AN ONTOLOGICAL APPROACH TO A SYSTEM
OF REQUIREMENTS PATTERNS

NATALIA GARANINA

A.P. ERSHOV INSTITUTE OF INFORMATICS SYSTEMS, NOVOSIBIRSK,
RUSSIA

INTRODUCTION

The project Methods for generation of formal models and requirements from

technical documentation presented in a natural language and their
verification.

Improving the quality of software systems using formal methods.
Extracting formal models and properties of distributed software systems
* from texts of technical documentation

* Verification the properties in the models.
Development

* an ontology of distributed software systems
* ontologies of requirements

* requirements

information about the methods and complexity of their
verification.

methods of information extraction to populate these ontologies.

INTRODUCTION

Syntactical classification [Manna, Pnueli 91]

* liveliness, safety, etc
e (Qualitative requirements [Dwyer, Avrunin, Corbett 99]

* absence, existence, universality, precedence, responce
e Real-time requirements [Konrad, Cheng 05]

* Probabilistic requirements [Grunske 08].
 Composite event templates [Mondragon, et. al. 04] [Salamah, et. al. 12]
* Quantitative features of events' appearance [Bianculli, et. al. 12]

e patterns for data [Halle, 09]

e Patterns expressible in LTL and its real-time and probabilistic extensions

INTRODUCTION

* Branching time requirements [Post, Menzel, Podelski 11]

 Combined patterns [Autili, et. al. 15]

* classical, probabilistic, and real-time patterns
* their description in restricted English
* Pattern ontology [Yu, Manh, Han 06]

* gualitative requirements
* composite events

INTRODUCTION

 Two ontologies:

* ahandbook of patterns

* known pattern systems + new patterns
* an ontology of requirements

* unique for each individual set of technical documentation
* presented in OWL.

INTRODUCTION

The ontology-handbook of patterns

* Knowledge organization system of specification patterns.

informal description of the patterns
formal descriptions in logics
* graphical representations (GIL, UML),
examples of usage,
parameters,
verification complexity,
suitable verification tools,
application areas,
information on algorithms of realizability, etc.

* This ontology is populated manually

* Ambiguity of a natural language

semantics of different representations may differ.

INTRODUCTION

The ontology of requirements
* Classes of requirements with corresponding parameters

* Attribute values are extracted from the texts.
* The names of the classes from the handbook of the patterns.

* an extracted requirement corresponds to its pattern in the
handbook

e correctness of formulation
* model checking.
* Population from technical documentation texts.

INTRODUCTION

* Specification of requirements

* a Boolean combination of the following pattern types:
* gualitative,
* real-time,
* branching time,
* complex events,
* guantitative features of events,
* simple statements about the data,
* optimality,
* undesirable behavior of an environment.

SYSTEMS OF PATTERN CLASSIFICATION

(1) Qualitative Patterns

Occurrence patterns

appearance of a system event P during system execution.

Absence: G—P

it is never the case that P holds

Universality: GP

it is always the case that P holds

Existence: FP

P eventually holds

Bounded existence: P W (P W (—P W (P W G—P))))

it is always the case that the transitions to state P occur at most 2 times

DS+ |miss
DT + Wﬂ.?
D6 + 44?-']
D5 + S
SYSTEMS OF PATTERN CLASSIFICATION * iﬁ—
D4 + | 1.8
D3+
(1) Qualitative Patterns D2 | P2 - SR—
D1+ 4 16,6 E study in [9]
* Order patterns '
usage frequency of patterns

* the relative sequence of appearance of events P and S during execution.

* Precedence: FP - —PU(SA—P)

* itis always the case that if P holds, then S previously held
* Response: G(P — FS)

* itis always the case that if P holds, then S eventually holds

* Response and precedence chains: G(P — (SAXFT))

* ageneralization of the corresponding patterns
* relationships between sequences of individual states/events.
e Constrained chain

* restricts user specified events from occurring between pairs of
states/events in the chain sequences.

[MNPUAMEP ABTOMaTM3MpPOBaAHHAA IMHUA PO3/NBA BYTbIIOK

=

O O O
BKIT__BbIK 0
O

3agaHue T O

(CEFMEHT 1 I-COHBEFIE[%(CEFMEHT 2 mHBeﬁepa]

(1, 2) - ceemeHmebl KOHBelepa, (3) - KHonKa ynpasneHus, (6) - 0amyuk
nosoxeHus bymeinku, (7) - KaanaHd pasnuea 8 bymeinKy

1. BKntovaeTtca cuctema (3), BkaroYatoTca KoHBenepsbl (1, 2).

2. MycTtas byTbiNKa NoAbe3XKaeT K KnanaHy pasnunea, cpabatbiBaeT AaTUUK
nonoXxeHus byTbiNKK (6), KOHBelep 1 ocTaHaBAMBAETCA, BKAKOYAETCA KnanaH
pasnuBea (7), byTblnKa HanoaHAETcA.

EXAMPLE

Existence: F P,

&
* P, eventually holds o O @]
BKN__BbIK e
* P,—KnaKocTb HarpesaeTcs
O
3anaHue T O

(CEI'MBHT 1 KoHBeiJlepCa)](CermeHT 2 kOHBeﬁepa]

* Response: G(P, = FP,)

* itis always the case that if P, holds, then P, eventually holds

* P,—nosasneHune byTbINKM

* P, —HanonHeHue 6yTbIIKK

SYSTEMS OF PATTERN CLASSIFICATION

(1) Qualitative Patterns.
* Additional constraints on appearance of events P and S in the order patterns.

* Non-overlap: G((P = =S)A(S = —P))

* P andS never hold simultaneously * Py noaeneue ByTbinku
P, —HanonHeHue 6yTbINKM

* P, non-overlap P,
* Right-overlap: G((P = —=S) AX(P - =S U (S A X(S U —P)))

* itis always the case that P holds before S and there is a finite
state sequence in which P and S hold simultaneously.

e Left-overlap: G((S = —P) A X(S = =P U (P A X(P U —S)))

* jtis always the case that S holds before P and there is a finite
state sequence in which P and S hold simultaneously

SYSTEMS OF PATTERN CLASSIFICATION

(2) Scopes.

Patterns — what, scopes -- when.

Globally: GP

* a pattern holds throughout the program execution.
Before R: FR = PUR

e a pattern holds during program execution before R first occurs.
After R: G(R — GP)

* a pattern holds during program execution after R first occurs.

SYSTEMS OF PATTERN CLASSIFICATION

(2) Scopes.
* Between Qand R:

e a pattern holds during execution between the first occurrence of Q and
the next occurrence of R.

* Q; — cuctema BK/IHOYEHA * P,—noasneHune 6yTbiaKM
P, —HanonHeHue ByTbINKM

* Q,— cucTema BbIKNOYEHa
* G((Q;A—Q,AFQ,) = (P, (—=Q,U(P,A=0Q,)) UQ,))

SYSTEMS OF PATTERN CLASSIFICATION

(2) Scopes.

Between Q and R: G((QA—=R AFR)—= P UR)
* a pattern holds during execution between the first occurrence of Q and
the next occurrence of R.
After Q until R: G((Q A —R) = P W R)
* a pattern holds during execution between the first occurrence of Q and
until the next occurrence of R or the end of the program execution.
Start (initial phase): =R - P W R

* a pattern holds until event R marks the end of the initial phase.
Final (final phase): (FGRAFP)—->—=PUR)

e a pattern holds after event R marks the beginning of the final phase.
Regular (repeating phase) = After-until scope.

SYSTEMS OF PATTERN CLASSIFICATION

(3) Branching time.

Possible Existence: AG(P— EF S)

* if P holds then there is at least one execution sequence such that S
eventually holds.

Possible Universality: AG(P— EG S)

* if P holds then there is at least one execution sequence such that S
forever holds.

Possible Precedence: EF(P— AF S)

* if Sholds then there is at least one execution sequence such that P holds
before.

Possible Response: AF(P— EF S)

* if P holds then there is at least one execution sequence such that S
holds.

* P,—XunaKoctb Harpesaetca

SYSTEMS OF PATTERN CLASSIFICATION

(4) Real Time.
Duration
* Point: FG_,P
* it’s always the case that once P becomes satisfied, it holds exactly k time units.
* Minimum: FG,, P

* it's always the case that once P becomes satisfied, it holds at least k time units
FG,, P,
* Maximum: FGP
* it's always the case that once P becomes satisfied, it holds less than k time
units.
* Interval: FG,,P

* jtis always the case that once P becomes satisfied, it holds at least k time unit
and less than m time units.

P, — MAKOCTb HarpesaeTcA

SYSTEMS OF PATTERN CLASSIFICATION

(4) Real Time.
* Periodic: GF_P

* itis always the case that P holds at least every k time units.
* Absolute time

° 26.06.2017

SYSTEMS OF PATTERN CLASSIFICATION

° P, — HanonHeHwue 6yTbIJ'IKM &
2 v O 0 O
° Rl — KOHBeuep 1 ABUNXETCA BRIL_Bhii (@)
* R, — [aTtuuK nonoxeHua byTblkK cpaboTan ® D% O
* R;— KoHBeiiep 1 cTout e G G
® R, — KnanaH po3anBa OTKPbIT
4 p p [CermeHﬂ KOHBeHE[g](CeFMeHTZ Kouaeﬁepa]

(5) Complex events.
« Complex events are compositions of elementary events from set E.

* concurrency, non-determinism, and interval of events at some state of
system execution.

* One(E), strict mode: e;ve,v..ve,

» at least one of the propositions in the set E holds.
* One(E), free mode: (—e,AFe;) v (—e,AFe,) v ... v (—e AFe,)

* at least one of the propositions in the set E becomes true.

SYSTEMS OF PATTERN CLASSIFICATION

(5) Complex events.
« Complex events are compositions of elementary events from set E.

* concurrency, non-determinism...
* One(E), strict mode: e;ve,v..ve,

* atleast one of the propositions in the set E holds.
* P,=R;vR,VvR;VvR,
* One(E), free mode: (—e,AFe;) v (—e,AFe,) v ... v (—e AFe,)

* at least one of the propositions in the set E becomes true.

R, — KoHBenep 1 amxeTca

R, — AaTYnK nonoxeHma ByTbiaku cpaboTtan
R; — KoHBenep 1 ctout

R, — K1lanaH po3nvBa OTKPbLIT

SYSTEMS OF PATTERN CLASSIFICATION

(5) Complex events.
e Parallel(E), strict mode: E=e; A e, A ... A€,

* all propositions in the set E hold.
* P,=R;AR, AR;AR,
* Parallel(E), free mode: (—e; A —e, A ... A —€,) A (=E UE)

e all propositions in the set E become true.

° P2=(—|R1/\—|R2/\ —|R3/\—|R4)/\(—|EU Rl/\ Rz/\Rg/\ R4)

R, — KoHBenep 1 aBukeTcA

R, — AaTYnK nonoxeHma ByTbiaku cpaboTan
R; — KoHBenep 1 ctout

R, — KnanaH po3aunBa OTKPbIT

R, — kKoHBenep 1 aBumxeTca

R, — AaTYnK nonoxeHma byTbiakum cpaboTan
R; — kKoHBenep 1 cTout

R, — KflanaH po3nuBsa OTKPbLIT

SYSTEMS OF PATTERN CLASSIFICATION

(5) Complex events.
* Serial(E), strict mode: e;AX(e, A X(e; ... AXe,)...)
* Each proposition in the sequence E is asserted to hold in a specified
order, one at each successive state.
* P,=R;AX(R, AX(R;AXR,))
e Serial(E), hold mode: SH(E) = e; A =E", A X(e, A =E";... AXe,)...)
* Each proposition in the sequence E becomes true in a specified order,

one at each successive state, and all the next propositions are false at
the moment. Once they become true, their true value does not matter.

* P,=R;A=R,A—=R; A =R;AX(R, A =R3 A =R, A X(R3 A =R, A XR,))
* Serial(E), free mode: —EA X SH(E)
* Each proposition in the sequence E becomes true in a specified order,

one at each successive state. Once they become true, their true value
does not matter.

R, — KoHBelep 1 aBmKeTCA
R, — AaTYnK nonoxkeHua 6yTblaKKM cpaboTan
R; — KoHBenep 1 cTtout

SYSTEMS OF PATTERN CLASSIFICATION [*_ Ra™¥/1anat posnmea oTkperr

(5) Complex events.

Eventual(E), strict mode: (e; A XF(e, A XF(e; A ... A XFe,)...)
* Each proposition in the sequence E is asserted to hold in a specified
order and in distinct and possibly nonconsecutive states.
* P,=R; A XF(R, A XF(Ry A XFR,))
Eventual(E), hold mode:

* Each proposition in the sequence E becomes true in a specified order
and in distinct and possibly nonconsecutive states, and all the next
propositions are false at the moment. Once they become true, their true
value does not matter.

Eventual(E), free mode: —E A (—E U EH(E))

* P,—XunaKoctb Harpesaetca

SYSTEMS OF PATTERN CLASSIFICATION

(6) Quantity and Data.
* Quantity

Representation of common non-functional requirements

reliability (the number of errors in a given time window)

throughput (the number of requests that a client is allowed to
submit in a given time window).

The exact, maximum, minimum, interval number of events
* Point: F(P; A XG—P,) — 1 time
* Maximum: F(Py, A XG—P,)VF(P, A XF(Py A XG—P,)) — at most 2 times

* Minimum: F(P, A XF P,) — at least 2 times
* Data

e properties that refer to some data used in a system

every ID present in a message cannot appear in future messages.

SYSTEMS OF PATTERN CLASSIFICATION G G

(7) Environment.

Certain (undesirable) scenario of the behavior of the environment is really
modeled.

 Bad behavior: EFQAAGP
* An environment can follow a bad pattern Q and a system always follows
a good pattern P.
The property of optimal system behavior is that with any behavior of the
environment, the system can achieve the desired state.
* Expressible in p-calculus.
 Optimality:
* No matter how the environment behaves, the system can react so that

the desired state P for the system and the state Q for the environment
will be achieved.

PATTERN ONTOLOGY

Operation SubSpecl SubSpecl
. —, A, V, >, Propositions | Propositions
SimpleSpec A v . P : P
o} SimpleSpec SimpleSpec
Pattern Pattern
Spec
Spec Spec

Specification

PATTERN ONTOLOGY

| Frame | Frame Frame . .
Possibil)) Constraint Kind Atom1
Scope [Time | Quantity
Pattern bool | Scope | Time | Quantity | Proposition Proposition
Absence
Occurence Existence
Universality
Atom2 Space
Precedence
Order N Novlap
Responce Proposition | Rovlap
Lovlap

Patterns

PATTERN ONTOLOGY

Data Namel Name2 Operation | Quantifier Domain
Names Names {>, <, =} {3, v} Dom
Kind Name Condition
Case state .
Names SimpleSpec
event
Kind Type Cases
strict one
Compex arallel
P free P] Case
serial
hold
eventual

Propositions

PATTERN ONTOLOGY

Kind Space Together Atom1 Atom?2
globally, before
Scope fter, ater-until . .
P arter, ater-untd Overlapping bool | Propositions | Propositions
start, regular,
final
Frame Frame
Kind _) Calendar
Quantity Period
Time duration
periodic Quantity Period Date
absolute
Kind Numberl | Number2
Point
Quantity minimum
i Integer | Integer
maximum
interval
Time Time Unit
Period Time
Integer .
Domailn

Bounds

PATTERN ONTOLOGY

Kind: point, min, max, interval

Numberl

Number?

Number

Time Unit |
......... E

[

Quantity jw_

F FOuant

| Periodic]

w
*
LY
w,

Durat.-'an

Date

Kind: globally,before,after, | (Subs

until,start,regular,final —
Overlapping | |

Together | Namel | Name2 |
................................. e,

Quant: v, 3
Domain

Kind: sta'te, event

Kind: strict, free, huldé

?}’pE: one,parallel,serial,eventual

CONCLUSION

* The first version of the ontology of requirements
* gualitative, real-time, quantitative, taking into account combined events
and statements about data.
* In the future:
* ageneralization of patterns of event combinations to behavior
* study specialized subject areas such as security, agent models, etc
* specialized specification patterns.

CONCLUSION

e Construction and population the ontology-handbook of patterns

informal descriptions on a restricted natural language,
formal semantics in the language of modal logics

use cases

application scopes,

complexity of model checking and realizability, etc.

* |nconsistencies

forms of Until operator
* inconsistence of the right time bounds of event occurrence.
the ambiguity of a natural language.

e Graphical formal languages (GIL,UML).

THANKS FOR YOUR ATTENTION!

EXAMPLE

* P,— *MAKOCTb HarpesaeTca

—L3—

* P, —nosasneHune byTbINKM 0O O 'e)

BKI1 BbIK 0
* P, — HanonHeHue GyTbIAKK

@
o P, — pe3epByap He nepenosHeH
3 P pByap P 3anaHne T O

¢ Ql — CnCTeMa BK/Z1IlD4YeHa G G
* Qz — CNCTEMa BbIK/1KOYEHA (CGI'MEHT'l KOHBeHepCa)](CEFMEHTZ KOHBEF‘iepa]

* R, —KoHBeMep 1 aumeTcA
* R, —paTumk nonoxkeHna bytblnkun cpabotan
* R;—KoHBemnep 1 ctout

* R, —KnanaH po3nuBa OTKpPbIT

