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Abstract. This paper studies model checking for the modal logic of
knowledge and linear time in distributed systems with perfect recall.
It is shown that this problem (1) is undecidable for a language with
operators for until and common knowledge, (2) is PSPACE-complete
for a language with common knowledge but without wuntil, (3) has non-
elementary upper and lower bounds for a language with until but without
common knowledge. Model checking bounded knowledge depth formulae
of the last of these languages is considered in greater detail, and an
automata-theoretic decision procedure is developed for this problem, that
yields a more precise complexity characterization.

1 Introduction

Modal logics have been found to be convenient formalisms for reasoning about dis-
tributed systems [MP91], in large part because such logics enable automated verifica-
tion by model checking of specifications [CGP99]. This involves constructing a model of
the system to be verified, and then testing that this model satisfies a formula specifying
the system. Frequently, the model of the system is finite state, but model checking of
infinite state systems is an emerging area of research.

Epistemic logic, or the logic of knowledge [HM90,FHMV95], is a recent addition
to the family of modal logics that have been applied to reasoning about distributed
systems. This logic allows one to express that an agent in the system knows (has
the information) that some fact holds. This expressiveness is particularly useful for
reasoning about distributed systems with unreliable components or communication
media. In such settings, information arises in subtle ways, and it can be difficult to
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express the precise conditions under which an agent has certain knowledge. On the
other hand, the behavior of agents is often a simple function of their state of knowledge.
Examples of knowledge-level analysis of systems illustrating this claim are given in
[FHMV95].

A topic of interest for logics of knowledge is the extent to which they (like other
modal logics) allow for automated analysis of designs and specifications. Combinations
of temporal and epistemic logics are especially significant, since a frequent concern in
applications is how knowledge changes over time. A number of papers have studied
the problem of model checking logics of knowledge and time in finite state systems
[HV91,FHMV95,Var96]. However, much of the literature on applications of logics of
knowledge assumes that agents have perfect recall, i.e., remember all their past states,
and this results in infinite state systems. Model checking of the logic of knowledge with
respect to the perfect recall semantics has been considered by van der Meyden [Mey98],
but this work deals with a language that does not include temporal operators.

In the present paper, we study model checking a combined logic of knowledge and
linear time in synchronous systems with perfect recall. Like van der Meyden [Mey98],
we assume that agents operate in a finite state environment, but we extend this frame-
work to allow Biichi fairness constraints. Since the perfect recall assumption generates
an infinite Kripke structure from the environment, the problem we study is an example
of infinite state model checking.

Formal definitions of synchronous systems with perfect recall and the model check-
ing problem are presented in Section 2. While model checking a logic with operators for
knowledge and cormmon knowledge is decidable [Mey98], the addition of the linear time
temporal operators nezrt and until makes the problem undecidable (Section 3). How-
ever, decidability is retained for two fragments of this extended language: the fragments
in which we (1) omit the until operator (this case is PSPACE complete) or (2) omit
the common knowledge operator (this case is non-elementary). The latter result may
be obtained by means of reductions to and from various powerful logics already known
to be decidable (weak S1S and Chain Logic with an equal level predicate [Tho92]).
However, we also present (in Section 4) an alternative proof of this latter result, using
novel automata-theoretic constructions, that provides a more informative complexity
characterization. Section 5 discusses related work and topics for further research.

2 Basic Definitions

This section further develops the definition of environments of [Mey98] by adding
fairness constraints, and defines the model checking problem we study.

Let Prop be a set of atomic propositional constants, n > 0 be a natural number
and O be a set. Define a finite interpreted environment for n agents to be a tuple E of
the form (S, I,7T,0,w, «a) where the components are as follows:

1. S is a finite set of states of the environment,

2. I is a subset of S, representing the possible initial states,

3. T C S?% is a transition relation,

4. O is a tuple (O, ...,0y) of functions, where for each ¢ € {1..n}

the component O; : S — O is called the observation function of agent i,
. S — {0,137 is an interpretation,

6. « C S is an acceptance condition.

Intuitively, an environment is a finite-state transition system where states encode values
of local variables, messages in transit, failure of components, etc. For states s,s’ the
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relation sT s’ means that if the system is in state s, then at the next tick of the clock it
could be in state s'. If s is a state and i an agent then O;(s) represents the observation
agent ¢ makes when the system is in state s, i.e., the information about the state that
is accessible to the agent. The interpretation maps each state to an assignment of truth
values to the atomic propositional constants in Prop. The acceptance conditions are
standard Biichi conditions which are used to model fairness requirements on evolutions
of the environment.

A trace of an environment E is a finite sequence of states s¢si ... S, such that
so € I and s; T sj41 for all j < m. A run of an environment E is an infinite sequence
r: N = S of states of E such that every finite prefix of r is a trace of E and there exists
a state s € a that occurs infinitely often in r. We say that the acceptance condition
of E is trivial if « = S. A point of E is a tuple (r,m), where r is a run of £ and m
a natural number. Intuitively, a point identifies a particular instant of time along the
history described by the run.

Individual runs of an environment provide sufficient structure for the interpretation
of formulae of linear temporal logic. To interpret formulae involving knowledge, we use
the agents’ observations to determine the points they consider possible. There are
many ways one could do this. The particular approach used in this paper models a
synchronous perfect-recall semantics of knowledge. Given a run r of an environment
for n agents with observation functions O, ..., Oy, we define the local state of agent ¢ at
time m > 0 to be the sequence r;(m) = O;(r(0)) ... Oi(r(m)). That is, the local state of
an agent at a point in a run consists of a complete record of the observations the agent
has made up to that point. These local states may be used to define for each agent i a
relation ~; of indistinguishability on points (r,m), (r',m’) of E, by (r,m) ~; (r',m') if
ri(m) = rj(m'). Intuitively, when (r,m) ~; (r',m’), agent i has failed to receive enough
information at these points to determine whether it is in one situation or the other.
Clearly, each ~; is an equivalence relation. The use of the term “synchronous” above
reflects the fact that if (r,m) ~; (r',m'), then we must have m = m'. The relations ~;
will be used to define the semantics of knowledge for individual agents. We will also
consider an operator for common knowledge, a kind of group knowledge, for which we
use another relation. If G C {1..n} is a group of agents (i.e., two or more) then we
define the relation ~¢ on points to be the reflexive transitive closure of the union of
all indistinguishability relations ~; for i € G, i.e., ~g = (Uiec ~i)".

We will be concerned with model checking a propositional multi-modal language
for knowledge and linear time based on a set Prop of atomic propositional constants,
with formulae generated by the modalities O (next), i (until), a knowledge operator
K; for each agent ¢ € {1..n}, and a common knowledge operator C¢ for each group
of agents G C {1..n}. Formulae of the language are defined as follows: each atomic
propositional constant p € Prop is a formula, and if ¢ and ¢ are formulae, then so are
-0, p AN, Op, eU Y, K;p and Cayp for each i € {1..n} and group G C {1..n}.
We write L1, u,k,...,k,,,0} for the set of formulae. We will refer to sublanguages of
this language by a similar expression that lists the operators generating the language.
For example, Lk, ... k,,c} refers to the language of the logic of knowledge (without
time). As usual, we use the abbreviations ¢y for true U ¢, and Oy for =O-p.

The semantics of this language is defined as follows. Suppose we are given an
environment E with interpretation . We define satisfaction of a formula ¢ at a point
(r,m) of a run of E, denoted E, (r,m) = ¢, inductively on the structure of ¢. The
cases for the temporal fragment of the language are standard:

E,(r,m)Ep if 7(r(m))(p) = 1, where p € Prop,



1 A2 ifE,(r,m)':(pl andE,(r,m)|=<pz,

7 if not E, (r,m) = ¢,

@ if E,(r,m+1) = ¢,

1 U o if there exists m’" > m such that E, (r,m") = ¢2 and
E,(r,m') E ¢1 for all m' with m < m’ <m”.

The semantics of the knowledge and common knowledge operators is defined by

E,(r,m) E K;pif E,(r',m') = ¢ for all points (r',m') of E
satisfying (r',m') ~; (r,m)

E,(r,m) = Cayp if E,(r',m’) = o for all points (r',m') of E
satisfying (r',m') ~q (r,m)

This definition can be viewed as an instance of the general framework for the semantics
of knowledge proposed in [HM90]. Intuitively, an agent knows a formula to be true if
this formula holds at all points that the agent is unable to distinguish from the actual
point. Common knowledge may be understood as follows. For G a group of agents,
define the operator Eg, read “everyone in G' knows” by Egp = A, Kip. Then Cap
is equivalent to the infinite conjunction of the formulae EX¢ for k > 1. That is, ¢ is
common knowledge if everyone knows ¢, everyone knows that everyone knows ¢, etc.
We refer the reader to [HM90,FHMV95] for further motivation and background.

We may now define the model checking problem we consider in this paper. Say
that a formula ¢ is realized in the environment E if for all runs r of E, we have
E,(r,0) = ¢. We are interested in the following problem, which we call the realization
problem: given an an environment E and a formula ¢ of a language £, determine if ¢
is realized in E. We will consider this problem with respect to several sublanguages of
LLOU Ky, K, C}-

3 Complexity Bounds

We now present a number of results on the complexity of the realization problem for
various fragments of the language, and briefly sketch their proofs. First, we consider
the most expressive language L{o u x,,....k.,c}, containing all the modal operators
we have defined. Here the outcome of our investigation is negative:

Theorem 1. There exist a class of finite environments for two agents with trivial
acceptance conditions and a formula of L{o, u,k,,....k,,c} such that it is undecidable
whether the formula is realized in a given environment of this class.

That is, even a restricted case of the realization problem for £; y k,,....k,,c} 18
undecidable. The proof of Theorem 1 employs ideas from [Mey98] concerning model
checking at a trace for the language Lix, .. k,,c}. Stated in terms of our current
terms and notations, this problem is to determine, given an environment E with a
trivial acceptance condition, a trace t of E and a formula ¢ of L{k, .. k. cy, whether
E, (r|t]) | ¢ for all runs r of E extending t.* This model checking problem was studied
in [Mey98] for both the synchronous and an asynchronous perfect recall semantics of
knowledge. The following two results are proved in [Mey98].2

1 1t can be shown that if r and ' are two runs extending t and ¢ € Lik, .. Kk,,C}

then E, (r, [t]) |= ¢ iff B, (', [t]) = .
% In both these results {1,2} is a set of agents while p is a propositional constant.



Theorem 2. With respect to the synchronous perfect recall semantics, the problem of
model checking at a trace is in PSPACE for the language Lk, ...k, ,c}- 1t is PSPACE
hard for the fized formula Ct1 21p.

.....

Theorem 3. There exists an environment for two agents such that with respect to the
asynchronous perfect recall semantics, the problem of model checking the fived formula
Ct1,2yp at a given trace of the environment is undecidable.

The proof of the lower bound in Theorem 2 involved showing that the synchronous
semantics can simulate PSPACE computations, with Turing machine configurations
represented as traces and the step relation on configurations represented by the com-
position ~; o ~». The common knowledge operator then allows us to represent the
transitive closure of the step relation, enabling a formula to refer to the result of a
PSPACE computation. The proof of Theorem 3 used a similar representation of Tur-
ing machine computations, but first uses asynchrony to “guess” the amount of space
required by the computation. To prove Theorem 1 we reuse this approach to repre-
sentation of Turing machine computations. However, instead of asynchrony, we now
use the temporal operators to refer to a sufficiently long configuration. As before, we
then describe the outcome of the computation starting at that configuration using the
common knowledge operator.

In the language £;0 u k, ..., ik,.,c} We have two operators, the until operator and the
common knowledge operator, whose semantics allows an arbitrary reach through two
orthogonal dimensions in our semantic structures. In other contexts, these operators
are individually tractable, e.g., the validity problem for both the logic of knowledge
and common knowledge Lk, .. x,,c; and temporal logic £;5 ) are known to be
decidable. It therefore makes sense to study the result of eliminating one of these
operators from our language. For the language obtained by excluding the until operator
we have:

Theorem 4. The realization problem for Lo k,,...k,,c} 15 PSPACE complete.

.....

The proof of Theorem 4 is similar to the proof in [Mey98] of Theorem 2, and
exploits the fact, for checking realization of a formula ¢, instead of the infinite set of
runs we can confine our attention to the finite set of traces of length at most |¢|, which
is, intuitively, the furthest that the temporal operators can reach. This set of traces has
exponentially many elements, but since each trace is of linear size we may do model
checking within polynomial space using techniques of [Mey98].

For the language without common knowledge, some new techniques are required.
Here we obtain the following.

Theorem 5. The realization problem for Lio u,k,,...,k.} 5 decidable, with
non-elementary upper and lower bounds.

The proof for both the upper and the lower bound can be obtained by reductions
from variants of SnS, the Monadic Second Order Logic of n Successors [Tho92], which
is interpreted over the infinite tree {1..n}". The proof of the lower bound in Theorem 5
is by a reduction from WS1S, a version of S1S in which the second order quantifiers are
restricted to range over finite sets. It is known [Mey74] that WS1S is decidable with
lower bound non-elementary in the size of the formula. The upper bound result can
be established by a translation to the problem of checking the validity of a formula of
Chain Logic with the Equal Level predicate [Tho92] (or CLE) on tree structures. The



logic CLE is an extension of a restriction of SnS. Chain Logic (CL) is obtained from
SuS by restricting the interpretation of the second order quantifiers to sets that are
chains, i.e., are totally ordered by the prefix relation. The logic CLE is obtained by
adding to this restriction of SnS the equal level predicate, defined on u,v € {1..n}"
by E(u,v) if |u| = |v|. This approach to the upper bound for the realization problem
for £L10 u,k,,...,k,} from this proof is rather indirect, however, as decidability of CLE
is proved by Thomas [Tho92] using a translation to S1S. The logic S1S in turn is
known to be decidable using automata theoretic arguments [Biic60]. Thus, we have
gone from automata (in the definition of environments) to logic, and back to automata.
In the following section we present a proof of Theorem 5 that is based directly on
automata theoretic constructions, and which yields a more informative complexity
characterization.

4 An algorithm for bounded knowledge depth formulae

Our more informative characterization of the complexity of realization for the language
LiO,u,K1,...,K,} 18 cast in terms of the knowledge depth of formulae, i.e., the maximal
depth of nesting of knowledge operators in a formula. For example, depth(K1(QK2(gA
K>r))) = 3. Our approach to the decidability result will exploit k-trees, a data structure
that has previously been used in the literature [Mey98] to represent depth k formulae of
Lik,,...,k,} holding at a point of an environment. We show in this section that k-trees
also encode enough information to interpret formulae of L~ . x,,... k,} With knowl-
edge depth at most k. Throughout this section we assume a fixed finite environment
E. We assume without loss of generality that every trace of E can be extended to a
run of E.3

4.1 Trees

Intuitively, a k-tree, for k > 0, is a type of finite tree of height k£ in which vertices are
labelled by states of the environment and edges are labelled by agents. It is convenient
to represent these trees as follows.* For numbers k > 0 we define by mutual recursion
the set Ty of k-trees over E, and the set Fy of forests of k-trees over E. Define 7o to
be the set of tuples of the form (s,0,...,0) where s is a state of E and the number of
copies of the empty set @ is equal to the number of agents n. Once 7y has been defined,
let Fi, be the set of all subsets of 7. Now, define 741 to be the set of all tuples of the
form (s,Un,...,Uy), where s is a state and U; is in F, for each ¢ € {1..n}. We denote
Ukso Tk by T.

Intuitively, in a tuple (s, Ui, ..., Uy), the state s represents the actual state of the
environment, and for each ¢ € {1..n} the set U; represents the knowledge of agent
i. Identifying a 0-tree (s,0,...,0) with the state s, note that each component U; in a
1-tree is simply a set of states: intuitively, those states agent ¢ considers possible. For

3 An environment not satisfying this condition can easily by modified (without chang-
ing its realization properties) by eliminating states that do not belong to any run.

* The definitions we give here are (for reasons of clarity and space) a slight simplifica-
tion of those in [Mey98], which add some complications to enable k-trees to be used
to interpret formulae of alternation depth at most k, a slightly larger class than the
class of formulae of knowledge depth at most k.



higher k, the set U; represents agent ¢’s knowledge both about the universe and other
agents’ knowledge, up to depth k.

The elements of 7; correspond in an obvious way to trees of height k, with edges
labelled by agents and nodes labelled by states. If w = (s, U, ..., Uy) we define root(w)
to be the state s. If w' is an element of U;, then we say that w' is an i-child of w.
When w € 7o the labelled tree corresponding to w consists of just the root, labelled
root(w). The tree corresponding to w € Ti4+1 has root labelled with root(w), and for
each i-child w' € T; of w there is an i-labelled edge from the root to a vertex at which
the labelled subtree is that corresponding to w'. The following result characterises Cy,
the number of k-trees over E.

Lemma 1. Let k > 0 be a natural number and E be a finite environment for n agents
with [ states. Then Cy, is not greater than exp(nxl, k)/n , where exp(a,b) is the function
defined by exp(a,0) = a and exp(a,b+ 1) = a2°P@),

For each k > 0 we may associate with each point (r,m) of E a k-tree Fj(r,m),
which captures some of the structure of the indistinguishability relations of the envi-
ronment around that point. We proceed inductively. For k = 0 we define Fy(r,m) =
(r(m),0,...,0). For k > 0 we define Fy(r,m) = (r(m),Us,...,Un), where for each
agent ¢ we have U; equal to the set of k — 1-trees Fj,_;(r', m’) where (r',m’) is a point
of E with (r',m') ~; (r,m).

For each point (r,m) of E let 7(r,m) be the trace r(0) ...r(m). It is not difficult to
see that for all £ > 0 and for all points (r,m) and (r',m’) with 7(r,m) = 7(r',m’) we
have Fy(r,m) = Fi(r',m’'). Thus, we may also view F}, as a function mapping traces
of E to k-trees, and write Fj(7) where 7 is a trace of E. Note that we exploit the fact
that every trace may be extended to a run here.

We now recall from [Mey98] some functions that may be used to update k-trees.
These functions were used in [Mey98] to provide an algorithm for the problem of model
checking at a trace (see above). We will use these functions below to define a sequence
of Biichi automata for the realization problem. Let S, 7" and O be the set of states, the
transition relation, and the set of observations of the environment E, respectively. We
define for each number & > 0 the function Gg : T X S — Tx. The definition of Gy will
be by mutual recursion with the functions Hy; : Fx X O — Fj, where ¢ € {1..n} and
k > 0. Intuitively, if agent ¢’s state of knowledge (to depth k) is represented by the the
set of k-trees U, then H}, ;(U,0) represents the agent’s revised state of knowledge after
it makes the observation o € 0. We define Go(w, s) = (s,0,...,0). Once G, has been
defined, we define for each ¢ € {1..n} the function Hy; by taking Hy ;(U, 0) to be the
set of k-trees G (w, s) where w € U and O;(s) = o and root(w)T's, i.e., there exists a
transition of E from root(w) to s. Using the functions Hy ; we may now define Gyq1
by setting Gr+41({(s,U1,...,Un},s") to be (s', Hy 1[U1,01(s")], ..., Hi,n[Un, On(s")])-

For our definitions (which are a slight variant of those in [Mey98]), we may establish
the following theorem, essentially the same as a result proved in [Mey98].

Theorem 6. For each k > 0, and for every finite trace 7-s of E with final state s and
prefiz T, we have the incremental update property Fr(7-s) = Gr(Fi(7),s).

The definition of the function Fj above is not effective, ranging over the possibly
infinite set of runs of E. In the case of traces of length 0 is it easily seen how to make
it effective, obtaining functions that represent agents’ knowledge in the initial states
of the environment as a k-tree. We inductively define mappings fi : I — 7 for k > 0.
In the base case, we put fo(s) = (s,0,...,0). For k > 0 we define fry1(s) to be the
k + 1-tree with root s and an i-child fx(s") for each initial state s' with O;(s") = O;(s).



Lemma 2. For all runs v of E we have Fi(r,0) = fi(r(0)).

Note that, here again, we rely on the fact that every trace (of length 0) can be
extended to a run.

4.2 An automaton theoretic characterization

We now give an automata-theoretic characterization of realization that forms the basis
for the algorithm discussed below.

We begin by defining a type of Biichi automata [Biic60]. The specific variety of
automata we need are tuples of the form A = (S,I,T, a), where S is a finite set of
(control) states, I C S is the set of initial states of the automaton, T C S? is a a
transition relation, and @ C S is its acceptance condition.® An ezecution of A is an
infinite sequence e : N — S of states of S such that for all m > 0 we have e(m)Te(m+1).
An execution e is said to be properly initialised if e(0) € I. An execution is said to
be fair if some state in « occurs infinitely often in the execution. A fair, properly
initialised execution is called accepting. We also call accepting executions runs. The
language accepted by the automaton A is the set £(A) of all runs of A.

Given the environment F fixed above, we now define an infinite sequence of Biichi au-
tomata Ao(E),...,Ax(E),.... Each automaton A (E) defines a language consisting of
infinite sequences of k-trees over that environment. These automata will be crucial to
the algorithm we develop.

Let E be (S,I,T,0,m,a) and k > 0. Define Ax(E) = (Sk,Ir, Tk, ar) to be the
Biichi automaton with

1. Sk equal to the set 7 of k-trees over E,

2. initial states Ij equal to the set of k-trees fi(s) where s € I,

3. transition relation T} defined by wTjw’ when there exists state s € S

such that root(w)Ts and w’' = Gy (w, s),

4. acceptance condition oy, defined by ay = {w € S : root(w) € a}.

Since Ay(E) is a Biichi automaton on infinite words, the notions of an execution, a
fair execution, a properly intialised execution and a run of Ay (F) are meaningful. We
define a projection operation Proj, mapping runs r of the automata Ay (E) to infinite
sequences of states of E, by Proj,(r)(m) = root(r(m)). Conversely, there exists a lift
operation Lift, mapping runs r of the environment E to sequences of k-trees, defined
by Lift, (r)(m) = Fi(r(0)...r(m)). The proof of the following is straightforward from
the definitions, Theorem 6 and Lemma 2:

Lemma 3. For each k > 0 the mappings Proj, and Lift, are inverse functions; Proj,
maps the set of runs of Ax(E) onto the set of runs of E while Lift, maps the set of
runs of E onto the set of runs of Ax(E).

We now show that the automata Aj(F) adequately capture the depth k formulae of
Li0,u,K;,...,k,} holding at points of E. To do so, we define for each k a relation |=p
between points in executions of Ay(E) and formulae of knowledge depth < k. The
definition of = is by induction on k, as follows. For the basic propositions and the
temporal operators, the definition is much like the standard semantics. Thus, for an
execution e of Ay (E) and m > 0,

5 These are slightly less general than usual, in that the input alphabet and control
states coincide, and the transition function has a specific form that is derived from
the transition relation.



E,(e,m) Erp if 7(root(e(m)))(p) = 1, where p € Prop,

E:(eym) 'zk p1 A\ @2 ifE:(eam) 'zk P1 and E:(eym) 'zk P2,

E, (67 m) ':k P if not E, (67m) ':k P

E,(e,m) x Op if B, (e,m+1) =k o,

E,(e,m) |Er p1 U o2 if there exists '’ > m such that E, (e, m") |Er o2 and

E,(e,m') Ek o1 for all m' with m <m' <m”.

The interesting case concerns the knowledge operators, where we make use of the fact
that we are dealing with a sequence of k-trees. It is convenient to first define =4 not
on points, but on k-trees w, for formulae K;p of L y k, ...k, of knowledge depth
at most k, by

E w ':k K;yp if for all k& — 1-trees w’ that are i-children of w, and for all fair
executions e of Ay_1(E) such that e(0) = w', we have E, (e,0) Er_1 .

Note that we consider fair executions e rather than runs in this definition because w’
is not necessarily an initial state of Ax_1(E). We then define =4 on points by

E,(e,m) =i Kip if E,e(m) = Kigp.

The following result establishes a connection between the relations =5 and the
semantics of £{0 u, k,,....k,} il an environment E.

Lemma 4. For every natural number k > 0, every formula ¢ in Lio u k... .kn} Of
knowledge depth at most k, for every environment E, every run r of E and m > 0 we

have E, (T7 m) ': 4 l.ﬁ‘ E, (Llftk(r))m) ':k P
This equivalence forms the basis for our decision procedure for realization.

4.3 The algorithm

We are now in a position to present the algorithm for the realization problem for
Lio,u,k,,...,k,}- Let us first note that in the special case where depth(yp) = 0, i.e.,
formulae not containing the knowledge operators, testing realization amounts to a
problem of temporal logic to which well-known techniques may straightforwardly be
applied (see below). To generalize to formulae of greater depth, we show how to decide
the relation E,w = K;p. We achieve this by factoring formulae into their temporal
and knowledge components. To represent the temporal components, define a contezt to
be just like a formula of £L;~ y k;....,x,}, but with additional propositional variables
from a special separate countable set Var. If 3 is a context then we denote by Var(3)
the set of all variables which occur in 8. A pure temporal context is a context not
containing any occurrences of the knowledge operators.

We separate the temporal and knowledge aspects of formulae by means of the
following way of “exploding” a formula. Define a puff to be a finite sequence of pairs
(seto, mapy) . .. (setm, map,,) where the set; are finite sets of pure temporal contexts,
such that Var(seto) =0, and for j # j' the sets Var(set;) and Var(set; ) are disjoint,
and the map; are mappings map; : Var(set;) — {Ki,...,K,} x setj—1. (Thus,
map, = 0.) The result ¢ - map; of applying a mapping map; to a context ¢ is defined
to be the context obtained by simultaneously substituting for each occurrence in ¢ of
a variable z € Var(set;) the formula K;v such that map;(z) = (Ki,v). A puff is said
to be a complete separation of a formula ¢ if set,, contains a single context 3, such
that ¢ = 8- map,, - ... - map,. Let cep be a function from formulae to puffs such that
cep(vp) is a complete separation of ¢. We call the unique pure temporal context 3 in
the top level set,, of a complete separation of ¢ the temporal skeleton of .



Ezample 1. The puff

seto = {p} mapy = 0
set1 = {Qw, Oz} map, : x — (K2,p)
seto = {yU z} map, : y — (K1, Ox)

mapy : z — (K, 0Oz)

is a complete separation of the formula (K1 (O K2p)U (K2OK>p). The temporal skeleton
of this formula is y U z.

A waluation is a partial mapping v : Var — P(T). This associates with each
propositional variable the set of trees at which it is true. For each valuation v one
can extend the relation =; on formulae to a relation =} on temporal contexts by
simply adding the superscript v to |, throughout the clauses above, and by adding
the following clause:

— E,(e,m) =} x, where x € Var is a variable, iff e(m) € v(z).

A valuation v is said to be consistent with a puff (seto, map,) ... (setm, map,,) if for
each j € {1..m}, every variable x € Var(set;) and every w € Tj, if map,(v) = (K, B)
then w € v(z) iff E,w =] K.

Lemma 5. Suppose ¢ is a formula of L{0 u,k,,...k,} of knowledge depth k. Let 3
be the temporal skeleton of p. Suppose that v is a valuation consistent with cep(p).
Then for all fair executions e of Ax(E) and for all m > 0, we have E, (e,m) [=x ¢ iff

E7 (67 m) 'zz /6'

By Lemma 4, to determine E, (r,m) = ¢ for formulae of depth ¢ it suffices to decide
E, (Lift,(r),m) =i ¢. The effect of Lemma 5 is to reduce the complicated recursion
through k-trees required to evaluate the latter to the problem E, (Lift(r),m) E§ 3,
whose determination involves only temporal steps.

Thus, we obtain the following approach to deciding realization: (1) represent a
formula as a puff, (2) construct a consistent valuation for the puff, (3) evaluate the
temporal skeleton of the formula with respect to this valuation and (4) check that
the skeleton is valid for all initial states. This approach is formalized in the algorithm
in Figure 1. By construction and in accordance with the definition of consistency,
the assertion “v is consistent with (seto, map,) ... (set;, map;)” is an invariant of the
loop of the algorithm. Combining this with the results above we conclude that the
algorithm is correct. As presented, the algorithm is not yet fully operational: we still
need to show how it is possible to compute [(] at steps 2(a) and 3. This can be done
in space polynomial in the size of Ax(E) and 3 using known techniques [SC85].

Theorem 7. The problem of determining if a formula ¢ of L1 u k, ... k,} 15 realized

in an environment E is decidable in space polynomial in |p| - exp(depth(p), O(|E|)).

5 Conclusion

It is interesting to note that for each of the languages we have considered, the com-
plexity we have obtained for the realization problem is the same as the complexity
obtained by Halpern and Vardi [HV88,HV89] for the validity problem. While there are



INPUT: a finite environment E and a formula ¢
OUTPUT: Y if ¢ is realized in E, N otherwise.

PROCEDURE:

1. Let k := depth(p) and suppose cep(p) = (seto, map,) ... (sety, map,).
Let v := 0.
2. For j:=0to k—1 do:
(a) For all B € setj, let [B] :=
{weT; : (e0) j B for every fair execution e of A;(E) with e(0) =w }.
(b) For all x € Var(setjt1), if map; . (x) = (K;,B),
let [z] := {w € Tj41: w’ € [B] for all i~children w' of w}.
(© Let v i= v U (Uyeyargoyy @ oD
3. For temporal skeleton § of the formula ¢ let [8] :=
{weTk : (e,0) ¢ B for every fair execution e of Ax(E) with e(0) =w }.
4. Ifwe [l for all w € Z; then output(Y) else output(N).

Fig. 1. An algorithm for realization

some commonalities in the proof techniques used, we are not aware of any straightfor-
ward reductions between the two problems.

The problem we have studied here, of checking whether a formula is realized in a
given environment, is closely related to a problem studied by van der Meyden and Vardi
[MV98]. This work also concerns the synchronous perfect recall semantics. They deal
with a notion of environment in which agents are able to choose their actions based
on their local state, and the choice of action determines the state transitions. They
consider the realizability question, of whether it is possible to decide the existence of
(and if so, construct) a protocol (a function from local state to actions) for an agent
such that running this protocol in a given environment generates a system realizing
a given specification in the logic of knowledge and time. By contrast with our results
in this paper, however, realizability is decidable only in the single agent case, even for
environments with trivial acceptance condition.

Model checking a logic of knowledge and time has also been studied by Clarke et al.
[CIM98] in the context of verification of cryptographic protocols. Their work assumes a
semantics of knowledge very different from ours, based on explicit computation rather
than the information theoretic notion we have studied. An interesting topic for further
research is the applicability of our results, or adaptations thereof, to verification of
cryptographic protocols.

Several dimensions of generalisation of our results are worth considering. In par-
ticular, it would be desirable to know if our results generalise to the case of languages
with past time or branching time operators — this generalisation is able to express the
problem of checking that a given finite state protocol implements a given knowledge
based program [FHMV95 FHMV97] in a given environment, in such a way that agents
operate as if they had perfect recall. A knowledge based program is a type of specifica-
tion that describes how an agent’s actions relate to its state of knowledge. Verification
of knowledge based programs for finite state definitions of knowledge has been shown
decidable by Vardi [Var96]. The perfect recall case remains to be addressed, although
the linear time case we have presented is already able to yield this result in the special



case of deterministic knowledge-based programs [MV98]. Also of interest is the com-
plexity of realization with respect to other natural definitions of knowledge, such as
the asynchronous perfect recall semantics.
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