitted in the field of the order 2. Since this table is used
for bulk queries, its size significantly impacts performance.
An example is given in Section 3.3.

SET @Query =
N’SET @Duplicates = ’
+’(SELECT ’’AND((T.F_’’ + sysTbl.COLUMN_NAME
+ ’’=R.F_’’ + sysTbl.COLUMN_NAME
+ ’’ AND ’ + ’T.S_’’ + sysTbl.COLUMN_NAME
+ ’’=R.S_’’ + sysTbl.COLUMN_NAME
+ ’’) OR ’ + ’(T.F_’’ + sysTbl.COLUMN_NAME
+ ’’=R.S_’’ + sysTbl.COLUMN_NAME
+ ’’ AND ’ + ’T.S_’’ + sysTbl.COLUMN_NAME
+ ’’=R.F_’’ + sysTbl.COLUMN_NAME
+ ’’))’’’
+’ FROM INFORMATION_SCHEMA.COLUMNS AS sysTbl’
+’ WHERE sysTbl.TABLE_NAME = ’’’

+ @TableName +’’’’
+’ AND sysTbl.COLUMN_NAME!= ’’’

+ @FirstName +’’’’
+’ FOR XML PATH(’’’’))’

EXEC sp_executesql @Query,
N’@Duplicates NVARCHAR(max) out’,
@Duplicates = @Duplicates out

SET @Duplicates = SUBSTRING(@Duplicates, 4,
LEN(@Duplicates))

3.3. Retrieval of the ‘Sorting Product’

The table–product, which allows for sorting attributes
with respect to the component selected, is created in the
form VIEW. It is worth noting that it can be constructed
in different ways. In our case, a conceptually very simple
solution has a disadvantage: its Transact SQL implementa-
tion works very slowly. The reason is that Transact SQL
does not allow us to create a materialized VIEW (Oracle
implements CREATE MATERIALIZED VIEW). We have
decided to keep this version due to its simplicity.

SET @Query =
N’CREATE VIEW SortingProduct AS ’
+’WITH Prod AS (’
+’ SELECT ’ + @Columns
+’ FROM (SELECT * ’

+’ FROM ’ + @TableName
+’ WHERE ’ + @FirstName + ’ = ’’’

+ @FirstValue + ’’’) AS F,’
+’(SELECT * ’
+’ FROM ’ + @TableName
+’ WHERE ’ + @FirstName + ’!= ’’’

+ @FirstValue + ’’’) AS S)’
+’SELECT DISTINCT T.* ’
+’ FROM Prod AS T ’
+’ WHERE 1 = (SELECT COUNT(1) ’

+’ FROM Prod AS R ’
+’ WHERE ’ + @Duplicates + ’)’

EXEC sp_executesql @Query

Below we provide an example of computing a sorting
product.

It is easy to see that the table corresponding to the full
product is bigger than the original table. In this example, it
would contain 32 rows. However, its size can be reduced
substantially by applying the filter @Duplicates. The
VIEW SortingProduct contains only 8 rows.



A B
a c
b d
a e

×
C D E
x u p
x v q
y v r
z u r

=

Input table for
decomposition

A B C D E
a c x u p
b d x u p
a e x u p
a c x v q
b d x v q
a e x v q
a c y v r
b d y v r
a e y v r
a c z u r
b d z u r
a e z u r

a does not appear
(evaluation to 0)

B C D E
d x u p
d x v q
d y v r
d z u r

×

a appears
(derivatives)

B C D E
c x u p
e x u p
c x v q
e x v q
c y v r
e y v r
c z u r
e z u r

Table of sorting product
F B S B F C S C F D S D F E S E

c d x x u u p p
c d x x v v q q
c d y y v v r r
c d z z u u r r
e d x x u u p p
e d x x v v q q
e d y y v v r r
e d z z u u r r

In [15] it was shown that the algorithm can be im-
plemented without an explicit computation of the product
Fx=0·F ′

x. Note that computing this product can be expensive
for large inputs. For the case of boolean polynomials, the
computation is replaced by the bulk evaluation of polyno-
mials having smaller sizes. An interesting question whether
one can avoid an explicit computation of the product for the
case of relational tables.

3.4. Attribute Partitioning

Recall that in the terms of polynomials the membership
of a variable y to a component containing the variable x that
was selected at the first step is decided by checking whether
the partial derivative of the polynomial ∂

∂y (Fx=0 · F ′
x) is

equal to zero (in the finite field of order 2). It is easy to see
that this corresponds to checking whether a variable appears
in the monomials in the first or second degree (or is absent at
all). Thus, the corresponding SQL–script looks quite simple
and the most part of it is taken by the procedure of selecting
the attribute values:
SET @Query =

N’SET @ColumnCursor = ’
+’CURSOR FORWARD_ONLY STATIC FOR’
+’SELECT sysTbl.COLUMN_NAME ’
+’ FROM INFORMATION_SCHEMA.COLUMNS sysTbl’
+’ WHERE (sysTbl.TABLE_NAME = ’’’

+ @TableName +’’’)’
+’ AND (sysTbl.COLUMN_NAME!= ’’’

+ @FirstName +’’’)’
+’OPEN @ColumnCursor;’

EXEC sys.sp_executesql
@Query, N’@ColumnCursor CURSOR OUTPUT’,

@ColumnCursor=@ColumnCursor OUTPUT
FETCH NEXT FROM @ColumnCursor INTO @ColumnName;

WHILE (@@FETCH_STATUS = 0)
BEGIN

SET @Query =
N’SELECT 1 ’
+’ FROM SortingProduct,’

+’(SELECT TOP(1) F_’ + @ColumnName
+’ AS VR’
+’ FROM SortingProduct) SP’

+’ WHERE ((F_’ + @ColumnName + ’ = SP.VR) ’
+’ AND (S_’ + @ColumnName + ’ != SP.VR))’
+’ OR ((F_’ + @ColumnName + ’ != SP.VR) ’
+’ AND (S_’ + @ColumnName + ’ = SP.VR))’

EXEC sys.sp_executesql @Query
IF (@@ROWCOUNT != 0)

PRINT @ColumnName
+ ’ belongs to the 1st component’ --(1)

ELSE
PRINT @ColumnName

+ ’ belongs to the 2nd component’; --(2)
FETCH NEXT FROM @ColumnCursor INTO @ColumnName;

END

CLOSE @ColumnCursor;
DEALLOCATE @ColumnCursor;

Note that for simplicity this script just reports the at-
tribute membership (the strings with comments (1) and
(2)). In fact, we need to construct strings corresponding
to the lists of the component attributes. Let these strings be
@FirstCompAttrs and @SecondCompAttrs, respec-
tively. If the cycle is completed and it is the case that the
string @SecondCompAttrs is empty, then the table is not
decomposable.

Otherwise, the following simple script completes table
decomposition. The resulting tables–components are pro-
duced by restricting the source table onto the corresponding
component attributes and selecting unique tuples:

SET @Query =
N’CREATE TABLE FirstComponent’
+’ AS (SELECT DISTINCT ’ + @FirstCompAttrs
+ ’ FROM ’ + @TableName + ’); ’
+’CREATE TABLE SecondComponent’
+’ AS (SELECT DISTINCT ’ + @SecondCompAttrs
+ ’ FROM ’ + @TableName + ’); ’

EXEC sp_executesql @Query

4. Conclusions

Observe the following property, which says that with
high probability a given relation does not have a decompo-
sition into a Cartesian product.

Remark 1. Let R be a random relation of degree n and
cardinality N , which does not contain trivial attributes.



Then it holds

P(R is non–decomposable) > 1−
(

1− φ(N)
N

)n
>

> 1−
(

1− 1
eγ ln lnN + 3

ln lnN

)n
,

where φ and γ are the Euler function and constant, respec-
tively.

Despite this fact, the algorithm described in this paper is
important for the following reasons. First, a method of
computing Cartesian decomposition can provide a basis for
new approaches to mining general kinds of dependencies,
in particular, multivalued ones, since the join dependency
underlies their definition. Second, the problem of Cartesian
decomposition allows for the following two generalizations
and a combination thereof:

– The pure Cartesian product may be “spoiled” by a few
additional tuples:

P (X,Y ) = F (X)×G(Y ) +H(X,Y ),

where the size of the relation H is significantly smaller, than
the size of P . In this case, extracting the “defect” H(X,Y )
into a separate table allows for decomposing the principal
part of the table.

– Partition of the attributes into disjoint subsets is a
rather strong requirement. A relation may prove to be de-
composable if one admits the existence of shared attributes
in the components (in this case, the notion of decomposition
needs to be refined). Hence, we have a decomposition
problem either with prescribed shared attributes or with a set
of shared attributes that satisfies certain optimality criteria,
such as the minimization of the shared attribute set or/and
the sizes of components.

Both cases are of interest in the context of distributed
data storage, because decomposition of the above mentioned
forms has a good structure and can increase the performance
of systems. The solution to the Cartesian decomposition
problem considered in this paper is a special case and a
crucial component in solving the more general problem of
decomposition with shared attributes. Therefore, the effi-
ciency of this solution is quite important.
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Appendix

Proof of Remark 1

Let cv be the number of occurrences of an attribute v
in the relation R (the set of all v’s is the set of different
values in R). Since R does not contain trivial attributes, a
necessary condition for decomposability is

∀v : (cv, N) > 1.

Given a random relation R, the attribute values are
independent random variables and thus, so are cv’s (their
quantities). The probability that for at least one of these n
random variables it holds (cv, N) = 1 (i.e. the complement
of the event of interest) is equal to

1− P

(∧
v

(cv, N) 6= 1

)
= 1− P ((cv, N) 6= 1)n =

1− (1− P ((cv, N) = 1))n .

For 1 ≤ cv ≤ N , it holds P ((cv, N) = 1) = φ(N)
N . This is

a lower bound, since we used the necessary condition.


