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Abstract. We consider the problem of decomposing a positive DNF
into a conjunction of DNFs, which may share a (possibly empty) given
set of variables ∆. This problem has interesting connections with tra-
ditional applications of positive DNFs, e.g., in game theory, and with
the broad topic of minimization of boolean functions. We show that the
finest ∆-decomposition components of a positive DNF can be computed
in polynomial time and provide a decomposition algorithm based on fac-
torization of multilinear boolean polynomials.

1 Introduction

The interest in decomposition of positive DNFs stems from computationally
hard problems in game theory, reliability theory, the theory of hypergraphs and
set systems. A survey of relevant literature can be found in [1]. In the context of
voting games, boolean variables are used to represent voters and the terms of a
positive DNF correspond to the winning coalitions, i.e., the groups of voters, who,
when simultaneously voting in favor of an issue, have the power to determine
the outcome of the vote (i.e., in this case the DNF is evaluated as true). Dual to
them are blocking coalitions, i.e., those that force the outcome of the vote to be
negative, irrespective of the decisions made by the remaining voters. The problem
to find blocking coalitions with a minimal number of voters is easily shown to
be equivalent to the hitting set problem, which is NP-complete. Decomposing a
DNF into components allows for reducing this problem to inputs having fewer
variables.

In this paper, we consider decomposition of a positive DNF into a conjunc-
tion of DNFs sharing a given (possibly empty) subset of variables ∆, with the
remaining subsets of variables being disjoint (in this case we say that a DNF
is ∆-decomposable). In particular, each of the components has fewer variables
than the original formula. Besides dimensionality reduction, decomposition of
this kind facilitates finding a more compact representation of a positive boolean
function. For example, the following DNF can be represented as a conjunction
of two formulas:

xa ∨ xb ∨ ya ∨ yb ≡ (x ∨ y) (a ∨ b) (1)
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i.e., it is ∅-decomposable into the components x ∨ y and a ∨ b. The following
DNF is not ∅-decomposable, but it is {d1, d2}-decomposable:

xad1 ∨ xbd1d2 ∨ yad1d2 ∨ ybd2 ≡ (xd1 ∨ yd2) (ad1 ∨ bd2) (2)

which can be easily verified by converting the expression into DNF.
In other words, ∆-decomposition allows for common ∆-variables between the

components and partitions the remaining variables of a formula. Decomposition
into variable disjoint components (i.e., ∆-decomposition for ∆ = ∅) is known
as disjoint conjunctive decomposition, or simply as AND-decomposition. The
notion of OR-decomposition is defined similarly.

The minimization of positive DNFs via decomposition in the sense above is
related to open questions, not sufficiently addressed in the previous literature.
For example, there is a fundamental work by Brayton et al. on the multilevel
synthesis [2], which provides minimization methods with heuristics working well
for arbitrary boolean functions. However, this contribution leaves space for re-
search on minimization for special classes of functions, where the problem is
potentially simpler. This is evidenced by the research in [3] and [4], for example.

It has been observed that the quality of multilevel decomposition (i.e., al-
ternating AND/OR–decomposition) of DNFs strongly depends on the kind of
decomposition used at the topmost level. As a rule, OR–decomposition has a
priority over AND-decomposition in applications, since it is computationally
trivial (while AND-decomposition is considered to be hard and no specialized
algorithms for DNFs are known). However, choosing AND-decomposition at the
topmost level may provide a more compact representation of a boolean function.
For example, application of “AND–first” strategy gives a representation of the
following positive DNF

absu ∨ absv ∨ absw ∨ abtu ∨ abtv ∨ abtw ∨ abxy ∨ abxz ∨
acsu ∨ acsv ∨ acsw ∨ actu ∨ actv ∨ actw ∨ acxy ∨ acxz ∨
desu ∨ desv ∨ desw ∨ detu ∨ detv ∨ detw ∨ dexy ∨ dexz

in the form (ab ∨ ac ∨ de) (su ∨ sv ∨ sw ∨ tu ∨ tv ∨ tw ∨ xy ∨ xz). Further, OR–
decomposition of the second component gives su ∨ sv ∨ sw ∨ tu ∨ tv ∨ tw and
xy ∨ xz (the first component similarly OR-decomposes syntactically). Finally,
AND-decomposition of the obtained formulas gives a representation

(a(b ∨ c) ∨ de)((s ∨ t)(u ∨ v ∨ w) ∨ x(y ∨ z),

which is a read-once formula of depth 4 having 13 occurrences of variables.
On the contrary, Espresso1, which implements OR–decomposition at the top-

most level, gives a longer expression:

x(a(c ∨ b) ∨ de)(z ∨ y) ∨ (a(c ∨ b) ∨ de)(t ∨ s)(w ∨ v ∨ u)

1 a well–known heuristic optimizer based on the work of Brayton et al., which is often
used as a reference tool for optimization of boolean functions



which is a formula of depth 5 having 18 occurrences of variables and this
formula is not read-once.

Bioch [1] studied (variable disjoint) decompositions of positive boolean func-
tions in the form ϕ ≡ F (G(XA), XB), where {XA, XB} is a partition of the
variables of ϕ and F,G are some (positive) boolean functions. The set XA is
called a modular set of ϕ in this case. By taking ϕ = x1 ∨ . . . ∨ xn, one can see
that the number of modular sets of ϕ is exponential in n (since any subset of
the variables is modular). Bioch showed that one can compute a tree in time
polynomial in the size of an input positive DNF, which succinctly represents all
its modular sets. Given a modular set XA, the corresponding component G(XA)
can be also computed in polynomial time. These important results leave the
question open however, which modular sets one should choose, when trying to
find a compact representation of a boolean formula. For example, the modular
tree for the DNF ϕ from equation (1) consists of the singleton variable subsets
(plus the set of all the variables of ϕ being modular by definition), from which
one can obtain representations of the form ϕ ≡ x(a∨ b)∨ya∨yb (and similarly
for y and a, b selected). On the other hand, ∅-decomposition of this formula
gives the representation ϕ ≡ (x ∨ y)(a ∨ b), which is more compact.

It has been shown in [5] that computing ∅-decomposition of a boolean func-
tion is coNP-hard in general, but for a positive DNF it can be computed in
time polynomial in the size of the input formula (given as a string). In fact, it
has been proved that ∅-decomposition reduces to factorization of a multilinear
boolean polynomial efficiently obtained from the input positive DNF. For the lat-
ter problem the authors have provided a polynomial time algorithm based on the
computation of formal derivatives. In this paper, we generalize the results from
[5]. First, we provide an algorithm, which computes the finest ∅-decomposition
components of a positive DNF. Since ∅-decomposable functions are expected to
be rare, we consider the more general notion of ∆-decomposition. The problem
of computing ∆-decomposition (for an arbitrary given ∆) can be reduced to
∅-decomposition: it suffices to test whether each of the (exponentially many)
DNFs, obtained from the input one for (all possible) evaluations of ∆-variables,
is ∅-decomposable with the same variable partition. The reduction holds for ar-
bitrary boolean functions, not necessarily positive ones. We show however that
for positive DNFs, it suffices to make ∅-decomposition tests only for a polyno-
mial number of (positive) DNFs obtained from the input one. As a result, we
obtain a polynomial time algorithm, which computes the finest ∆-decomposition
components of a positive DNF for a subset of variables ∆.

2 Preliminaries

A boolean expression is a combination of constants 0, 1 and boolean variables
using conjunction, disjunction, and negation. A boolean expression is a DNF if
it is a disjunction of terms (where each term is a conjunction of literals and
constants). We assume there are no double negations of variables in boolean
expressions, no double occurrences of the same term in a DNF, or of the same



literal in a term of a DNF. A DNF is positive if it does not contain negated
variables and the constant 0. For a set of variables V , a V -literal is a literal
with a variable from V . We use the notation vars(ϕ) for the set of variables of
an expression ϕ. For boolean expressions ϕ and ψ, we write ϕ ≡ ψ if they are
logically equivalent.

Definition 1 (∆-decomposability). Let ϕ be a boolean expression and ∆ ⊆
vars(ϕ) a subset of variables. The expression ϕ is ∆-decomposable if it is equiv-
alent to the conjunction of boolean expressions ψ1, . . . , ψn, where n > 2, such that
the following holds:

a.
⋃
i=1,...,n vars(ψi) ⊆ vars(ϕ);

b. vars(ψi) ∩ vars(ψj) ⊆ ∆, for all 1 6 i, j 6 n, i 6= j;
c. vars(ψi) \∆ 6= ∅, for i = 1, . . . , n.

The expressions ψ1, . . . , ψn are called (∆-)decomposition components of ϕ. If
∆ = ∅ and the above holds then we call ϕ decomposable, for short.

Clearly, ∆-decomposition components can be subject to a more fine-grained
decomposition, wrt the same or different delta’s. It immediately follows from
this definition that a boolean expression, which contains at most one non-∆-
variable, is not ∆-decomposable. Observe that conditions a, c in the definition
are important: if any of them is omitted then every boolean expression turns out
to be ∆–decomposable, for any (proper) subset of variables ∆.

Definition 2 (Finest Variable Partition wrt ∆). Let ϕ be a boolean expres-
sion, ∆ ⊆ vars(ϕ) a subset, and π = {V1, . . . , V|π|} a partition of vars(ϕ) \∆.
The expression ϕ is said to be ∆-decomposable with partition π if it has ∆-
decomposition components ψi, for i = 1, . . . , |π|, such that vars(ψi) = Vi ∪∆.

The finest variable partition of ϕ (wrt ∆) is {vars(ϕ)} if ϕ is not ∆-
decomposable. Otherwise it is the partition π, which corresponds to the non-
∆-decomposable components ψi of ϕ.

It will be clear from the results of this paper that for any ∆ ⊆ vars(ϕ), the
finest variable partition of a positive DNF ϕ is unique. In the general case, (e.g.,
for arbitrary boolean expressions), this property follows from the result proved
in [6] for a broad class of logical calculi including propositional logic. As will
be shown below, once the finest variable partition of a DNF ϕ is computed, the
corresponding (non-decomposable) components of ϕ are easily obtained.

Throughout the text, we use the term assignment as a synonym for a con-
sistent set of literals. Given a set of variables V = {x1, . . . , xn}, where n > 1, a
V -assignment is a set of literals {l1, . . . , ln}, where li is a literal over variable xi,
for i = 1, . . . , n. Let ϕ be a DNF, V ⊆ vars(ϕ) a subset, and X a V -assignment
such that there is a term in ϕ, whose set of V -literals is contained in X. Then
the substitution of ϕ with X, denoted by ϕ[X], is a DNF defined as follows:

– if there is a term t in ϕ such that every literal from t is contained in X then
ϕ[X] = 1 (and X is called satisfying assignment for ϕ, notation: X |= ϕ);



– otherwise ϕ[X] is the DNF obtained from ϕ by removing terms, whose set of
V -literals is not contained in X, and by removing V -literals in the remaining
terms.

For example, for the positive DNF ϕ from (2) we have ϕ[{d1,¬d2}] = xa.
For DNFs ϕ and ψ, we say that ϕ implies ψ if for any assignment X, it holds
X 6|= ϕ or X |= ψ. For a set of variables V and a DNF ϕ, a projection of ϕ
onto V , denoted as ϕ|V , is the DNF obtained from ϕ as follows. If there is
a term in ϕ which does not contain a variable from V then ϕ|V = 1. Other-
wise ϕ|V is the DNF obtained from ϕ by removing literals with a variable not
from V in the terms of ϕ. It should be clear from this definition that ϕ implies
ϕ|V (in the literature, projection is also known as a uniform interpolant or the
strongest consequence of ϕ wrt V ). For instance, for the DNF ϕ from (2) we
have ϕ|{x,y,d1,d2} = xd1 ∨ xd1d2 ∨ yd1d2 ∨ yd2.

Lemma 1 (Decomposition Components as Projections). Let ϕ be a DNF,
which is ∆-decomposable with a variable partition π = {V1, . . . , Vn}. Then ϕ|U1 ,
.., ϕ|Un , where Ui = Vi ∪∆, i = 1, . . . , n, are ∆-decomposition components of ϕ.

Proof. Since ϕ implies ϕ|Ui , for i = 1, . . . , n, it suffices to demonstrate that∧
i=1,...,n ϕ|Ui implies ϕ. Assume ϕ ≡ ϕ1 ∧ . . . ∧ ϕn, where ϕ1, . . . , ϕn are ∆-

decomposition components of ϕ, with vars(ϕi) = Ui, for i = 1, . . . , n. We show
that ϕ|Ui implies ϕi, for all i = 1, . . . , n. For suppose there is a Ui-assignment X
such that X |= ϕ|Ui and X 6|= ϕi, for some i ∈ {1, . . . , n}. Then by the definition
of the projection ϕ|Ui there exists an assignment X ′ ⊇ X such that X ′ |= ϕ
and X ′ 6|= ϕi, which is a contradiction, since ϕ implies ϕi, for i = 1, . . . , n. As
ϕ1 ∧ . . . ∧ ϕn implies ϕ, we conclude that

∧
i=1,...,n ϕ|Ui implies ϕ. �

Let V be a set of variables, ∆ ⊆ V a subset, and A a set of V -assignments. By
A|∆ we denote the set of all ∆-assignments d, for which there is an assignment
X ∈ A such that d ⊆ X. For a ∆-assignment d, the notation A〈d〉 stands for
the set of (V \ ∆)-assignments X such that X ∪ d ∈ A. Let V1, V2 be disjoint
sets of variables and for i = 1, 2, let Ai be a set of Vi-assignments. Then the
notation A1 ./ A2 stands for the set of all assignments X1∪X2 such that X1 ∈ A1

and X2 ∈ A2. The intuitive relationship between the cartesian combinations of
assignments is illustrated by the following remark and is put formally in the
subsequent Lemma 2.

Remark 1 (Conjunction of DNFs is Similar to Cartesian Product)
Taking the conjunction of DNFs ξ1 ∨ . . . ∨ ξm and ζ1 ∨ . . . ∨ ζn gives a DNF,
which has the form

∨
(ξi ∧ ζj), for all pairs i, j, with 1 6 i 6 m, 1 6 j 6 n.

Lemma 2 (Decomposability Criterion). Let ϕ be a DNF and A the set of
satisfying assignments for ϕ. Then ϕ is ∆-decomposable with a partition π =
{V1, . . . , V|π|} iff for all d ∈ A|∆ it holds that A〈d〉 = A〈d〉|V1 ./ . . . ./ A〈d〉|V|π| .



In this paper, we are concerned with the problem of finding the finest variable
partition of a positive DNF ϕ wrt a subset ∆ of its variables. By Lemma 1,
decomposition components of ϕ can be easily obtained from the finest variable
partition. We assume that boolean expressions are given as strings and thus, the
size of an expression ϕ is the length of the string, which represents ϕ.

For the sake of completeness, first we describe a factorization algorithm for
multilinear boolean polynomials, which is based on the results from [5, 7]. Then
we provide a ∅-decomposition algorithm for a positive DNF ϕ based on factor-
ization of a boolean polynomial, which is obtained from ϕ by a simple syntac-
tic transformation. Finally, we demonstrate that ∆-decomposition of a positive
DNF reduces to ∅-decomposition of (a polynomial number of) positive DNFs
obtained from the input one and devise the corresponding polynomial time ∆-
decomposition algorithm.

3 Factorization of Boolean Polynomials

In [8], Shpilka and Volkovich established the prominent result on the equiva-
lence of polynomial factorization and identity testing. It follows from their result
that a multilinear boolean polynomial can be factored in time cubic in the size
of the polynomial given as a string. This result has been rediscovered in [5, 7],
where the authors have provided a factorization algorithm based on the compu-
tation of derivatives of multilinear boolean polynomials, which allows for deeper
optimizations. Without going into implementation details, we employ this re-
sult here to formulate an algorithm, which computes the finest ∅-decomposition
components of a positive DNF ϕ. Hereafter we assume that polynomials do not
contain double occurrences of the same monomial.

Definition 3. A polynomial F is factorable if F = G1 ·. . .·Gn, where n > 2 and
G1, . . . , Gn are some non-constant polynomials. Otherwise F is irreducible. The
polynomials G1, . . . , Gn are called factors of F . For a polynomial F , the finest
variable partition of F is {vars(F )} if F is irreducible and otherwise consists
of the sets of the variables of the irreducible factors of F .

It is important to stress that we consider here multilinear polynomials (every
variable can occur only in the power of 6 1) and thus, the factors are polyno-
mials over disjoint sets of variables. Note that the finest variable partition of a
multilinear boolean polynomial is unique, since the ring of these polynomials is a
unique factorization domain. We now formulate the first important observation,
which is a strengthening of Theorem 5 from [5].

Theorem 1 (Computing Finest Variable Partition for Polynomial). For
a multilinear boolean polynomial F , the (unique) finest partition of the variables
of F can be found in time polynomial in the size of F .

It is proved in [5] that testing whether F is factorable and computing its
factors can be done in time polynomial in the size of F given as a string. By



applying the factorization procedure to the obtained factors recursively, one
obtains a partition of the variables of F , which corresponds to the irreducible
factors of F . This is implemented in FindPartition procedure given below,
which is a modification of the factorization algorithm from [5]. It is also shown
in [5, 7] that once a partition of variables, which corresponds to the factors of
F is computed, the factors can be easily obtained as projections of F onto the
components of the partition (see the notion of projection below).

The FindPartition procedure takes a boolean polynomial F as an input
and outputs the finest partition of vars(F ) in time polynomial in the size of F .
A few notations are required. For a polynomial F , we denote by vars(F ) the
set of the variables of F . For a variable x ∈ vars(F ) and a value a ∈ {0, 1}, we
denote by Fx=a the polynomial obtained from F by substituting x with a. Given
a set of variables V and a monomial m, the projection of m onto V (denoted as
m|V ) is 1 if m does not contain any variable from V , or is equal to the monomial
obtained from m by removing all the variables not contained in V , otherwise.
The projection of a polynomial F onto V , denoted as F |V , is the polynomial
obtained by projecting the monomials of F onto V and by removing duplicate
monomials.

Lines 2-4 of FindPartition is a test for a simple sufficient condition for irre-
ducibility: if a polynomial is a constant then it cannot be factorable. Lines 5-15
implement a test for trivial factors: if some variable z is present in every mono-
mial of F , then z is an irreducible factor. In the recursive part of the procedure,
the remaining sets from the finest variable partition of F are computed as the
values of the variable Σ and are added to FinestPartition.

1: procedure FindPartition(F )
2: if F == 0 or F == 1 then
3: return vars(F )
4: end if
5: for z a variable occurring in every

monomial of F do
6: FinestPartition.add({z})
7: F ← Fz=1

8: end for
9: if F does not contain any variables

then
10: return FinestPartition
11: end if
12: if F contains a single variable, e.g.,

x then
13: FinestPartition.add({x})
14: return FinestPartition
15: end if

16: V ← variables of F

17: repeat
18: Σ ← ∅; F ← F |V
19: pick a variable x from V
20: Σ.add(x); V ← V \ {x}
21: G← Fx=0 · ∂F∂x
22: for a variable y from V do
23: if ∂G

∂y
6= 0 then

24: Σ.add(y)
25: end if
26: end for
27: FinestPartition.add(Σ)
28: V ← V \Σ
29: until V = ∅

30: return FinestPartition

31: end procedure



4 ∅-decomposition of Positive DNFs

A term t of a DNF ϕ is called redundant in ϕ if there exists another term
t′ of ϕ such that every literal of t′ is present in t (i.e., t′ ⊆ t). For example, the
term xy is redundant in xy ∨ x. It is easy to see that removing redundant terms
gives a logically equivalent DNF.

Let us note the following simple fact:

Lemma 3 (Existence of Positive Components). Let ϕ be a positive boolean
expression and ∆ ⊆ vars(ϕ) a subset of variables. If ϕ is ∆-decomposable then
it has decomposition components, which are positive expressions.

Proof. It is known (e.g., see Theorem 1.21 in [9]) that a boolean expression
ψ is equivalent to a positive one in a variable x iff for the set of satisfying
assignments A for ϕ the following property holds: if {l1, . . . , ln,¬x} ∈ A, where
l1, . . . , ln are literals, then {l1, . . . , ln, x} ∈ A. Clearly, this property is preserved
under decomposition: if a set of assignments A satisfies the property and it holds
that A = A1 ./ . . . ./ An, then so do the sets Ai, for i = 1, . . . , n. Thus, the claim
follows directly from Lemma 2. �

The next important observation is a strengthening of the result from [5],
which established the complexity of ∅-decomposition for positive DNFs.

Theorem 2 (Computing the Finest Variable Partition wrt ∆ = ∅). The
finest variable partition of a positive DNF ϕ can be computed in time polynomial
in the size of ϕ.

Let P be a 1-1 mapping, which for a positive DNF ϕ gives a multilinear
boolean polynomial P(ϕ) over vars(ϕ) obtained by replacing the conjunction
and disjunction with · and +, respectively. The theorem is proved by showing
that decomposition components of a positive DNF ϕ can be recovered from fac-
tors of a polynomial P(ψ) constructed for a DNF ψ, which is obtained from ϕ
by removing redundant terms. The idea is illustrated in ∅Decompose procedure
below, which for a given positive DNF ϕ computes the finest variable partition
of ϕ. It relies on the factorization procedure from Section 3 and is employed as
a subroutine in ∆-decomposition algorithm in Section 5. The procedure uses a
simple preprocessing, which removes redundant terms. The preprocessing also
allows for detecting those variables (line 5 of the procedure) that ϕ does not de-
pend on. By the definition of decomposability, these variables are decomposition
components of ϕ, so they are added as singleton sets into the resulting finest
variable partition (at line 6).

1: procedure ∅Decompose(ϕ)
2: FinestPartition ← ∅
3: ψ ← RemoveRedundTerms(ϕ)
4: FinestPartition ←

FindPartition(P(ψ)) . see Sect. 3

5: for all x ∈ vars(ϕ) \ vars(ψ) do
6: FinestPartition.add({x})
7: end for
8: return FinestPartition
9: end procedure



1: procedure RemoveRedundTerms(ϕ)
2: for all terms t in ϕ do
3: if there exists a term t′ in ϕ s.t.
t′ ⊆ t then

4: remove t from ϕ

5: end if
6: end for
7: return ϕ
8: end procedure

5 ∆-decomposition of Positive DNFs

Definition 4 (∆-atom). For a positive DNF ϕ and a subset ∆ ⊆ vars(ϕ), the
set of ∆-variables of a term of ϕ is called ∆-atom of ϕ.

Note that by definition a ∆-atom can also be the empty set. Let U be the
set of unions of ∆-atoms of ϕ. Given a set X ∈ U , we introduce the notation
ϕ〈X〉 as a shortcut for the DNF ϕ[X ∪ X̄], where X̄ = {¬x | x ∈ ∆ \X}.

Let π be a partition of vars(ϕ) \ ∆. We say that a boolean expression ψ
supports π if every set from the finest variable partition of ψ wrt ∆ is contained
in some set from π. It is easy to see that if ϕ is ∆-decomposable with π, then
ϕ[X] supports π, for any set of literals X such that ϕ[X] is defined.

We formulate two lemmas that are the key to the main result, Theorem 3,
in this section.

Lemma 4 (∆-Decomposability Criterion for Positive DNF). Let ϕ be a
positive DNF, ∆ ⊆ vars(ϕ) a subset, and U the set of unions of ∆-atoms of ϕ.
Then ϕ is ∆-decomposable with a variable partition π iff ϕ〈X〉 supports π, for
all X ∈ U .

Proof. (⇒): Take X ∈ U . Since ϕ is positive, X is a consistent set of literals,
ϕ〈X〉 is defined, and clearly, supports π.

(⇐): Let π = {V1, . . . , V|π|}, A be the set of satisfying assignments for ϕ, and
d ∈ A|∆ a ∆-assignment. Then there is X ∈ U such that X ⊆ d, since ϕ is a DNF.
Let X be the maximal set from U with this property. Then we have ϕ[d] = ϕ〈X〉,
so ϕ[d] supports π. This yields A〈d〉 = A〈d〉|V1 ./ . . . ./ A〈d〉|V|π| and since d was
arbitrarily chosen, it follows from Lemma 2 that ϕ is ∆-decomposable with π.
�

Lemma 5 (Decomposition Lemma). Let ϕ1, . . . , ϕn, where n > 1, be DNFs
with the following property: for all 1 6 j, k 6 n there is a subset I ⊆ {1, . . . , n},
with j, k ∈ I, such that

∨
i∈I ϕi is decomposable with π. Then so is ϕ1∨ . . .∨ϕn.

Proof. Let π = {X,Y } and denote ϕ = ϕ1 ∨ . . . ∨ ϕn. By Lemma 1 we need to
show that ϕ ≡ ϕ|X ∧ ϕ|Y , which is equivalent to:

ϕ ≡ (ϕ1|X ∨ . . . ∨ ϕn|X) ∧ (ϕ1|Y ∨ . . . ∨ ϕn|Y ) (3)

Observe that the right-hand side of this equation can be written as the ex-
pression D =

∨
16j,k6n ϕj |X ϕk|Y . Take any j, k ∈ {1, . . . , n}. By the con-

dition of the lemma there is a subset I ⊆ {1, . . . , n}, with j, k ∈ I, such that



∨
a,b∈I ϕa|X ϕb|Y ≡

∨
i∈I ϕi. That is, a disjunction of formulas from D contain-

ing both, ϕj |X ϕk|Y and ϕk|X ϕj |Y is a equivalent to a disjunction of formulas
from ϕ. Since the choice of j, k was arbitrary, we conclude that (3) holds and
thus, the lemma is proved. �

Theorem 3 (Computing the Finest Variable Partition wrt ∆). Given a
positive DNF ϕ and a subset ∆ ⊆ vars(ϕ), the finest variable partition of ϕ wrt
∆ can be computed in time polynomial in the size of ϕ.

Proof. Let A be the set of ∆-atoms of ϕ and U consist of all unions of sets from
A. Note that |A| is bounded by the size of ϕ, while |U | is exponential. By Lemma
4, ϕ is ∆-decomposable with a partition π iff ϕ〈X〉 supports π, for all X ∈ U .

For any X ∈ U , we have vars(ϕ〈X〉) ⊆ vars(ϕ). Observe that ϕ〈X〉 is
equivalent to the DNF ψ = ϕ〈X〉∨t, where t is a term redundant in ψ, vars(t) =
vars(ϕ) \ vars(ϕ〈X〉) (in case vars(t) = ∅ we assume that ψ = ϕ〈X〉) and it
holds vars(ψ) = vars(ϕ). Therefore, ϕ〈X〉 supports π iff ψ is decomposable
with π.

For any X ∈ U , ϕ〈X〉 is equivalent to ϕ1 ∨ . . . ∨ ϕn where n > 1 and for
i = 1, . . . , n, ϕi = ϕ〈ai〉, where ai ⊆ X, a ∆-atom of ϕ. Notice further that
ϕ〈X〉 is equivalent to ϕ′1 ∨ . . . ∨ ϕ′n, where ϕ′i = ϕi ∨ ti and ti is a redundant
term as introduced above.

By Lemma 4, if ϕ is ∆-decomposable with a partition π then ϕ〈a1 ∪ a2〉
supports π, for any a1, a2 ∈ A. For the other direction, if ϕ〈a1 ∪ a2〉 supports
π, for any a1, a2 ∈ A then the condition of Lemma 5 holds for ϕ′1 ∨ . . . ∨ ϕ′n.
It follows that ϕ〈X〉 supports π, for any X ∈ U and hence by Lemma 4, ϕ is
∆-decomposable with π.

By Theorem 2, a variable partition σ, which corresponds to the finest decom-
position of ϕ〈a1 ∪ a2〉, can be found in time polynomial in the size of ϕ〈a1 ∪ a2〉
(and hence, in the size of ϕ, as well). For any variables x, y ∈ vars(ϕ) and a
set S ∈ σ, if x, y ∈ S then x and y cannot belong to different decomposition
components of ϕ〈a1 ∪ a2〉.

Let ∼ be an equivalence relation on vars(ϕ) such that x ∼ y iff there are
a1, a2 ∈ A such that x and y belong to the same component of the finest variable
partition of ϕ〈a1 ∪ a2〉. Since |A| is bounded by the size of ϕ, one can readily
verify that the equivalence classes wrt ∼ can be computed in time polynomial
in the size of ϕ and are equal to its finest variable partition. �

We conclude the paper with a description of ∆Decompose procedure, which
for a positive DNF ϕ and a (possibly empty) subset ∆ ⊆ vars(ϕ) computes the
finest variable partition of ϕ wrt ∆ and outputs ∆-decomposition components,
which correspond to the partition.

In Lines 8-10 of the procedure, a set of ∆-atoms of ϕ is computed, while
skipping those ones, which subsume some term of ϕ. Clearly, if there is a term



t of ϕ, which consists only of d-variables for some subset d ⊆ ∆, then it holds
ϕ[d] = 1, which implies that ϕ〈d〉 supports any partition π of vars(ϕ) \ ∆ (at
this point ϕ necessarily contains at least 2 non-∆-variables due to the test in
line 4). Therefore, these atoms are irrelevant in computing decomposition and
they can be omitted (similarly, the unions of ∆-atoms in line 13).

Lines 11-17 implement a call for computing the finest variable partition wrt
the empty ∆ for each DNF ϕ〈L〉 obtained from ϕ for a union L of relevant
∆-atoms. The result is a family of partitions, which are further aligned by
computing equivalence classes on the variables of ϕ. This is implemented in
AlignPartitions procedure by computing connected components of a graph,
in which vertices correspond to the variables of ϕ.

Finally, in lines 22-25 the decomposition components of ϕ are computed as
projections onto the sets of variables corresponding to the finest partition. The
components are cleaned up by removing redundant terms and are sent to the
output.

1: procedure ∆Decompose(ϕ, ∆)
2: FinestPartition ← ∅
3: Components ← ∅
4: if ϕ contains at most one non-∆-

variable then
5: return {ϕ} . ϕ is not
∆-decomposable

6: end if

7: ∆Atoms ← ∅
8: for every term t of ϕ, which con-

tains at least one non-∆-variable do

9: ∆Atoms.add(the set of ∆-
variables of t)

10: end for
11: for all a1, a2 from ∆Atoms do
12: L← a1 ∪ a2

13: if there is no term t in ϕ, whose
every variable is from L then

14: PartitionForL←∅Decompose(ϕ〈L〉)
. see Sect. 4

15: PartitionFamily.add(PartitionForL)
16: end if
17: end for
18: FinestPartition ←

AlignPartitions(PartitionFamily)

19: if FinestPartition.isSingleton
then

20: return {ϕ} . ϕ is not
∆-decomposable

21: else
22: for V ∈ FinestPartition do
23: ψ ←RemoveRedundTerms(ϕ|V ∪∆)

. see Sect. 4
24: Components.add(ψ)
25: end for
26: return Components
27: end if

28: end procedure

1: procedure AlignPartitions(PFamily)
2: G← ∅ . a graph with vertices

being vars. of ϕ
3: for Partition ∈ PFamily do
4: for VarSet ∈ Partition do
5: G.add(a path involving all
x ∈ VarSet)

6: end for
7: end for

8: ResultPartition ← ∅
9: for C a connected component of G

do
10: ResultPartition.add(the set of

vars from C)
11: end for
12: return ResultPartition
13: end procedure
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