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express the precise conditions under which an agent has certain knowledge. On theother hand, the behavior of agents is often a simple function of their state of knowledge.Examples of knowledge-level analysis of systems illustrating this claim are given in[FHMV95].A topic of interest for logics of knowledge is the extent to which they (like othermodal logics) allow for automated analysis of designs and speci�cations. Combinationsof temporal and epistemic logics are especially signi�cant, since a frequent concern inapplications is how knowledge changes over time. A number of papers have studiedthe problem of model checking logics of knowledge and time in �nite state systems[HV91,FHMV95,Var96]. However, much of the literature on applications of logics ofknowledge assumes that agents have perfect recall, i.e., remember all their past states,and this results in in�nite state systems. Model checking of the logic of knowledge withrespect to the perfect recall semantics has been considered by van der Meyden [Mey98],but this work deals with a language that does not include temporal operators.In the present paper, we study model checking a combined logic of knowledge andlinear time in synchronous systems with perfect recall. Like van der Meyden [Mey98],we assume that agents operate in a �nite state environment, but we extend this frame-work to allow B�uchi fairness constraints. Since the perfect recall assumption generatesan in�nite Kripke structure from the environment, the problem we study is an exampleof in�nite state model checking.Formal de�nitions of synchronous systems with perfect recall and the model check-ing problem are presented in Section 2. While model checking a logic with operators forknowledge and common knowledge is decidable [Mey98], the addition of the linear timetemporal operators next and until makes the problem undecidable (Section 3). How-ever, decidability is retained for two fragments of this extended language: the fragmentsin which we (1) omit the until operator (this case is PSPACE complete) or (2) omitthe common knowledge operator (this case is non-elementary). The latter result maybe obtained by means of reductions to and from various powerful logics already knownto be decidable (weak S1S and Chain Logic with an equal level predicate [Tho92]).However, we also present (in Section 4) an alternative proof of this latter result, usingnovel automata-theoretic constructions, that provides a more informative complexitycharacterization. Section 5 discusses related work and topics for further research.2 Basic De�nitionsThis section further develops the de�nition of environments of [Mey98] by addingfairness constraints, and de�nes the model checking problem we study.Let Prop be a set of atomic propositional constants, n � 0 be a natural numberand O be a set. De�ne a �nite interpreted environment for n agents to be a tuple E ofthe form hS; I; T; O; �; �i where the components are as follows:1. S is a �nite set of states of the environment,2. I is a subset of S, representing the possible initial states,3. T � S2 is a transition relation,4. O is a tuple (O1; : : : ; On) of functions, where for each i 2 f1 : : ngthe component Oi : S ! O is called the observation function of agent i,5. � : S ! f0; 1gProp is an interpretation,6. � � S is an acceptance condition.Intuitively, an environment is a �nite-state transition system where states encode valuesof local variables, messages in transit, failure of components, etc. For states s; s0 the



relation sT s0 means that if the system is in state s, then at the next tick of the clock itcould be in state s0. If s is a state and i an agent then Oi(s) represents the observationagent i makes when the system is in state s, i.e., the information about the state thatis accessible to the agent. The interpretation maps each state to an assignment of truthvalues to the atomic propositional constants in Prop. The acceptance conditions arestandard B�uchi conditions which are used to model fairness requirements on evolutionsof the environment.A trace of an environment E is a �nite sequence of states s0s1 : : : sm such thats0 2 I and sj T sj+1 for all j < m. A run of an environment E is an in�nite sequencer : N ! S of states of E such that every �nite pre�x of r is a trace of E and there existsa state s 2 � that occurs in�nitely often in r. We say that the acceptance conditionof E is trivial if � = S. A point of E is a tuple (r;m), where r is a run of E and ma natural number. Intuitively, a point identi�es a particular instant of time along thehistory described by the run.Individual runs of an environment provide su�cient structure for the interpretationof formulae of linear temporal logic. To interpret formulae involving knowledge, we usethe agents' observations to determine the points they consider possible. There aremany ways one could do this. The particular approach used in this paper models asynchronous perfect-recall semantics of knowledge. Given a run r of an environmentfor n agents with observation functions O1; : : : ; On, we de�ne the local state of agent i attime m � 0 to be the sequence ri(m) = Oi(r(0)) : : : Oi(r(m)). That is, the local state ofan agent at a point in a run consists of a complete record of the observations the agenthas made up to that point. These local states may be used to de�ne for each agent i arelation �i of indistinguishability on points (r;m); (r0;m0) of E, by (r;m) �i (r0;m0) ifri(m) = r0i(m0). Intuitively, when (r;m) �i (r0; m0), agent i has failed to receive enoughinformation at these points to determine whether it is in one situation or the other.Clearly, each �i is an equivalence relation. The use of the term \synchronous" abovere
ects the fact that if (r;m) �i (r0; m0), then we must have m = m0. The relations �iwill be used to de�ne the semantics of knowledge for individual agents. We will alsoconsider an operator for common knowledge, a kind of group knowledge, for which weuse another relation. If G � f1 : : ng is a group of agents (i.e., two or more) then wede�ne the relation �G on points to be the re
exive transitive closure of the union ofall indistinguishability relations �i for i 2 G, i.e., �G = (Si2G �i)�.We will be concerned with model checking a propositional multi-modal languagefor knowledge and linear time based on a set Prop of atomic propositional constants,with formulae generated by the modalities 
 (next), U (until), a knowledge operatorKi for each agent i 2 f1 : : ng, and a common knowledge operator CG for each groupof agents G � f1 : : ng. Formulae of the language are de�ned as follows: each atomicpropositional constant p 2 Prop is a formula, and if ' and  are formulae, then so are:', ' ^  , 
', ' U  , Ki' and CG' for each i 2 f1 : : ng and group G � f1 : : ng.We write Lf
;U;K1;:::;Kn;Cg for the set of formulae. We will refer to sublanguages ofthis language by a similar expression that lists the operators generating the language.For example, LfK1;:::;Kn;Cg refers to the language of the logic of knowledge (withouttime). As usual, we use the abbreviations 3' for true U ', and 2' for :3:'.The semantics of this language is de�ned as follows. Suppose we are given anenvironment E with interpretation �. We de�ne satisfaction of a formula ' at a point(r;m) of a run of E, denoted E; (r;m) j= ', inductively on the structure of '. Thecases for the temporal fragment of the language are standard:E; (r;m) j= p if �(r(m))(p) = 1, where p 2 Prop,



E; (r;m) j= '1 ^ '2 if E; (r;m) j= '1 and E; (r;m) j= '2,E; (r;m) j= :' if not E; (r;m) j= ',E; (r;m) j=
' if E; (r;m+ 1) j= ',E; (r;m) j= '1 U '2 if there exists m00 � m such that E; (r;m00) j= '2 andE; (r;m0) j= '1 for all m0 with m � m0 < m00.The semantics of the knowledge and common knowledge operators is de�ned byE; (r;m) j= Ki' if E; (r0;m0) j= ' for all points (r0;m0) of Esatisfying (r0;m0) �i (r;m)E; (r;m) j= CG' if E; (r0;m0) j= ' for all points (r0;m0) of Esatisfying (r0;m0) �G (r;m)This de�nition can be viewed as an instance of the general framework for the semanticsof knowledge proposed in [HM90]. Intuitively, an agent knows a formula to be true ifthis formula holds at all points that the agent is unable to distinguish from the actualpoint. Common knowledge may be understood as follows. For G a group of agents,de�ne the operator EG, read \everyone in G knows" by EG' � Vi2GKi'. Then CG'is equivalent to the in�nite conjunction of the formulae EkG' for k � 1. That is, ' iscommon knowledge if everyone knows ', everyone knows that everyone knows ', etc.We refer the reader to [HM90,FHMV95] for further motivation and background.We may now de�ne the model checking problem we consider in this paper. Saythat a formula ' is realized in the environment E if for all runs r of E, we haveE; (r; 0) j= '. We are interested in the following problem, which we call the realizationproblem: given an an environment E and a formula ' of a language L, determine if 'is realized in E. We will consider this problem with respect to several sublanguages ofLf
;U;K1;:::;Kn;Cg.3 Complexity BoundsWe now present a number of results on the complexity of the realization problem forvarious fragments of the language, and brie
y sketch their proofs. First, we considerthe most expressive language Lf
;U;K1;:::;Kn;Cg, containing all the modal operatorswe have de�ned. Here the outcome of our investigation is negative:Theorem 1. There exist a class of �nite environments for two agents with trivialacceptance conditions and a formula of Lf
;U;K1;:::;Kn;Cg such that it is undecidablewhether the formula is realized in a given environment of this class.That is, even a restricted case of the realization problem for Lf
;U;K1;:::;Kn;Cg isundecidable. The proof of Theorem 1 employs ideas from [Mey98] concerning modelchecking at a trace for the language LfK1;:::;Kn;Cg. Stated in terms of our currentterms and notations, this problem is to determine, given an environment E with atrivial acceptance condition, a trace t of E and a formula ' of LfK1;:::;Kn;Cg, whetherE; (r; jtj) j= ' for all runs r of E extending t.1 This model checking problem was studiedin [Mey98] for both the synchronous and an asynchronous perfect recall semantics ofknowledge. The following two results are proved in [Mey98].21 It can be shown that if r and r0 are two runs extending t and ' 2 LfK1;:::;Kn;Cgthen E; (r; jtj) j= ' i� E; (r0; jtj) j= '.2 In both these results f1; 2g is a set of agents while p is a propositional constant.



Theorem 2. With respect to the synchronous perfect recall semantics, the problem ofmodel checking at a trace is in PSPACE for the language LfK1;:::;Kn;Cg. It is PSPACEhard for the �xed formula Cf1;2gp.Theorem 3. There exists an environment for two agents such that with respect to theasynchronous perfect recall semantics, the problem of model checking the �xed formulaCf1;2gp at a given trace of the environment is undecidable.The proof of the lower bound in Theorem 2 involved showing that the synchronoussemantics can simulate PSPACE computations, with Turing machine con�gurationsrepresented as traces and the step relation on con�gurations represented by the com-position �1 � �2. The common knowledge operator then allows us to represent thetransitive closure of the step relation, enabling a formula to refer to the result of aPSPACE computation. The proof of Theorem 3 used a similar representation of Tur-ing machine computations, but �rst uses asynchrony to \guess" the amount of spacerequired by the computation. To prove Theorem 1 we reuse this approach to repre-sentation of Turing machine computations. However, instead of asynchrony, we nowuse the temporal operators to refer to a su�ciently long con�guration. As before, wethen describe the outcome of the computation starting at that con�guration using thecommon knowledge operator.In the language Lf
;U;K1;:::;Kn;Cg we have two operators, the until operator and thecommon knowledge operator, whose semantics allows an arbitrary reach through twoorthogonal dimensions in our semantic structures. In other contexts, these operatorsare individually tractable, e.g., the validity problem for both the logic of knowledgeand common knowledge LfK1;:::;Kn;Cg and temporal logic Lf
;Ug are known to bedecidable. It therefore makes sense to study the result of eliminating one of theseoperators from our language. For the language obtained by excluding the until operatorwe have:Theorem 4. The realization problem for Lf
;K1;:::;Kn;Cg is PSPACE complete.The proof of Theorem 4 is similar to the proof in [Mey98] of Theorem 2, andexploits the fact, for checking realization of a formula ', instead of the in�nite set ofruns we can con�ne our attention to the �nite set of traces of length at most j'j, whichis, intuitively, the furthest that the temporal operators can reach. This set of traces hasexponentially many elements, but since each trace is of linear size we may do modelchecking within polynomial space using techniques of [Mey98].For the language without common knowledge, some new techniques are required.Here we obtain the following.Theorem 5. The realization problem for Lf
;U;K1;:::;Kng is decidable, withnon-elementary upper and lower bounds.The proof for both the upper and the lower bound can be obtained by reductionsfrom variants of SnS, the Monadic Second Order Logic of n Successors [Tho92], whichis interpreted over the in�nite tree f1 : : ng�. The proof of the lower bound in Theorem 5is by a reduction from WS1S, a version of S1S in which the second order quanti�ers arerestricted to range over �nite sets. It is known [Mey74] that WS1S is decidable withlower bound non-elementary in the size of the formula. The upper bound result canbe established by a translation to the problem of checking the validity of a formula ofChain Logic with the Equal Level predicate [Tho92] (or CLE) on tree structures. The



logic CLE is an extension of a restriction of SnS. Chain Logic (CL) is obtained fromSnS by restricting the interpretation of the second order quanti�ers to sets that arechains, i.e., are totally ordered by the pre�x relation. The logic CLE is obtained byadding to this restriction of SnS the equal level predicate, de�ned on u; v 2 f1 : : ng�by E(u; v) if juj = jvj. This approach to the upper bound for the realization problemfor Lf
;U;K1;:::;Kng from this proof is rather indirect, however, as decidability of CLEis proved by Thomas [Tho92] using a translation to S1S. The logic S1S in turn isknown to be decidable using automata theoretic arguments [B�uc60]. Thus, we havegone from automata (in the de�nition of environments) to logic, and back to automata.In the following section we present a proof of Theorem 5 that is based directly onautomata theoretic constructions, and which yields a more informative complexitycharacterization.4 An algorithm for bounded knowledge depth formulaeOur more informative characterization of the complexity of realization for the languageLf
;U;K1;:::;Kng is cast in terms of the knowledge depth of formulae, i.e., the maximaldepth of nesting of knowledge operators in a formula. For example, depth(K1(
K2(q^K2r))) = 3. Our approach to the decidability result will exploit k-trees, a data structurethat has previously been used in the literature [Mey98] to represent depth k formulae ofLfK1;:::;Kng holding at a point of an environment. We show in this section that k-treesalso encode enough information to interpret formulae of Lf
;U;K1;:::;Kng with knowl-edge depth at most k. Throughout this section we assume a �xed �nite environmentE. We assume without loss of generality that every trace of E can be extended to arun of E.34.1 TreesIntuitively, a k-tree, for k � 0, is a type of �nite tree of height k in which vertices arelabelled by states of the environment and edges are labelled by agents. It is convenientto represent these trees as follows.4 For numbers k � 0 we de�ne by mutual recursionthe set Tk of k-trees over E, and the set Fk of forests of k-trees over E. De�ne T0 tobe the set of tuples of the form hs; ;; : : : ; ;i where s is a state of E and the number ofcopies of the empty set ; is equal to the number of agents n. Once Tk has been de�ned,let Fk be the set of all subsets of Tk. Now, de�ne Tk+1 to be the set of all tuples of theform hs; U1; : : : ; Uni, where s is a state and Ui is in Fk for each i 2 f1 : : ng. We denoteSk�0 Tk by T .Intuitively, in a tuple hs; U1; : : : ; Uni, the state s represents the actual state of theenvironment, and for each i 2 f1 : : ng the set Ui represents the knowledge of agenti. Identifying a 0-tree hs; ;; : : : ; ;i with the state s, note that each component Ui in a1-tree is simply a set of states: intuitively, those states agent i considers possible. For3 An environment not satisfying this condition can easily by modi�ed (without chang-ing its realization properties) by eliminating states that do not belong to any run.4 The de�nitions we give here are (for reasons of clarity and space) a slight simpli�ca-tion of those in [Mey98], which add some complications to enable k-trees to be usedto interpret formulae of alternation depth at most k, a slightly larger class than theclass of formulae of knowledge depth at most k.



higher k, the set Ui represents agent i's knowledge both about the universe and otheragents' knowledge, up to depth k.The elements of Tk correspond in an obvious way to trees of height k, with edgeslabelled by agents and nodes labelled by states. If w = hs; U1; : : : ; Uni we de�ne root(w)to be the state s. If w0 is an element of Ui, then we say that w0 is an i-child of w.When w 2 T0 the labelled tree corresponding to w consists of just the root, labelledroot(w). The tree corresponding to w 2 Tk+1 has root labelled with root (w), and foreach i-child w0 2 Tk of w there is an i-labelled edge from the root to a vertex at whichthe labelled subtree is that corresponding to w0. The following result characterises Ck,the number of k-trees over E.Lemma 1. Let k � 0 be a natural number and E be a �nite environment for n agentswith l states. Then Ck is not greater than exp(n�l; k)=n , where exp(a; b) is the functionde�ned by exp(a; 0) = a and exp(a; b+ 1) = a2exp(a;b).For each k � 0 we may associate with each point (r;m) of E a k-tree Fk(r;m),which captures some of the structure of the indistinguishability relations of the envi-ronment around that point. We proceed inductively. For k = 0 we de�ne F0(r;m) =hr(m); ;; : : : ; ;i. For k > 0 we de�ne Fk(r;m) = hr(m); U1; : : : ; Umi, where for eachagent i we have Ui equal to the set of k� 1-trees Fk�1(r0;m0) where (r0;m0) is a pointof E with (r0;m0) �i (r;m).For each point (r;m) of E let � (r;m) be the trace r(0) : : : r(m). It is not di�cult tosee that for all k � 0 and for all points (r;m) and (r0;m0) with � (r;m) = � (r0;m0) wehave Fk(r;m) = Fk(r0;m0). Thus, we may also view Fk as a function mapping tracesof E to k-trees, and write Fk(� ) where � is a trace of E. Note that we exploit the factthat every trace may be extended to a run here.We now recall from [Mey98] some functions that may be used to update k-trees.These functions were used in [Mey98] to provide an algorithm for the problem of modelchecking at a trace (see above). We will use these functions below to de�ne a sequenceof B�uchi automata for the realization problem. Let S, T and O be the set of states, thetransition relation, and the set of observations of the environment E, respectively. Wede�ne for each number k � 0 the function Gk : Tk � S ! Tk. The de�nition of Gk willbe by mutual recursion with the functions Hk;i : Fk �O ! Fk, where i 2 f1 : : ng andk � 0. Intuitively, if agent i's state of knowledge (to depth k) is represented by the theset of k-trees U , then Hk;i(U; o) represents the agent's revised state of knowledge afterit makes the observation o 2 O. We de�ne G0(w; s) = hs; ;; : : : ; ;i. Once Gk has beende�ned, we de�ne for each i 2 f1 : : ng the function Hk;i by taking Hk;i(U; o) to be theset of k-trees Gk(w; s) where w 2 U and Oi(s) = o and root (w)Ts, i.e., there exists atransition of E from root(w) to s. Using the functions Hk;i we may now de�ne Gk+1by setting Gk+1(hs; U1; : : : ; Uni; s0) to be hs0; Hk;1[U1; O1(s0)]; : : : ; Hk;n[Un; On(s0)]i.For our de�nitions (which are a slight variant of those in [Mey98]), we may establishthe following theorem, essentially the same as a result proved in [Mey98].Theorem 6. For each k � 0, and for every �nite trace � �s of E with �nal state s andpre�x � , we have the incremental update property Fk(� � s) = Gk(Fk(� ); s).The de�nition of the function Fk above is not e�ective, ranging over the possiblyin�nite set of runs of E. In the case of traces of length 0 is it easily seen how to makeit e�ective, obtaining functions that represent agents' knowledge in the initial statesof the environment as a k-tree. We inductively de�ne mappings fk : I ! Tk for k � 0.In the base case, we put f0(s) = hs; ;; : : : ; ;i. For k � 0 we de�ne fk+1(s) to be thek+1-tree with root s and an i-child fk(s0) for each initial state s0 with Oi(s0) = Oi(s).



Lemma 2. For all runs r of E we have Fk(r; 0) = fk(r(0)).Note that, here again, we rely on the fact that every trace (of length 0) can beextended to a run.4.2 An automaton theoretic characterizationWe now give an automata-theoretic characterization of realization that forms the basisfor the algorithm discussed below.We begin by de�ning a type of B�uchi automata [B�uc60]. The speci�c variety ofautomata we need are tuples of the form A = hS; I; T; �i, where S is a �nite set of(control) states, I � S is the set of initial states of the automaton, T � S2 is a atransition relation, and � � S is its acceptance condition.5 An execution of A is anin�nite sequence e : N ! S of states of S such that for allm � 0 we have e(m)Te(m+1).An execution e is said to be properly initialised if e(0) 2 I. An execution is said tobe fair if some state in � occurs in�nitely often in the execution. A fair, properlyinitialised execution is called accepting. We also call accepting executions runs. Thelanguage accepted by the automaton A is the set L(A) of all runs of A.Given the environmentE �xed above, we now de�ne an in�nite sequence of B�uchi au-tomata A0(E); : : : ; Ak(E); : : :. Each automaton Ak(E) de�nes a language consisting ofin�nite sequences of k-trees over that environment. These automata will be crucial tothe algorithm we develop.Let E be hS; I; T;O; �; �i and k � 0. De�ne Ak(E) = hSk; Ik; Tk; �ki to be theB�uchi automaton with1. Sk equal to the set Tk of k-trees over E,2. initial states Ik equal to the set of k-trees fk(s) where s 2 I,3. transition relation Tk de�ned by wTkw0 when there exists state s 2 Ssuch that root(w)Ts and w0 = Gk(w; s),4. acceptance condition �k de�ned by �k = fw 2 Sk : root(w) 2 �g.Since Ak(E) is a B�uchi automaton on in�nite words, the notions of an execution, afair execution, a properly intialised execution and a run of Ak(E) are meaningful. Wede�ne a projection operation Proj k mapping runs r of the automata Ak(E) to in�nitesequences of states of E, by Proj k(r)(m) = root(r(m)). Conversely, there exists a liftoperation Liftk mapping runs r of the environment E to sequences of k-trees, de�nedby Liftk(r)(m) = Fk(r(0) : : : r(m)). The proof of the following is straightforward fromthe de�nitions, Theorem 6 and Lemma 2:Lemma 3. For each k � 0 the mappings Proj k and Liftk are inverse functions; Proj kmaps the set of runs of Ak(E) onto the set of runs of E while Liftk maps the set ofruns of E onto the set of runs of Ak(E).We now show that the automata Ak(E) adequately capture the depth k formulae ofLf
;U;K1;:::;Kng holding at points of E. To do so, we de�ne for each k a relation j=kbetween points in executions of Ak(E) and formulae of knowledge depth � k. Thede�nition of j=k is by induction on k, as follows. For the basic propositions and thetemporal operators, the de�nition is much like the standard semantics. Thus, for anexecution e of Ak(E) and m � 0,5 These are slightly less general than usual, in that the input alphabet and controlstates coincide, and the transition function has a speci�c form that is derived fromthe transition relation.



E; (e;m) j=k p if �(root(e(m)))(p) = 1, where p 2 Prop,E; (e;m) j=k '1 ^ '2 if E; (e;m) j=k '1 and E; (e;m) j=k '2,E; (e;m) j=k :' if not E; (e;m) j=k ',E; (e;m) j=k 
' if E; (e;m+ 1) j=k ',E; (e;m) j=k '1 U '2 if there exists m00 � m such that E; (e;m00) j=k '2 andE; (e;m0) j=k '1 for all m0 with m � m0 < m00.The interesting case concerns the knowledge operators, where we make use of the factthat we are dealing with a sequence of k-trees. It is convenient to �rst de�ne j=k noton points, but on k-trees w, for formulae Ki' of Lf
;U;K1;:::;Kng of knowledge depthat most k, byE;w j=k Ki' if for all k � 1-trees w0 that are i-children of w, and for all fairexecutions e of Ak�1(E) such that e(0) = w0, we have E; (e; 0) j=k�1 '.Note that we consider fair executions e rather than runs in this de�nition because w0is not necessarily an initial state of Ak�1(E). We then de�ne j=k on points byE; (e;m) j=k Ki' if E; e(m) j=k Ki'.The following result establishes a connection between the relations j=k and thesemantics of Lf
;U;K1;:::;Kng in an environment E.Lemma 4. For every natural number k � 0, every formula ' in Lf
;U;K1;:::;Kng ofknowledge depth at most k, for every environment E, every run r of E and m � 0 wehave E; (r;m) j= ' i� E; (Liftk(r);m) j=k '.This equivalence forms the basis for our decision procedure for realization.4.3 The algorithmWe are now in a position to present the algorithm for the realization problem forLf
;U;K1;:::;Kng. Let us �rst note that in the special case where depth(') = 0, i.e.,formulae not containing the knowledge operators, testing realization amounts to aproblem of temporal logic to which well-known techniques may straightforwardly beapplied (see below). To generalize to formulae of greater depth, we show how to decidethe relation E;w j=k Ki'. We achieve this by factoring formulae into their temporaland knowledge components. To represent the temporal components, de�ne a context tobe just like a formula of Lf
;U;K1;:::;Kng, but with additional propositional variablesfrom a special separate countable set Var . If � is a context then we denote by Var (�)the set of all variables which occur in �. A pure temporal context is a context notcontaining any occurrences of the knowledge operators.We separate the temporal and knowledge aspects of formulae by means of thefollowing way of \exploding" a formula. De�ne a pu� to be a �nite sequence of pairs(set0;map0) : : : (setm;mapm) where the set j are �nite sets of pure temporal contexts,such that Var(set0) = ;, and for j 6= j0 the sets Var (set j) and Var (set j0) are disjoint,and the mapj are mappings mapj : Var (set j) ! fK1; : : : ; Kng � set j�1. (Thus,map0 = ;.) The result ' �mapj of applying a mapping mapj to a context ' is de�nedto be the context obtained by simultaneously substituting for each occurrence in ' ofa variable x 2 Var(set j) the formula Ki such that mapj(x) = (Ki;  ). A pu� is saidto be a complete separation of a formula ' if setm contains a single context �, suchthat ' = � �mapm � : : : �map1. Let cep be a function from formulae to pu�s such thatcep(vp) is a complete separation of '. We call the unique pure temporal context � inthe top level setm of a complete separation of ' the temporal skeleton of '.



Example 1. The pu�set0 = fpg map0 = ;set1 = f
x; 2xg map1 : x 7! (K2; p)set2 = fy U zg map2 : y 7! (K1;
x)map2 : z 7! (K2;2x)is a complete separation of the formula (K1
K2p)U (K22K2p). The temporal skeletonof this formula is y U z.A valuation is a partial mapping � : Var ! P(T ). This associates with eachpropositional variable the set of trees at which it is true. For each valuation � onecan extend the relation j=k on formulae to a relation j=�k on temporal contexts bysimply adding the superscript � to j=k throughout the clauses above, and by addingthe following clause:{ E; (e;m) j=�k x, where x 2 Var is a variable, i� e(m) 2 �(x).A valuation � is said to be consistent with a pu� (set0;map0) : : : (setm;mapm) if foreach j 2 f1 : :mg, every variable x 2 Var (set j) and every w 2 Tj , if mapj(x) = (Ki; �)then w 2 �(x) i� E;w j=vj Ki�.Lemma 5. Suppose ' is a formula of Lf
;U;K1;:::;Kng of knowledge depth k. Let �be the temporal skeleton of '. Suppose that � is a valuation consistent with cep(').Then for all fair executions e of Ak(E) and for all m � 0, we have E; (e;m) j=k ' i�E; (e;m) j=�k �.By Lemma 4, to determineE; (r;m) j= ' for formulae of depth ' it su�ces to decideE; (Liftk(r);m) j=k '. The e�ect of Lemma 5 is to reduce the complicated recursionthrough k-trees required to evaluate the latter to the problem E; (Lift(r);m) j=�k �,whose determination involves only temporal steps.Thus, we obtain the following approach to deciding realization: (1) represent aformula as a pu�, (2) construct a consistent valuation for the pu�, (3) evaluate thetemporal skeleton of the formula with respect to this valuation and (4) check thatthe skeleton is valid for all initial states. This approach is formalized in the algorithmin Figure 1. By construction and in accordance with the de�nition of consistency,the assertion \� is consistent with (set0;map0) : : : (set j ;mapj)" is an invariant of theloop of the algorithm. Combining this with the results above we conclude that thealgorithm is correct. As presented, the algorithm is not yet fully operational: we stillneed to show how it is possible to compute [�] at steps 2(a) and 3. This can be donein space polynomial in the size of Ak(E) and � using known techniques [SC85].Theorem 7. The problem of determining if a formula ' of Lf
;U;K1;:::;Kng is realizedin an environment E is decidable in space polynomial in j'j � exp(depth('); O(jEj)).5 ConclusionIt is interesting to note that for each of the languages we have considered, the com-plexity we have obtained for the realization problem is the same as the complexityobtained by Halpern and Vardi [HV88,HV89] for the validity problem. While there are



INPUT: a �nite environment E and a formula 'OUTPUT: Y if ' is realized in E, N otherwise.PROCEDURE:1. Let k := depth(') and suppose cep(') = (set0;map0) : : : (setk;mapk).Let � := ;.2. For j := 0 to k � 1 do:(a) For all � 2 set j , let [�] :=f w 2 Tj : (e; 0) j=�j � for every fair execution e of Aj(E) with e(0) = w g.(b) For all x 2 Var (set j+1), if mapj+1(x) = (Ki; �),let [x] := fw 2 Tj+1 : w0 2 [�] for all i-children w0 of wg.(c) Let � := � [ (Sx2Var(setj+1)f(x; [x])g).3. For temporal skeleton � of the formula ' let [�] :=f w 2 Tk : (e; 0) j=�k � for every fair execution e of Ak(E) with e(0) = w g.4. If w 2 [�] for all w 2 Ik then output(Y) else output(N).Fig. 1. An algorithm for realizationsome commonalities in the proof techniques used, we are not aware of any straightfor-ward reductions between the two problems.The problem we have studied here, of checking whether a formula is realized in agiven environment, is closely related to a problem studied by van der Meyden and Vardi[MV98]. This work also concerns the synchronous perfect recall semantics. They dealwith a notion of environment in which agents are able to choose their actions basedon their local state, and the choice of action determines the state transitions. Theyconsider the realizability question, of whether it is possible to decide the existence of(and if so, construct) a protocol (a function from local state to actions) for an agentsuch that running this protocol in a given environment generates a system realizinga given speci�cation in the logic of knowledge and time. By contrast with our resultsin this paper, however, realizability is decidable only in the single agent case, even forenvironments with trivial acceptance condition.Model checking a logic of knowledge and time has also been studied by Clarke et al.[CJM98] in the context of veri�cation of cryptographic protocols. Their work assumes asemantics of knowledge very di�erent from ours, based on explicit computation ratherthan the information theoretic notion we have studied. An interesting topic for furtherresearch is the applicability of our results, or adaptations thereof, to veri�cation ofcryptographic protocols.Several dimensions of generalisation of our results are worth considering. In par-ticular, it would be desirable to know if our results generalise to the case of languageswith past time or branching time operators | this generalisation is able to express theproblem of checking that a given �nite state protocol implements a given knowledgebased program [FHMV95,FHMV97] in a given environment, in such a way that agentsoperate as if they had perfect recall. A knowledge based program is a type of speci�ca-tion that describes how an agent's actions relate to its state of knowledge. Veri�cationof knowledge based programs for �nite state de�nitions of knowledge has been showndecidable by Vardi [Var96]. The perfect recall case remains to be addressed, althoughthe linear time case we have presented is already able to yield this result in the special
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