
Automated Semantics-Driven Source
Code Migration: a Pilot Prototype

Artyom Aleksyuk, Vladimir Itsykson
June 26, 2017
Peter the Great St. Petersburg Polytechnic University
JetBrains Research



Introduction

Migration to a new library environment

• Transition to a new software platform
• Mobile⇐⇒ Desktop
• Server ⇐⇒ PC

• Addition of a new library in the project
• Upgrade of an existing library
• Replacement of the library
• ...
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Migration sample

Code fragment which uses java.net.URLConnection class
from the Java Class Library:

URL url = new URL("http://api.ipify.org/");
URLConnection conn = url.openConnection();

Code fragment which uses Apache HttpClient library:

HttpClient httpclient =
HttpClients.createDefault();↪→

HttpGet httpget = new
HttpGet("http://api.ipify.org/");↪→

HttpResponse httpResponse =
httpclient.execute(httpget);↪→

2



Difficulties

• Usually the code is migrated manually
• Migration requires a lot of tedious work =⇒ has a
tendency to introduce new defects in the code

• Identical actions while migrating several projects

Automation is neccesary
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Existing approaches

• Call translation
• OS-level virtualization
• Use of wrappers
• Syntax-based approach
• Semantics-based approach
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Comparison of approaches

• Use of wrappers
• Wrapper is a dummy library which provides the
interface of the source library and the
implementation of a target one

• Is not scalable

• Syntax-based approach
• Implemented in tools like TXL and IDEA Search and
Replace

• Is able to perform only basic code changes

• Semantics-based approach
• The most scalable and powerful option
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Semantics-based approach scheme
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The previously proposed formalism (in a nutshell)

Specifies library behavior using a set of extended finite
state machines (EFSMs)

• Each transition in the automaton refers to some
kind of interaction with the library

• A new EFSM may be created during a transition
• Semantically important operations are described
using actions

• EFSMs may have attributes

Itsykson V. The formalism for semantics specification of software libraries (PSSV, 2016).
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Library metamodel

Designed for Java language and intended for
object-oriented libraries

Defines:

• Methods and constructors from the library
• Possible arguments of methods and constructors
• Classes, interfaces and their relations
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Example of the EFSM (graph visualization)

Request: URL

Init

Constructed

new Request(URL: String)

openConnection()

return Connection
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Migration procedure

• Trace extraction
• Trace mapping
• Equivalent trace calculation
• Mapping of a new trace back into the code model
(reverse mapping)

• Program transformation
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Trace extraction & mapping

• The trace is needed to understand which parts of
the code should be changed

• A sequence of method/constructor calls
• Trace mapping transforms the code trace into the
model trace, i.e. a sequence of EFSM transitions
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Model trace example

URL: String Request: URL

Connection: URLConnection

Body: String InputStream: InputStream ContentLength: long

Constructed

hasURL

Usage in new Request(String)

Constructed

new Request(String)

openConnection()

Constructed

return Connection

readerToString(URLConnection) getInputStream() getContentLengthLong()

Constructed

return String

Constructed

return InputStream

Constructed

return long
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Equivalent trace calculation

• Equivalence criteria:
• The new trace carries out the same set of semantic
actions

• The new trace creates the same set of entities
(represented by EFSMs)

• The task is reduced to finding a path on the graph
• To perform the search, we use an algorithm based
on the BFS

• And what about actions and attributes?
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Equivalent trace calculation

• A new graph is created that reflects the possible
search states
• The vertices of the graph correspond to the traces
• The edge of the graph represents the ability to
append a transition to the trace

• Each vertex stores a context, i.e. a set of available
EFSMs

• To handle argument requirements, we extended BFS
with a separate queue for vertices with missing
dependencies
• Such vertices are processed when the dependency
is resolved
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Equivalent trace calculation

• Each transition from the source trace is usually
handled separately

• But sometimes we are able to combine several
transitions and process them together
• This trick allows to apply complex transformations
on the source code, such as reordering

• The procedure also includes several steps to
operate with entities from the context
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Reverse mapping & program transformation

• During the reverse mapping step, a set of EFSM’s
transitions is transformed back to the code model
form

• Often it is needed to add new variables to the code
• Program transformation step includes the removal
of unnecessary statements, replacement of
expressions, addition of new statements
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Prototype of the migration tool

• Processes Java 8 code
• Provides an easy-to-use DSL for describing libraries
• Includes modules for visualization, user interaction,
trace extraction and migration itself

• Written in Kotlin1 language

1. https://kotlinlang.org/
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The fragment of library description

val url = StateMachine(entity = HTTPEntities.url)
val request = StateMachine(entity = HTTPEntities.request)
val connection = StateMachine(entity = HTTPEntities.connection)
val hasURL = State(name = "hasURL", machine = request)
ConstructorEdge(

machine = request,
src = request.getDefaultState(),
dst = hasURL,
param = listOf(EntityParam(machine = url))

)
LinkedEdge(

dst = request.getDefaultState(),
edge = CallEdge(

machine = urlData,
src = hasURL,
methodName = "openConnection"

)
)
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Trace extraction

• The trace includes an order of execution,
argument’s values, etc.

• Extraction may be done dynamically or statically
• The tool prototype employs the dynamic method
• We use aspect-oriented programming to instrument
the code
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Implementation of the migration procedure

• The tool prototype uses AST as a code model
• CFG, SSA add no benefits, as we already have an
execution trace

• If the tool prototype is unable to automatically
calculate the equivalent trace, it asks for help from
the user

• The transformation process keeps comments and
code formatting unchanged
• Thanks to a JavaParser library
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Evaluation

During the evaluation we:

• Created models for 3 libraries: Apache HttpClient,
OkHttp, HttpURLConnection

• Prepared a set of test examples
• Several artificial examples
• A real-world project

• Successfully migrated all test examples to new
libraries
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Library model visualization

URL: String

GetRequest: HttpGet

Client: CloseableHttpClient

Response: CloseableHttpResponse

Body: String

HttpClientFactory: HttpClients

InputStream: InputStream ContentLength: long

Entity: HttpEntity

EntityUtils: EntityUtils

StatusCode: int

ByteArrayEntity: ByteArrayEntity

Payload: String

PostRequest: HttpPost

RequestParamName: String RequestParamValue: String

Constructed

encodedURL

Template

Constructed

Usage

Constructed

Usage

Init

new GetRequest: HttpGet(URL: String)

addHeader(headerName, headerValue)

Constructed

Usage

Final

close() execute(GetRequest: HttpGet) execute(PostRequest: HttpPost)

Constructed

return CloseableHttpResponse() return CloseableHttpResponse()

getEntity() Template

Constructed

return HttpEntity()

Constructed

return int()

Constructed

Init

createDefault()

return CloseableHttpClient()

Constructed Constructed

getContent() getContentLength()

Init

Usage

return InputStream() return long() toString(Entity: HttpEntity)

return String()

Init

Constructed

new ByteArrayEntity

Usage

Init

Constructed

Template

Usage

Init

new PostRequest: HttpPost(URL: String)

Usage

addHeadersetEntity

Constructed

Usage

Constructed

Usage
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Test example (source code)

RequestBody formBody = new FormBody.Builder()
.add("q", parameters)
.build();

Request request = new Request.Builder()
.url(Endpoint.INSTAGRAM_QUERY_URL)
.post(formBody)
.header("Cookie",

String.format("csrftoken=%s;", random))↪→

.header("Referer",
"https://www.instagram.com/")↪→

.build();
Response response =

this.httpClient.newCall(request).execute();↪→
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Test example (migrated code)

URLConnection migration_JavaRequest_1 = new
URL(Endpoint.INSTAGRAM_QUERY_URL).openConnection();↪→

migration_JavaRequest_1.setDoOutput(true);
migration_JavaRequest_1.setRequestProperty("Cookie",

String.format("csrftoken=%s;", random));↪→

migration_JavaRequest_1.setRequestProperty("Referer",
"https://www.instagram.com/");↪→

migration_JavaRequest_1.setDoOutput(true);
migration_JavaRequest_1.getOutputStream().write(("q"

+ "=" + URLEncoder.encode(parameters,
"UTF-8")).getBytes());

↪→

↪→
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Conclusion

• The semantics-driven migration procedure was
created

• An easy-to-use DSL was constructed
• The tool prototype which is able to migrate Java 8
programs was developed

• The feasibility of automated code migration was
demonstrated

• The applicability of the proposed metamodel and
procedure was confirmed
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Directions of the future research

• Refinement of library specification formalism
• Development and extension of library model
specification language

• Increase the possibilities of user control on the
migration process

• Development of a more reliable and feature-rich
migration tool
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Contacts

Email: aleksyuk@kspt.icc.spbstu.ru

Github:
https://github.com/h31/LibraryMigration

Thank you for your attention!
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