
Automated Semantics-Driven Source
Code Migration: a Pilot Prototype

Artyom Aleksyuk, Vladimir Itsykson
June 26, 2017
Peter the Great St. Petersburg Polytechnic University
JetBrains Research



Introduction

Migration to a new library environment

• Transition to a new software platform
• Mobile⇐⇒ Desktop
• Server ⇐⇒ PC

• Addition of a new library in the project
• Upgrade of an existing library
• Replacement of the library
• ...

1



Migration sample

Code fragment which uses java.net.URLConnection class
from the Java Class Library:

URL url = new URL("http://api.ipify.org/");
URLConnection conn = url.openConnection();

Code fragment which uses Apache HttpClient library:

HttpClient httpclient =
HttpClients.createDefault();↪→

HttpGet httpget = new
HttpGet("http://api.ipify.org/");↪→

HttpResponse httpResponse =
httpclient.execute(httpget);↪→

2



Difficulties

• Usually the code is migrated manually
• Migration requires a lot of tedious work =⇒ has a
tendency to introduce new defects in the code

• Identical actions while migrating several projects

Automation is neccesary

3



Existing approaches

• Call translation
• OS-level virtualization
• Use of wrappers
• Syntax-based approach
• Semantics-based approach

4



Comparison of approaches

• Use of wrappers
• Wrapper is a dummy library which provides the
interface of the source library and the
implementation of a target one

• Is not scalable

• Syntax-based approach
• Implemented in tools like TXL and IDEA Search and
Replace

• Is able to perform only basic code changes

• Semantics-based approach
• The most scalable and powerful option

5



Semantics-based approach scheme

Source
program

Migrated
program

Source
library

Target
library model

Model analysis

Library
operations
mapping

Model
transformation

Source
program model

Migrated
program model

Source
library model

Target
library model

6



The previously proposed formalism (in a nutshell)

Specifies library behavior using a set of extended finite
state machines (EFSMs)

• Each transition in the automaton refers to some
kind of interaction with the library

• A new EFSM may be created during a transition
• Semantically important operations are described
using actions

• EFSMs may have attributes

Itsykson V. The formalism for semantics specification of software libraries (PSSV, 2016).

7



Library metamodel

Designed for Java language and intended for
object-oriented libraries

Defines:

• Methods and constructors from the library
• Possible arguments of methods and constructors
• Classes, interfaces and their relations

8



Example of the EFSM (graph visualization)

Request: URL

Init

Constructed

new Request(URL: String)

openConnection()

return Connection

9



Migration procedure

• Trace extraction
• Trace mapping
• Equivalent trace calculation
• Mapping of a new trace back into the code model
(reverse mapping)

• Program transformation

10



Trace extraction & mapping

• The trace is needed to understand which parts of
the code should be changed

• A sequence of method/constructor calls
• Trace mapping transforms the code trace into the
model trace, i.e. a sequence of EFSM transitions

11



Model trace example

URL: String Request: URL

Connection: URLConnection

Body: String InputStream: InputStream ContentLength: long

Constructed

hasURL

Usage in new Request(String)

Constructed

new Request(String)

openConnection()

Constructed

return Connection

readerToString(URLConnection) getInputStream() getContentLengthLong()

Constructed

return String

Constructed

return InputStream

Constructed

return long

12



Equivalent trace calculation

• Equivalence criteria:
• The new trace carries out the same set of semantic
actions

• The new trace creates the same set of entities
(represented by EFSMs)

• The task is reduced to finding a path on the graph
• To perform the search, we use an algorithm based
on the BFS

• And what about actions and attributes?

13



Equivalent trace calculation

• A new graph is created that reflects the possible
search states
• The vertices of the graph correspond to the traces
• The edge of the graph represents the ability to
append a transition to the trace

• Each vertex stores a context, i.e. a set of available
EFSMs

• To handle argument requirements, we extended BFS
with a separate queue for vertices with missing
dependencies
• Such vertices are processed when the dependency
is resolved

14



Equivalent trace calculation

• Each transition from the source trace is usually
handled separately

• But sometimes we are able to combine several
transitions and process them together
• This trick allows to apply complex transformations
on the source code, such as reordering

• The procedure also includes several steps to
operate with entities from the context

15



Reverse mapping & program transformation

• During the reverse mapping step, a set of EFSM’s
transitions is transformed back to the code model
form

• Often it is needed to add new variables to the code
• Program transformation step includes the removal
of unnecessary statements, replacement of
expressions, addition of new statements

16



Prototype of the migration tool

• Processes Java 8 code
• Provides an easy-to-use DSL for describing libraries
• Includes modules for visualization, user interaction,
trace extraction and migration itself

• Written in Kotlin1 language

1. https://kotlinlang.org/

17

https://kotlinlang.org/


The fragment of library description

val url = StateMachine(entity = HTTPEntities.url)
val request = StateMachine(entity = HTTPEntities.request)
val connection = StateMachine(entity = HTTPEntities.connection)
val hasURL = State(name = "hasURL", machine = request)
ConstructorEdge(

machine = request,
src = request.getDefaultState(),
dst = hasURL,
param = listOf(EntityParam(machine = url))

)
LinkedEdge(

dst = request.getDefaultState(),
edge = CallEdge(

machine = urlData,
src = hasURL,
methodName = "openConnection"

)
)

18



Trace extraction

• The trace includes an order of execution,
argument’s values, etc.

• Extraction may be done dynamically or statically
• The tool prototype employs the dynamic method
• We use aspect-oriented programming to instrument
the code

19



Implementation of the migration procedure

• The tool prototype uses AST as a code model
• CFG, SSA add no benefits, as we already have an
execution trace

• If the tool prototype is unable to automatically
calculate the equivalent trace, it asks for help from
the user

• The transformation process keeps comments and
code formatting unchanged
• Thanks to a JavaParser library

20



Evaluation

During the evaluation we:

• Created models for 3 libraries: Apache HttpClient,
OkHttp, HttpURLConnection

• Prepared a set of test examples
• Several artificial examples
• A real-world project

• Successfully migrated all test examples to new
libraries

21



Library model visualization

URL: String

GetRequest: HttpGet

Client: CloseableHttpClient

Response: CloseableHttpResponse

Body: String

HttpClientFactory: HttpClients

InputStream: InputStream ContentLength: long

Entity: HttpEntity

EntityUtils: EntityUtils

StatusCode: int

ByteArrayEntity: ByteArrayEntity

Payload: String

PostRequest: HttpPost

RequestParamName: String RequestParamValue: String

Constructed

encodedURL

Template

Constructed

Usage

Constructed

Usage

Init

new GetRequest: HttpGet(URL: String)

addHeader(headerName, headerValue)

Constructed

Usage

Final

close() execute(GetRequest: HttpGet) execute(PostRequest: HttpPost)

Constructed

return CloseableHttpResponse() return CloseableHttpResponse()

getEntity() Template

Constructed

return HttpEntity()

Constructed

return int()

Constructed

Init

createDefault()

return CloseableHttpClient()

Constructed Constructed

getContent() getContentLength()

Init

Usage

return InputStream() return long() toString(Entity: HttpEntity)

return String()

Init

Constructed

new ByteArrayEntity

Usage

Init

Constructed

Template

Usage

Init

new PostRequest: HttpPost(URL: String)

Usage

addHeadersetEntity

Constructed

Usage

Constructed

Usage

22



Test example (source code)

RequestBody formBody = new FormBody.Builder()
.add("q", parameters)
.build();

Request request = new Request.Builder()
.url(Endpoint.INSTAGRAM_QUERY_URL)
.post(formBody)
.header("Cookie",

String.format("csrftoken=%s;", random))↪→

.header("Referer",
"https://www.instagram.com/")↪→

.build();
Response response =

this.httpClient.newCall(request).execute();↪→

23



Test example (migrated code)

URLConnection migration_JavaRequest_1 = new
URL(Endpoint.INSTAGRAM_QUERY_URL).openConnection();↪→

migration_JavaRequest_1.setDoOutput(true);
migration_JavaRequest_1.setRequestProperty("Cookie",

String.format("csrftoken=%s;", random));↪→

migration_JavaRequest_1.setRequestProperty("Referer",
"https://www.instagram.com/");↪→

migration_JavaRequest_1.setDoOutput(true);
migration_JavaRequest_1.getOutputStream().write(("q"

+ "=" + URLEncoder.encode(parameters,
"UTF-8")).getBytes());

↪→

↪→

24



Conclusion

• The semantics-driven migration procedure was
created

• An easy-to-use DSL was constructed
• The tool prototype which is able to migrate Java 8
programs was developed

• The feasibility of automated code migration was
demonstrated

• The applicability of the proposed metamodel and
procedure was confirmed

25



Directions of the future research

• Refinement of library specification formalism
• Development and extension of library model
specification language

• Increase the possibilities of user control on the
migration process

• Development of a more reliable and feature-rich
migration tool

26



Contacts

Email: aleksyuk@kspt.icc.spbstu.ru

Github:
https://github.com/h31/LibraryMigration

Thank you for your attention!

27

https://github.com/h31/LibraryMigration

