Automated Semantics-Driven Source
Code Migration: a Pilot Prototype

Artyom AleksyuR, Vladimir Itsykson
June 26, 2017

Peter the Great St. Petersburg Polytechnic University
JetBrains Research

Introduction

Migration to a new library environment

- Transition to a new software platform

- Mobile <= Desktop
- Server <— PC

- Addition of a new library in the project
- Upgrade of an existing library
- Replacement of the library

Migration sample

Code fragment which uses java.net.URLConnection class
from the Java Class Library:

URL url = new URL("http://api.ipify.org/");
URLConnection conn = url.openConnection();

Code fragment which uses Apache HttpClient library:

HttpClient httpclient =

< HttpClients.createDefault();
HttpGet httpget = new

— HttpGet("http://api.ipify.org/");
HttpResponse httpResponse =

< httpclient.execute(httpget);

- Usually the code is migrated manually

- Migration requires a lot of tedious work = has a
tendency to introduce new defects in the code

- Identical actions while migrating several projects

Automation is neccesary

Existing approaches

- Call translation

- OS-level virtualization

- Use of wrappers

- Syntax-based approach

- Semantics-based approach

Comparison of approaches

- Use of wrappers

- Wrapper is a dummy library which provides the
interface of the source library and the
implementation of a target one

- Is not scalable

- Syntax-based approach

- Implemented in tools like TXL and IDEA Search and
Replace

- Is able to perform only basic code changes
- Semantics-based approach
- The most scalable and powerful option

Semantics-based approach scheme

/S\

ource Source Source
program program model library model
Model analysis l
> Library
operations
mapping
Model -
transformation T

/ o
Migrated
program

Migrated
program model

library model

L Target
argel ¢ library model

The previously proposed formalism (in a nutshell)

Specifies library behavior using a set of extended finite
state machines (EFSMs)

- Each transition in the automaton refers to some
kind of interaction with the library

- A new EFSM may be created during a transition

- Semantically important operations are described
using actions

- EFSMs may have attributes

Itsykson V. The formalism for semantics specification of software libraries (PSSV, 2016).

Library metamodel

Designed for Java language and intended for
object-oriented libraries

Defines:

- Methods and constructors from the library
- Possible arguments of methods and constructors
- Classes, interfaces and their relations

Example of the EFSM (graph visualization)

Request: URL

new Request(URL: String)

openConnection()

lreturn Connection

Migration procedure

- Trace extraction
- Trace mapping
- Equivalent trace calculation

- Mapping of a new trace back into the code model
(reverse mapping)

- Program transformation

10

Trace extraction & mapping

- The trace is needed to understand which parts of
the code should be changed

- A sequence of method/constructor calls

- Trace mapping transforms the code trace into the
model trace, i.e. a sequence of EFSM transitions

"

Model trace example

URL: String Request: URL

<
* . Usage in new Requef

return Connection

Connection: URLConnection

readerToString(URLConnection) 2 etContentLengthLong()

return String eturn InputStream eturn long

Body: [String InputStream: InputStream ContentLgngth: long

12

Equivalent trace calculation

- Equivalence criteria:
- The new trace carries out the same set of semantic
actions
- The new trace creates the same set of entities
(represented by EFSMs)
- The task is reduced to finding a path on the graph
- To perform the search, we use an algorithm based
on the BFS

- And what about actions and attributes?

13

Equivalent trace calculation

- A new graph is created that reflects the possible
search states
- The vertices of the graph correspond to the traces
- The edge of the graph represents the ability to
append a transition to the trace

- Each vertex stores a context, i.e. a set of available
EFSMs

- To handle argument requirements, we extended BFS
with a separate queue for vertices with missing
dependencies

- Such vertices are processed when the dependency
is resolved

14

Equivalent trace calculation

- Each transition from the source trace is usually
handled separately

- But sometimes we are able to combine several
transitions and process them together

- This trick allows to apply complex transformations
on the source code, such as reordering

- The procedure also includes several steps to
operate with entities from the context

15

Reverse mapping & program transformation

- During the reverse mapping step, a set of EFSM’s
transitions is transformed back to the code model
form

- Often it is needed to add new variables to the code

- Program transformation step includes the removal
of unnecessary statements, replacement of
expressions, addition of new statements

Prototype of the migration tool

- Processes Java 8 code
- Provides an easy-to-use DSL for describing libraries

- Includes modules for visualization, user interaction,
trace extraction and migration itself

- Written in Kotlin' language

1. https://kotlinlang.org/

https://kotlinlang.org/

The fragment of library description

val url = StateMachine(entity = HTTPEntities.url)
val request = StateMachine(entity = HTTPEntities.request)
val connection = StateMachine(entity = HTTPEntities.connection)
val hasURL = State(name = "hasURL", machine = request)
ConstructorEdge(

machine = request,

src = request.getDefaultState(),

dst = hasURL,

param = listOf(EntityParam(machine = url))

)
LinkedEdge(
dst = request.getDefaultState(),
edge = CallEdge(
machine = urlData,
src = hasURL,
methodName = "openConnection"
)
)

Trace extraction

- The trace includes an order of execution,
argument’s values, etc.

- Extraction may be done dynamically or statically
- The tool prototype employs the dynamic method

- We use aspect-oriented programming to instrument
the code

19

Implementation of the migration procedure

- The tool prototype uses AST as a code model
- CFG, SSA add no benefits, as we already have an
execution trace

- If the tool prototype is unable to automatically
calculate the equivalent trace, it asks for help from

the user
- The transformation process keeps comments and
code formatting unchanged
- Thanks to a JavaParser library

20

During the evaluation we:

- Created models for 3 libraries: Apache HttpClient,
OkHttp, HttpURLConnection

- Prepared a set of test examples

- Several artificial examples
- A real-world project

- Successfully migrated all test examples to new
libraries

21

Library model visualization

Faytoad: Siing

RequestParamName: Sing || RequestPuramValo: Sring

GetRequest: HlpGel

R St

PostRequet: HpPost.

| FEYE—

[AEm———

(o e

A

Ty Tpbniy

.ﬂ.mim. o

iy Ui By U

TopurSrcam: Tnfustream

22

Test example (source code)

RequestBody formBody = new FormBody.Builder()
.add("q", parameters)

.build();

Request request = new Request.Builder()
.url(Endpoint.INSTAGRAM_QUERY_URL)
.post(formBody)

.header("Cookie",
< String.format("csrftoken=%s;", random))
.header("Referer",
< "https://www.instagram.com/")
.build();
Response response =
< this.httpClient.newCall(request).execute();

23

Test example (migrated code)

URLConnection migration_JavaRequest_1 = new
< URL(Endpoint.INSTAGRAM_QUERY_URL).openConnection();
migration_JavaRequest_1.setDoOutput(true);
migration_JavaRequest_1.setRequestProperty("Cookie",
< String.format("csrftoken=%s;", random));
migration_JavaRequest_1.setRequestProperty("Referer",
"https://www.instagram.com/");
migration_JavaRequest_1.setDoOutput(true);
migration_JavaRequest_1.getOutputStream().write(("q"
< + "=" + URLEncoder.encode(parameters,
"UTF-8")).getBytes());

2%

Conclusion

- The semantics-driven migration procedure was
created

- An easy-to-use DSL was constructed

- The tool prototype which is able to migrate Java 8
programs was developed

- The feasibility of automated code migration was
demonstrated

- The applicability of the proposed metamodel and
procedure was confirmed

25

Directions of the future research

- Refinement of library specification formalism

- Development and extension of library model
specification language

- Increase the possibilities of user control on the
migration process

- Development of a more reliable and feature-rich
migration tool

26

Email: aleksyuk@kspt.icc.spbstu.ru

Github:
https://github.com/h31/LibraryMigration

Thank you for your attention!

27

https://github.com/h31/LibraryMigration

