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Abstract
In many tasks related to reasoning about consequences of a
logical theory, it is desirable to decompose the theory into a
number of components with weakly-related or independent
signatures. This facilitates reasoning when the signature of a
query formula belongs to only one of the components. How-
ever, an initial theory may be subject to change due to ex-
ecution of actions affecting features mentioned in the the-
ory. Having once computed a decomposition of a theory, one
would like to know whether a decomposition has to be com-
puted again for the theory obtained from taking into account
the changes resulting from execution of an action. In the pa-
per, we address this problem in the scope of the situation cal-
culus, where change of an initial theory is related to the well-
studied notion of progression. Progression provides a form of
forward reasoning; it relies on forgetting values of those fea-
tures which are subject to change and computing new values
for them. We prove new results about properties of decompo-
sition components under forgetting and show when a decom-
position can be preserved in progression of an initial theory.

1 Introduction and Motivation
Modularity of theories has been established as an important
research topic in knowledge representation. It includes both
theoretical and practical aspects of modularity of theories
formulated in different logical languages L ranging from
weak (but practical) description logic (DL) EL to more ex-
pressive logics (Konev et al. 2009; 2010; Ponomaryov 2008;
Grüninger et al. 2012), to cite a few. Surprisingly, this re-
search topic is little explored in the context of reasoning
about actions with a few exceptions, e.g., (Gu and Soutchan-
ski 2008; Inclezan and Gelfond 2011; Kakas, Michael, and
Miller 2011). More specifically, it is natural to decompose a
large heterogeneous knowledge base (KB) covering several
loosely coupled application domains into components that
have little or no intersection in terms of signatures. Poten-
tially, such decomposition can facilitate solving the projec-
tion problem that requires answering whether a given log-
ical formula is true after executing a sequence of actions
(events). In cases, when a query is a logical formula com-
posed from symbols occuring only in one of the compo-
nents, the query can be answered more easily than in the
case when the whole KB is required. In turn, this can help in
solving other reasoning problems such as planning or high-
level program execution that require solution to the projec-
tion problem as a prerequisite. To the best of our knowl-
edge, the only previous work that explored decomposition
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of logical theories for the purposes of solving the projection
problem are the papers (Amir 2000; 2002). These papers in-
vestigate decomposition in the situation calculus (McCarthy
and Hayes 1969; Reiter 2001), a well-known logical for-
malism for representation of actions and their effects. The
author proposed reasoning procedures for a situation calcu-
lus theory by dividing syntactically the whole theory into
weakly related partitions. Specifically, he developed algo-
rithms that use local computation inside syntactically iden-
tified partitions and message passing between partitions. We
take a different approach in our paper. Instead of decompos-
ing the whole action theory into subsets, as in (Amir 2000;
2002), we consider signature decompositions of an initial
KB only. Our components are not necessarily syntactic sub-
sets of the KB. We concentrate on foundations, and explore
properties of components produced by our decomposition.
Whenever possible, we try to formulate these properties in a
general logical language L that is a fragment of second or-
der logic, but when necessary, we talk about a specific logic.
As a reasoning technique for solving the projection prob-
lem, we concentrate on progression (Lin and Reiter 1997;
Liu and Lakemeyer 2009), and on a related operation of for-
getting (Lin and Reiter 1994). When an executed action has
effects on some of the features, their old values should be
forgotten, and then the new values of the affected features
must be computed to obtain progression of the KB to the
next stage. Not surprisingly, both forgetting and progres-
sion have intricate interactions with properties of decom-
posed components. We investigate whether decomposabil-
ity and inseparability, important meta-theoretic properties
studied previously, are preserved under forgetting and pro-
gression. The main contributions of our paper are sufficient
conditions when components in a decomposed initial KB
preserve their properties after progression. This invariance
is important since progression may continue indefinitely as
long as new actions are being executed. Also, it is important
that progression can be sometimes computed within one of
the components. This can be achieved under reasonable as-
sumptions of coherence between signatures of components
of a decomposed initial KB and signatures of axioms char-
acterizing effects of actions, when the latter axioms can be
grouped into weakly related sets according to their syntax.

2 Background
2.1 Model-Theoretic Definitions
Let L be a logic (possibly many-sorted) which is a fragment
of second-order logic (either by syntax or by translation of
formulas) and has the standard model-theoretic Tarskian se-
mantics. We call signature a subset of non-logical symbols
of L. For a set of formulas T in L, we denote by sig (T )
the signature of T , i.e. the set of all non-logical symbols



which occur in T . We will use the same notation sig (ϕ)
for the signature of a formula ϕ in L. If t is a term in
the language of second–order logic then the same notation
sig (t) will be used for the set of all non-logical symbols
occurring in t. Throughout this paper, we use the notion of
theory as a synonym for a set of formulas in L which are
sentences when translated into second-order logic. When-
ever we mention a set of formulas, it is assumed that this
set is in L, if the context is not specified. For two theories
T1 and T2, the notation T1 ≡ T2 will be the abbreviation
for the semantic equivalence. If T is a set of formulas in L
and ∆ is a signature then Cons(T ,∆) will denote the set
of semantic consequences of T in signature ∆ (in L), i.e.
Cons(T ,∆) = {ϕ ∈ L | T |= ϕ and sig (ϕ) ⊆ ∆}. We
emphasize that this is a notation for a set of formulas in L,
because T may semantically entail formulas which are in
second-order logic, but are outside of L.

Next, we formulate two component properties of theories
considered in this paper. The notion of inseparability has
been previously introduced in the context of DLs, e.g., see
(Konev et al. 2009; Lutz and Wolter 2010).

Definition 1 (∆–inseparability) Theories T1 and T2 in
L are called ∆–inseparable for a signature ∆, if
Cons(T1,∆) = Cons(T2,∆). That is, no formula in sig-
nature ∆ “witnesses” any distinction between T1 and T2.

In other words, T1 and T2 are ∆–inseparable, if for any
formula ψ in signature ∆, T1 entails ψ iff T2 does. The fol-
lowing notion is introduced in (Ponomaryov 2008), and is
applied to the study of modularity in (Konev et al. 2010).

Definition 2 (∆–decomposability property) Let T be a
theory in L and ∆ ⊆ sig (T ) be a subsignature. We call
T ∆–decomposable, if there are theories T1 and T2 in L
such that

• sig (T1)∩sig (T2) = ∆ and sig (T1) 6= ∆ 6= sig (T2);
• sig (T1) ∪ sig (T2) = sig (T ) and T ≡ T1 ∪ T2.

The pair 〈T1, T2〉 is called ∆–decomposition of T and the
theories T1 and T2 are called ∆–decomposition components
of T . We will sometimes omit the word “decomposition” and
call the sets T1 and T2 simply components of T , when the
signature ∆ is clear from the context.

The notion of signature ∆–decomposition is defined us-
ing a pair of theories, but is easily extended to the case of
a family of theories. It is important to realize that T1 and
T2 need not be syntactic subsets of T in the above defini-
tion. Clearly, if L satisfies compactness and T is a finite ∆–
decomposable theory in L for a signature ∆, then there is a
∆–decomposition 〈T1, T2〉 of T , where T1 and T2 are finite.
Although, the union T1 ∪T2 must entail all consequences of
T in signature ∆, the components T1 and T2 may not be ∆–
inseparable, if we demand them to be finite. For example,
the set of ∆–consequences of T2 may not be finitely axiom-
atizable in L by axioms of T1.

Both ∆–decomposition and ∆–inseparability are required
to achieve modularity. Without ∆–inseparability compo-
nents are not self-sufficient, since a component may not en-
tail some of the consequences in the shared vocabulary ∆.
The ideal case is when a theory T has ∆-decomposition into
finite ∆–inseparable components, as noted in the following.

The well-known property of logics related to signature de-
compositions of theories is the Parallel Interpolation Prop-
erty (PIP) first considered in a special form in (Kourousias
and Makinson 2007) and studied later in a more general
form in (Konev et al. 2010). Note that PIP is closely related
to Craig’s interpolation (Craig 1957; 2008).

Definition 3 (Parallel Interpolation Property) The logic
L is said to have the parallel interpolation property (PIP)
if for any theories T1, T2 in L with sig (T1)∩sig (T2) = ∆
and any formula ϕ in L, the condition T1 ∪ T2 |= ϕ yields
the existence of sets of formulas T ′1 and T ′2 in L such that:

• Ti |= T ′i , for i = 1, 2, and T ′1 ∪ T ′2 |= ϕ;
• sig (T ′i ) \∆ ⊆ (sig (Ti) ∩ sig (ϕ)) \∆.

In fact, PIP can be understood as an iterated version of
Craig’s interpolation in the logics that have compactness and
deduction theorem (see Lemma 1 in (Ponomaryov 2008)).
Many logics known to have Craig’s interpolation, e.g. sec-
ond and first-order logics, numerous modal logics and some
description logics also have PIP. Also, it is known that there
are logics which do not have Craig’s interpolation, and there-
fore do not have PIP. It is easy to show that in presence of
PIP, decomposing a set T of formulas into inseparable com-
ponents wrt a signature ∆ gives a family of theories that
imply all the consequences of T in their own subsignatures:
Fact Let L have PIP, T be a theory in L, and ∆ be a
signature. Let 〈T1,T2〉 be a ∆–decomposition of T with T1
and T2 being ∆–inseparable. Then for any formula ϕ with
sig (ϕ)⊆sig (Ti), i∈{1,2}, we have T |=ϕ iff Ti |=ϕ.

In other words, in presence of PIP, inseparable decompo-
sition components can be used instead of the original theory
for checking entailment of formulas in the corresponding
subsignatures. This is the reason for our interest in the in-
separability property in connection with decompositions. As
shown in (Amir 2000; 2002), having a decomposed theory
can be beneficial even without inseparability by applying the
known methods of distributed reasoning via message pass-
ing between components. However, having inseparability of
components allows the reasoner to avoid message passing
completely.

2.2 Basics of the Situation Calculus
The situation calculus (SC) is a many-sorted predicate logic
language for axiomatizing dynamic worlds. Its basic ingre-
dients consist of objects, actions a, situations s and fluents
(Reiter 2001). Objects are constants naming some entities,
while actions, A(x̄), are functions with possibly empty tu-
ples x̄ of object arguments. A situation is a first-order term
denoting an unique sequence of actions. Such sequences are
represented using a binary function symbol do: do(a, s) de-
notes the sequence resulting from adding an action term a
to the sequence s. The special constant S0 denotes the ini-
tial situation, namely the empty action sequence. The rela-
tional fluents are predicates that have a single situation term
as the last argument. Those predicate and function symbols
which do not have situation arguments are called static. SC
includes the distinguished predicate Poss(a, s) to charac-
terize actions a that are possible to execute in s, and the dis-
tinguished predicate s1 � s2 to specify precedence between
situations s1 and s2. As usual, we say that a SC formulaψ(s)



is uniform in s, if s is the only situation term mentioned in
ψ(s), the formula ψ has no occurrences of the predicates
Poss,�, and mentions neither quantifiers over variables of
sort situation, nor equalities between situation terms.

The language of SC is used to formulate basic action
theories (BAT s) (Reiter 2001). Every BAT consists of a
set of foundational axioms Σ axiomatizing properties of the
relation s1 � s2 w.r.t. do(a, s), e.g., ∀a, s (s � do(a, s)),
a theory Duna stating the unique name assumption (UNA)
for action functions and objects, an initial theory DS0

describing knowledge in the initial situation S0 as a set
of sentences uniform in S0, a theory Dap specifying
preconditions of action execution, and a theory Dss (the set
of successor-state axioms, SSAs for short). In axioms of
a BAT , all free variables (starting with lower case letters)
are implicitly universally quantified at front. In theory Dss,
there is a single SSA for each relational fluent F (x̄, s),
with a syntactic form F (x̄, do(a, s)) ↔ ΦF (x̄, a, s), where
ΦF (x̄, a, s) is a formula uniform in s with free variables
among x̄, a, s. We consider SSAs of the following form:
F (x̄, do(a, s))↔

∨
i[∃ȳ]a=PosActioni(x̄, ȳ)∧γ+

i (x̄, ȳ, s)∨
F (x̄, s)∧ ¬

(∨
j [∃z̄]a=NegActionj(x̄, z̄) ∧ γ−j (x̄, z̄, s)

)
,

where PosActioni is an action that makes the fluent F true
and γ+

i (x̄, ȳ, s) is the formula expressing a context in
which this positive effect can occur; similarly, NegActionj
is an action that can make the fluent F false if the formula
γ−j (x̄, z̄, s) holds in s. The optional [∃] means quantifiers
over variables ȳ, z̄, if any, other than those in x̄ which may
occur in action functions or in context formulas. If the
executed action a is none of these, then the truth value of F
remains unchanged (a has no effect). Thus, SSAs represent
non-effects of actions compactly and characterize the truth
values of the fluent F in the next situation do(a, s) in terms
of values of fluents in the situation s and static predicates
and functions. Action function A(x̄) is said to be in active
position of some SSA ϕ ∈ Dss for the fluent F , if A(x̄)
occurs either as an action having a positive effect on F , or
as an action that has a negative effect on F . Rephrasing
(Liu and Levesque 2005), where an action with local effects
was originally defined, an SSA ϕ ∈ Dss for the fluent
F is called local-effect if the set of arguments of every
action function in active position of ϕ contains all object
variables from F . Notice that a generic SSA above is a
local-effect SSA; in this paper, we do not consider actions
with non local effects. A BAT is said to be local-effect if
every axiom of Dss is a local-effect SSA; subsequently, we
consider only local-effect basic action theories.

Throughout the paper, we assume that DS0 is a theory in
language Lwhich can be translated into a set of sentences of
first-order logic uniform in S0. In particular,DS0 can include
both an ABox and a TBox in an appropriate DL, as argued
in (Gu and Soutchanski 2010; Soutchanski and Yehia 2012).
Proposition 1 (Theorem 1 in (Pirri and Reiter 1999))
A basic action theory Σ ∪ Duna ∪ DS0 ∪ Dap ∪ Dss is
satisfiable iff Duna ∪DS0 is satisfiable.

One of the most important reasoning tasks in SC is the
projection problem, that is, to determine whether a certain
property holds after performing a sequence of actions. Plan-
ning and high-level program execution are two important
settings, where this problem arises naturally. In this paper,

we solve the projection problem using progression (Section
4), which provides forward style reasoning. In local-effect
BAT s, computing progression of initial theory DS0 relies
on updating DS0 with new facts inferred from SSAs and
forgetting old facts in DS0 which are no longer true. Local-
effect BAT s are a well-known class of theories for which
the operation of progression can be computed effectively
(Liu and Lakemeyer 2009). They are special in the sense
that the truth value of each fluent in a local-effect BAT
can change only for a finite set of objects occurring as argu-
ments of an executed action. Therefore, in this case forget-
ting old values of fluents can be done efficiently, contribut-
ing to the overall effectiveness of computing progression in
local-effect BAT s.

Before we proceed to component properties of forgetting
(Section 3) and to progression of initial theories (Section
4), we consider an example that helps to illustrate the ad-
vantages of decomposition. Our example combines the sim-
plified Blocks World (BW) with a kind of Stacks World. A
complete axiomatization of BW modelled as a finite collec-
tion of finite chains can be found in (Cook and Liu 2003).
Example 1 (of BAT ) The blocks-and-stacks-world con-
sists of a finite set of blocks and a finite set of other entities.
Blocks can be located on top of each other, while other en-
tities can be either in a heap of unlimited capacity, or can be
organized in stacks. There is an unnamed manipulator that
can move a block from one block to another, provided that
there is nothing on the top of the blocks. It can also put an
entity from the heap upon a stack with a named top element,
or move the top element of a stack into the heap. For stack-
ing/unstacking operations we adopt the push/pop terminol-
ogy and use the unary predicate Block to distinguish be-
tween blocks and other entities. We use the following action
functions and relational fluents to axiomatize the mentioned
world as a local-effect BAT in SC.
Actions
• move(x, y, z): Move block x from block y onto block z,

provided both x and z are clear.
• push(x,y): Stack entity x from the heap on top of entity y.
• pop(x): Unstack entity x into the heap, provided x is the

top element and is not in the heap.
Fluents
• On(x, z, s): Block x is on block z, in situation s.
• Clear(x, s): Block x has no other blocks on top of it in s.
• Top(x, s): Entity x is the top element of a stack in s.
• Inheap(x, s): Entity x is in the heap in situation s.
• Under(x, y, s): Entity y is directly under x in situation s.
Successor state axioms (theory Dss)
On(x, z, do(a, s))↔ ∃y(a=move(x, y, z))∨

On(x, z, s) ∧ ¬∃y(a=move(x, z, y))
Clear(x, do(a, s))↔ ∃y, z(a=move(y, x, z)∧
On(y, x, s)) ∨ Clear(x, s)∧ ¬∃y,z(a=move(y, z, x))

Inheap(x, do(a, s))↔ a=pop(x) ∨
Inheap(x, s) ∧ ¬∃y(a=push(x, y))

Top(x, do(a, s))↔ ∃y( a=push(x, y) )∨
∃y( a=pop(y) ∧ Under(y, x, s) ) ∨

Top(x, s) ∧ a 6=pop(x) ∧ ¬∃y(a=push(y, x))
Under(x, y, do(a, s))↔ a=push(x, y) ∨

Under(x, y, s) ∧ a 6=pop(x)



Action precondition axioms (theory Dap)
Poss(move(x, y, z), s)↔ Block(x) ∧Block(y)∧

Block(z) ∧ Clear(x, s) ∧ Clear(z, s) ∧ x 6= z

Poss(push(x, y), s)↔ ¬Block(x) ∧ ¬Block(y)∧
Top(y, s) ∧ Inheap(x, s)

Poss(pop(x), s)↔ ¬Block(x) ∧ Top(x, s)
Initial Theory (DS0 ) is defined as the set of axioms:
¬∃yOn(y, x, S0) ∧ ∃yOn(x, y, S0) ∧ ¬Inheap(x, S0)→Clear(x, S0)

∃y On(x, y, S0)→ Block(x)

(Top(x, S0) ∨ Inheap(x, S0))→ ¬Block(x)
On(A,B, S0)∧ Block(B)∧ Block(C)∧ Clear(A,S0)∧ Clear(C, S0)

Notice that all fluents are syntactically related in DS0 , so
purely syntactic techniques fail to decomposeDS0 into com-
ponents sharing no fluents. Finally, the theory Duna is the
set of unique-name axioms for all pairs of object constants
and action functions used above. Then Σ ∪ Duna ∪ Dap ∪
Dss ∪ DS0 is the resulting local-effect BAT . Note that Dss
is the union of two theories with the intersection of signa-
tures equal to {do}. At the same time, the initial theory DS0

is ∆–decomposable for ∆ = {Block, S0} into two distinct
∆–inseparable components:
¬∃y On(y, x, S0) ∧ ∃y On(x, y, S0)→ Clear(x, S0)

∃y On(x, y, S0)→ Block(x)

On(A,B, S0)∧ Block(B)∧ Block(C)∧ Clear(A,S0)∧ Clear(C, S0)

and
(Top(x, S0) ∨ Inheap(x, S0))→ ¬Block(x)
∃x Block(x)

We will show in Theorem 1 that progression for BAT s of
this kind preserves both decomposability and inseparability
of the decomposition components.

3 Properties of Forgetting
As progression is closely related to forgetting, we take a look
at some properties of this operation first. Let us define a rela-
tion on structures as follows. Let σ be a signature or a ground
atom andM,M′ be two many–sorted structures. Then we
setM∼σM′ if:
• M andM′ have the same domain for each sort;
• M andM′ interpret all symbols which are not in σ iden-

tically;
• if σ is a ground atom P (t̄) thenM andM′ agree on in-

terpretation ū of t̄ and for every vector of elements v̄ 6= ū,
we haveM |= P (v̄) iffM′ |= P (v̄).

Obviously, ∼σ is an equivalence relation on structures.
The following notion summarizes the well-known Defini-

tions 1 and 7 in (Lin and Reiter 1994).
Definition 4 (Forgetting an atom or a signature) Let T
be a theory in L and σ be either a signature, or some ground
atom. A set T ′ of formulas in a fragment of second-order
logic is called the result of forgetting σ in T (denoted by
forget (T , σ)) if for any structureM′, we haveM′ |= T ′
iff there is a modelM |= T such thatM∼σM′.

It is known that forget (T , σ) always exists, i.e. is
second–order definable, for a finite set of formulas T in L
and a finite signature or a ground atom σ (see (Lin and Re-
iter 1994), or Section 2.1 in (Liu and Lakemeyer 2009)). The
definition yields T |= forget (T , σ), thus forget (T , σ)
is a set of second-order consequences of T which suggests
that it may not always be definable in the logic where T

is formulated and it may not be finitely axiomatizable in
this logic, even if so is T . For the case when σ is a sig-
nature, forget (T , σ) is known as sig (T ) \ σ–uniform in-
terpolant of T wrt the language L and second-order queries,
see Definition 13 in (Konev et al. 2009) and Lemma 39 in
(Lutz and Wolter 2010) for a justification. In other words,
T and forget (T , σ) semantically entail the same second-
order formulas in signature T \ σ.

Let L be first-order logic. In contrast to forgetting a sig-
nature, for any recursively axiomatizable theory T in L and
a ground atom σ, one can effectively construct the set of
formulas forget (T , σ) in L such that forget (T , σ) is
finitely axiomatizable iff T is. This follows from Theorem 4
in (Lin and Reiter 1994), where it is shown that forgetting a
ground atom P (t̄) in a theory T can be computed by simple
syntactic manipulations. Below we formulate a number of
new properties of forgetting that we will subsequently need
when proving new results about progression.

Proposition 2 (Interplay of forgetting and entailment)
Let T and T1 be two sets of formulas in L with T |= T1
and σ be a signature or a ground atom. Then the following
holds:

Proposition 3 (Preservation of consequences) Let T be a
theory inL and σ be either a signature or a ground atom. Let
ϕ be a formula such that either sig (ϕ)∩σ = ∅ (in case σ is
a signature), or which does not contain the predicate from σ
(if σ is a ground atom). Then T |= ϕ iff forget (T , σ) |= ϕ.

Now we formulate some necessary results on preservation
of inseparability under forgetting. By Proposition 3, when
studying preservation of ∆–inseparability of two sets of for-
mulas for a signature ∆, it is sufficient to consider the case
of forgetting a subset of ∆ or a ground atom with predicate
from ∆, respectively. Let T1 and T2 be two sets of formulas
in L with sig (T1) ∩ sig (T2) = ∆ for a signature ∆ and
let σ be either a subsignature of ∆ or a ground atom with
predicate from ∆. It is known that in general, forgetting σ
may not be distributive over the union of sets of formulas.
The entailment forget (T1 ∪ T2, σ) |= forget (T1, σ) ∪
forget (T2, σ) holds by Proposition 2, but Example 2 easily
shows that even strong semantic conditions related to mod-
ularity do not guarantee the reverse entailment. On the other
hand, forgetting something outside of the common signa-
ture of T1 and T2 is distributive over union, as formulated in
Corollary 1 which is a consequence of criterion in Prop. 4.
This is important since a KB is a union of components.

Example 2 (Failure of componentwise forgetting in ∆)
Let L be first-order logic and ∆ = {P, c} be a signature
consisting of unary predicate P and constant c. Define the-
ories T1 and T2 as: T1 = {A→ P (c)}, T2 = {P (c)→ B},
where A,B are nullary predicate symbols. We have
sig (T1) ∩ sig (T2) = ∆ and for i = 1, 2, any model of
Ti can be expanded to a model of T1 ∪ T2. Clearly, T1 and
T2 are ∆–inseparable and for i = 1, 2, Cons(Ti,∆) is
the set of tautologies in ∆. By definition of forgetting, for
i = 1, 2, forget (Ti, P (c)) is a set of tautologies and thus,
forget (T1, P (c)) ∪ forget (T2, P (c)) 6|= forget (T1 ∪



T2, P (c)), because forget (T1 ∪ T2, P (c)) |= A → B (by
Proposition 3). For the case of forgetting a signature, say
nullary predicate P , it suffices to consider ∆ = {P} and
theories T1 = {A → P}, T2 = {P → B}, where A,B are
nullary predicates.

Proposition 4 (A criterion for componentwise forgetting)
Let T1 and T2 be two sets of formulas and σ be either a
signature or a ground atom. Then the following are
equivalent:
• forget (T1, σ)∪ forget (T2, σ) |= forget (T1 ∪ T2, σ)
• for any two models M1 |= T1 and M2 |= T2, with
M1 ∼σ M2, there exists a model M |= T1 ∪ T2 such
thatM∼σMi for some i ∈ {1, 2}.
To compare this criterion with Example 2, observe that

there exist modelsM1 |= T1 andM2 |= T2 with a common
domain such thatM1 |= A ∧ P (c) ∧ ¬B andM2 |= A ∧
¬P (c) ∧ ¬B. Thus, M1 ∼P (c) M2; however, there does
not exist a modelM of T1 ∪ T2 such thatM∼P (c) Mi for
some i∈{1, 2}. NeitherM1, norM2 is a model for T1∪T2.

Corollary 1 (Forgetting in scope of one component) Let
T1 and T2 be sets of formulas with sig (T1)∩sig (T2) = ∆
for a signature ∆ and σ be either a subsignature of
sig (T1) \ ∆ or a ground atom with predicate from
sig (T1)\∆. Then forget (T1 ∪ T2, σ) is equivalent to
forget (T1,σ)∪T2. Also, if T1 and T2 are ∆–inseparable,
then so are forget (T1,σ) and T2.

4 Component Properties under Progression
The operation of progression is closely related to forgetting
in initial theories (Lin and Reiter 1997). We use the follow-
ing notations further in this section. For a ground action term
α in the language of the situation calculus, we denote by Sα
the situation term do(α, S0). To define progression, let us in-
troduce an equivalence relation on many-sorted structures in
situation calculus signature. For two structuresM,M′ and
a ground action α, we setM∼Sα

M′ if:
• M andM′ have the same sorts for action and object;
• M and M′ interpret all situation-independent predicate

and function symbols identically;
• M and M′ agree on interpretation of all fluents at Sα,

i.e. for every fluent F and every variable assignment θ,
we haveM, θ |= F (x̄, Sα) iffM′, θ |= F (x̄, Sα).

The following is a reformulation of the definitions from Sect.
4 in (Lin and Reiter 1997) and Def.9.1.1 in (Reiter 2001).
Definition 5 (Progression) LetD=Σ∪Dss∪Dap∪Duna∪
DS0 be a basic action theory with the initial theoryDS0 and
let α be a ground action term. A set DSα

of formulas in a
fragment of second-order logic is called progression of DS0

wrt α if it is uniform in the situation term Sα and for any
structureM,M is a model of Σ∪Dss∪Dap∪Duna∪DSα

iff there is a modelM′ of D such thatM∼Sα
M′.

Below, we use DSα
to denote progression of the initial

theory wrt the action term α, if the context of BAT is clear.
We sometimes abuse terminology and call progression not
only the theoryDSα itself, but also the operation of comput-
ing this theory (when the existence of an effective operation
is implicitly assumed). It can be seen (Theorem 2 in (Lin

and Reiter 1997) and Theorem 2.10 in (Liu and Lakemeyer
2009)) that progression always exists, i.e. is second-order
definable, if the signature of BAT is finite and the initial
theory DS0 is finitely axiomatizable. On the other hand, by
the definition, for any BAT D, we haveD |= DSα

and, sim-
ilarly to the operation of forgetting, it is possible to provide
an example (see Definition 2, Conjecture 1, and Theorem
2 in (Vassos and Levesque 2008)), when progression DSα

is not definable (even by an infinite set of formulas) in the
logic in which DS0 is formulated.

The progression DSα
is a set of consequences of BAT

which are uniform in the situation term Sα: it can be viewed
as the strongest postcondition of the precondition DS0 wrt
the action α. Thus, informally, DSα

is a knowledge about
the situation Sα implied by BAT . Moreover, it contains all
knowledge from BAT about the situation Sα, as guaranteed
by the model-theoretic property with the relation ∼Sα

in the
definition. Recall that the initial theory of BAT describes
knowledge about the initial situation S0 and SSAs are es-
sentially the rules for computing new values of fluents after
performing actions. Thus, progressionDSα can be viewed as
“modification” of the initial theory obtained after executing
the action α. Subsequently, since it is convenient to reuse S0,
we consider substitution of Sα with S0 in progression, de-
noted DSα

(S0/Sα), where S0/Sα is the result of replacing
every occurrence of Sα with S0. Let ϕ(s) be a formula uni-
form in a situation variable s. To solve the projection prob-
lem for ϕ(Sα), i.e., to find whether ϕ(Sα) holds in the situa-
tion Sα wrt BAT D, one might wish to compute progression
DSα

and then check whether Duna ∪ DSα
|= ϕ(Sα) holds

(or equivalently, whether Duna ∪ DSα(S0/Sα) |= ϕ(S0)
holds). By Proposition 1, this is equivalent to D |= ϕ(Sα),
i.e, this approach solves the projection problem for ϕ(Sα).

Consequently, of interest are the cases when progression
can be computed effectively as a theory in the same logic
used to formulate underlying DS0 , independently of the fact
whether satisfiability in this logic is decidable. The well-
known approach is to consider the local-effect BAT s. The
essence of computing progression for the local-effect BATs
is to identify effectively from SSAs the set of ground atoms
that need to be forgotten. Subsequently, in DSα

, they are re-
placed with the new values of fluents; these new values are
also computed from SSAs. An interested reader may consult
the whole paper (Liu and Lakemeyer 2009), while here we
introduce only those necessary constructions from Def. 3.4
of (Liu and Lakemeyer 2009) which are useful in order to
understand our results.

Let D be a local-effect BAT with a set Dss of SSAs,
an initial theory DS0 , and a unique name assumption theory
Duna, and let α be a ground action term. Denote
∆F = {t̄ | x̄= t̄ appears in a positive effect or a negative

effect part of an SSA ϕ ∈ Dss instantiated with α
and equivalently rewritten wrt Duna},

Ω(s) = {F (t̄, s) | t̄ ∈ ∆F }.
Notice Ω(S0) is a finite set of ground atoms to be forgotten.
Recall from (Lin and Reiter 1994) that forgetting several
ground atoms can be done consecutively in any order.

An instantiation of Dss wrt α and Ω(S0), denoted by
Dss[Ω(S0)], is the set of formulas of the form:

F (t̄, do(α, S0))↔ γ+
F (t̄, α, S0)∨ F (t̄, S0)∧¬γ−F (t̄, α, S0),



where γ+
F (t̄, α, S0), γ−F (t̄, α, S0) are formulas uniform in S0

obtained from instantiation. Observe that Dss[Ω(S0)] effec-
tively defines new values for the fluents affected by the ac-
tion α. However, these definitions use fluents wrt S0, which
may include the values to be forgotten. For this reason, for-
getting should be performed both inDS0 and inDss[Ω(S0)].
Proposition 5 (Th. 3.6 in (Liu and Lakemeyer 2009)) In
the notations above, the following is a progression of DS0

wrt α in the sense of Definition 5:
DSα

= [ forget(Dss[Ω(S0)] ∪ DS0 , Ω(S0)) ](Sα/S0)

Thus, computing progression in a local-effect BAT is an
effective syntactic transformation of the initial theory, which
leads to the unique form of the updated theoryDSα

. This fact
is used in the proof of Theorem 1.

Now we are ready to formulate the results about decom-
posability and inseparability properties under progression.
We start with negative examples in which a BAT is local-
effect and initial theories are formulated in first-order logic.
As progression DSα

is a set of formulas uniform in Sα,
and this situation term may occur in every formula of DSα

(hence, potentially spoiling decomposability), we consider
the decomposability and inseparability properties wrt the
theory DSα

(S0/Sα) instead of DSα
. Otherwise, every time

we would have to speak of ∆ ∪ sig (Sα)–decomposability
of progression instead of ∆–decomposability (notice that
sig (Sα) includes sig (α), which includes constants – argu-
ments of α). Informally,DSα

(S0/Sα) serves as a new initial
theory uniform in S0.

Consider a BAT D with a ∆–decomposable initial the-
ory DS0 for a signature ∆. The general syntactic form of
SSAs provides enough flexibility to design examples show-
ing loss or gain either of the decomposability property of
DS0 or inseparability of its components. As context con-
ditions in an SSA may contain symbols that are even not
present in sig (DS0), or symbols from both components
of DS0 (if decomposition exists), this should not be a sur-
prise for the reader. Therefore, it makes sense to restrict our
study to those BAT s, where SSAs have one of the well-
studied forms, for instance, to local-effect theories. It turns
out that this form is still general enough to formulate neg-
ative results showing that the mentioned properties are not
preserved without further stipulations. First, we provide a
trivial Example 3 showing that the decomposability prop-
erty of the initial theory can be easily lost under progression.
This example is given rather as a simple illustration of pro-
gression for readers new to this notion. Next, we show that
∆–inseparability of components of initial theoryDS0 can be
easily lost when fluents are present in ∆ (Example 4). These
observations hold already for local-effect BAT s and follow
from the fact that after progression some new information
from SSAs can be added to initial theory which spoils its
component properties. We only need to provide a combina-
tion of an initial theory with a set of SSAs appropriate for
this purpose.
Example 3 (Decomposability lost under progression)
Consider a basic action theory D with {F,A, c1, c2} ⊆
sig (D), where F is a ternary fluent, A is a binary action
function, and c1, c2 are object constants. Let the theory Dss
consist of the single axiom
F (x, y, do(a, s))↔ (a=A(x, y) ∨ F (x, y, s) ),

and let the initial theory DS0 consist of two formulas
Taut(c1) and Taut(c2), which are tautological sentences
in signature {c1} and {c2}, respectively. Clearly, DS0 is ∅–
decomposable theory. On the other hand, progression DSα

of DS0 wrt action α = A(c1, c2) is equivalent to the theory
consisting of the ground atom F (c1, c2, do(α, S0)). This can
be verified following Definition 5 directly, or by Proposition
5, since D is local-effect. Anyway, it is easy to check that
DSα

(S0/Sα) (and DSα
, as well) is not ∆–decomposable

theory (for any ∆).
For a signature ∆, with S0 ∈ ∆, and a unary action A(c),

we now give an example of a local-effect BATD with an ini-
tial theory DS0 ∆–decomposable into finite ∆–inseparable
components, such that progression DSα

(S0/Sα) of DS0 wrt
A(c) (with term Sα substituted with S0) is finitely axiomati-
zable and ∆–decomposable, but the decomposition compo-
nents are no longer ∆–inseparable.
Example 4 (∆–inseparability is lost if a fluent is in ∆)
Consider a BAT D with {F, P,Q,R,A, b} ⊆ sig (D),
where F is a fluent, P,Q are unary predicates,R is a binary
predicate, A is a unary action function, and b is an object
constant. Let ∆ = {F,R, S0} and define the sub-theories
of D as follows:
• Dss = {F (x, do(a, s)) ↔ (a = A(x)∧ P (x)∧ Q(d) ∨

F (x, s) )};
• DS0 = D1 ∪ D2, with

– D1 = {Taut(F,R, S0, b),¬F (x, S0)}, where b is a
constant and Taut(F,R, S0, b) is a tautological for-
mula in the signature {F,R, S0, b}, uniform in S0,

– D2 = {P (x)→ ∃y(R(x, y) ∧ P (y)), ¬F (x, S0)}.
Let ∆ = {F,R, S0}. By the syntactic form, DS0 is ∆–

decomposable: we have DS0 = D1 ∪ D2, sig (D1) ∩
sig (D2) = ∆, sig (D1) \∆ = {b}, and sig (D2) \∆ =
{P}. It is also easy to check that D1 and D2 are ∆–
inseparable.

Note thatDss |= F (x, do(A(c), S0))↔ (x = c)∧P (c)∧
Q(d) ∨ F (x, S0), the result of substitution of ground action
α = A(c) and situation constant S0 into SSA. As DS0 |=
¬F (x, S0), we have Dss ∪ DS0 |= F (c, do(A(c), S0)) ↔
P (c) ∧Q(d); denote the last formula by ϕ.

By Proposition 5 it is easy to verify that the union of
{Taut(F,R, S0, b)} and D′2 = (D2 \ {¬F (x, S0)}) ∪
{ϕ, x 6= c → ¬F (x, do(A(c), S0))} is a progression
(DSα

) of DS0 wrt A(c). By the syntactic form, DSα
(S0/Sα)

is ∆–decomposable theory. On the other hand, we have
ϕ |= F (c, do(A(c), S0)) → P (c), thus D′2(S0/Sα) |=
{F (c, S0) → ∃yR(c, y), F (c, S0) → [∃y∃zR(c, y) ∧
R(y, z)], . . .}, and hence D′2(S0/Sα) entails the same in-
finite set of formulas, where c is replaced by an existentially
quantified variable. By compactness, this set is not finitely
axiomatizable by formulas of first order logic in signature
∆ and it is not hard to verify thatDSα

(S0/Sα) can not have
a decomposition into finite ∆–inseparable components.

We note that the example is based on the observation
about finite non-axiomatizablity used in the literature on
DLs (e.g., see Section 3.2 in (Lutz and Wolter 2009)).
There is a plenty of flexibility to formulate similar examples
with help of non-tautological formulas which syntactically
“bind” symbols F,R, S0, b in theoryD1. The given example
motivates the following definition.



Definition 6 (Fluent–free signature) A signature ∆ is
called fluent–free if no fluent is contained in ∆.

To formulate the theorem below we let F denote the set
of all fluents. Essentially, the conditions of the theorem are
designed to guarantee componentwise computation of pro-
gression for a decomposable initial theory. Let a finite set
Dss of the SSAs be syntactically divided into the union of
|I| sub-theories sharing some fluent-free signature ∆1 (that
may include actions, static predicates, and object constants).
Also, let the initial theory DS0 be ∆2–decomposable, for a
fluent-free signature ∆2, into |J | components, and the sub-
theories of Dss be aligned with the components of DS0 via
syntactic occurrences of fluents.
Theorem 1 (Preservation of components in local-effect D)
Let D be a local-effect BAT , with DS0 an initial theory
in first-order logic. Let ∆1, ∆2 be fluent-free signatures,
do 6∈ ∆1, and α = A(c̄), be a ground action term. Denote
∆ = ∆1 ∪ ∆2 ∪ {c1, . . . , ck}, if c̄ = 〈c1, . . . , ck〉, and
suppose the following:
• sig (Dss) ∩ F ⊆ sig (DS0);
• Dss is the union of theories {Di}i∈I , with sig (Dn) ∩
sig (Dm) ⊆ ∆1 ∪ {do} for all n,m ∈ I 6= ∅, n 6= m;

• DS0 is ∆2–decomposable into finite components
{D′j}j∈J uniform in S0;

• for every i ∈ I , there is j ∈ J such that sig (Di) ∩
sig (DS0) ⊆ sig (D′j).

Then DSα
(S0/Sα) is ∆–decomposable. If the components

{D′j}j∈J are pairwise ∆–inseparable, then so are the com-
ponents ofDSα

(S0/Sα) in the corresponding decomposition.

We note that the proof of the theorem uses Proposition 5
and the component properties of forgetting from Section 3.
SSAs can be grouped into |I| components by drawing a
graph with fluent names as vertices, and an edge from the
fluent on the left-hand-side of each SSA going to each flu-
ent occurring on the right-hand-side of the same SSA. Simi-
larly, it is easy to check the last condition in Theorem 1 that
guarantees alignment of groups of axioms in SSAs with de-
composition components of DS0 . In the above conditions,
observe that if an action A occurs in active position of SSAs
from two different sub-theories of Dss, then computing pro-
gression may involve forgetting in two corresponding com-
ponents ofDS0 and potentially cause occurrence of common
∆1–symbols in the components of progression. A practi-
cally important class of BAT s for which this interference
can be avoided is described in the corollary below. Note the
first condition in the corollary which yields that every action
mentioned in BAT can have effect on fluents only from one
component of Dss.
Corollary 2 (Strong preservation of components ) For
every ground action term α=A(c̄), where c̄= 〈c1, . . . , ck〉,
in the conditions and notations of Theorem 1, if:
• no action function is in ∆1,
• whenever A is in active position in an SSA for a flu-

ent F and F ∈ sig (D′j) for some j ∈ J , we have
{c1, . . . , ck} ⊆ sig (D′j),

then DSα
(S0/Sα) is ∆2–decomposable into ∆2–insepara-

ble components.

The corollary obviously remains true if the first condition
is replaced with the simple requirement: ∆1 ⊆ ∆2.

Example 1 (continuation). Note that the BAT consid-
ered in the example satisfies the conditions of the corol-
lary with signatures ∆1 = ∅ and ∆2 = {Block, S0}. The
theory Dss is a union of two theories, with the intersec-
tion of signatures equal to {do}. As already noted in the
example, the initial theory DS0 is ∆2–decomposable into
∆2–inseparable components. Now, consider the ground ac-
tion α = move(A,B,C). By Corollary 1 and Proposition
5, in order to compute the theory DSα

(S0/Sα) (the pro-
gression of DS0 wrt α, with the term Sα substituted with
S0), it suffices to forget the ground atoms On(A,B, S0)
and Clear(C, S0) in the first decomposition component of
DS0 and update it with the ground atoms On(A,C, S0) and
Clear(B,S0). The second component of DS0 remains un-
changed. One can check that DSα

(S0/Sα) is the union of
the following theories:

ϕ ∧ ψ ∧ (x 6= C)→ Clear(x, S0)
ψ → Block(x)
Block(B)∧Block(C)∧On(A,C,S0)∧ ¬On(A,B,S0)
Clear(A,S0) ∧ Clear(B,S0) ∧ ¬Clear(C, S0)

and
(Top(x, S0) ∨ Inheap(x, S0))→ ¬Block(x)
∃x Block(x),

where ϕ and ψ, respectively, stand for
(x 6= B) ∧ ¬∃y ((y 6= A ∨ x 6= B) ∧On(y, x, S0)),
(x = A) ∨ ∃y ((x 6= A ∨B 6= y) ∧On(x, y, S0)).

The theoryDSα(S0/Sα) is ∆2–decomposable by the syn-
tactic form and there is no need to compute a decomposi-
tion again after progression. Corollary 2 guarantees that the
obtained components are ∆2–inseparable and that we can
compute progression for arbitrary long sequences of actions
while preserving decomposability of DSα(S0/Sα) and in-
separability of its components.

5 Discussion
As a rule, decomposing a given theory wrt a signature hap-
pens to be of the same complexity as entailment in the un-
derlying logic. The tasks of computing ∆–decompositions
and checking for inseparability is a related, but different on-
going research topic, e.g., addressed in the literature on de-
scription logics, see (Konev et al. 2010; 2009) presenting
widely-applicable results. We have noted natural sufficient
conditions for the two component properties of theories, de-
composability and inseparability, to be preserved under pro-
gression of local-effect theories. This has required a new un-
derstanding of progression and the related notion of forget-
ting wrt modularity of theories. Given a decomposition of
the initial theory into inseparable components, the rest of
the conditions in the main results, Theorem 1 and Corollary
2, are purely syntactical, easy to check, and natural to hold,
judging from experience of formalizing composite domains
in the situation calculus. The important observation behind
these results is that in order to compute progression of an
initial theory wrt an action having effects only on fluents
from one decomposition component, it suffices to compute
forgetting only in this component.
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