
Towards Static Type-
checking for Jolie
Bogdan Mingela, Nikolay Troshkov, Manuel Mazzara

Larisa Safina, Alexander Tchitchigin and Daniel De Carvalho

Eighth Workshop on Program Semantics,
Specification and Verification: Theory and
Applications - Moscow, June 26, 2017

Agenda

1

Microservice
Architecture

2

Jolie
Programming
Language

3

Static Type
Checking

4

Conclusions

1: Microservice
Architecture

Microservices

Inspired by SOA
Developed around

business capabilities

Each microservice
implements a limited

amount of functionality
and runs its own

process

Uses lightweight
communication

mechanisms

Supports pervasive
distribution and

scalability

What is a
microservice?

• A very small service?

• How “small”?

• How do we measure size?
• Line of codes
• Size of executable
• Number of classes (if OOP)
• Number of modules
• API
• Size of team

What does this all mean?

• A Microservice is not just “a very small service”

• There is not a predefined “size limit” that define whether a
service is a microservice or not

• Indeed “microservice” is a somehow misleading definition
• Or better there is not definition at all, or not a unique one

Microservice, definition

• A microservice is a cohesive, independent process interacting via
messages

• “Cohesive” indicates that a service implements only functionalities
strongly related to the concern that it is meant to model, this
implies the code base to be functionally limited

• “Micro” refers to the sizing: a microservice must be manageable
by a single development team (5-9 developers)

Monolith

Microservices

Distinctive Characteristics

• Size : The size is comparatively small wrt. a typical service

• Focus on providing only a single business capability

• Benefits in terms of service maintainability and extendibility

• Bounded context : related functionalities are combined into a single business
capability, which is then implemented as a service

• Independency : Each service is operationally independent from other, and the
only form of communication between services is through their published
interfaces

Advantages of Microservices

• Smaller code base
• Simpler to develop / test / deploy / scale

• Easier for new developers
• Start faster

• Polyglot architecture
• Each service may use individual technology

• Evolutionary design
• Remove, add, replace…

SOA vs. Microservices

• In SOA Services are not required to be self-contained with data and UI
• No focus on independent deployment units and its consequences

• Focused on enabling business-level programming through business
processing engines and languages such as BPEL and BPMN

• Service orchestration

2: Jolie Programming
Language

Language-based

• The fine granularity of microservices moves the complexity of
applications from the implementation of services to their
coordination

• Communication, interfaces, and dependencies are central to the
development of microservice applications

• Such concepts should be available as first class entities in a language
that targets microservices

Programming language for microservices

• Four concepts are identified to be first class entities in a
programming language for microservices
• Interfaces
• Ports
• Workflows
• Processes

• Jolie (Java Orchestration Language Interpreter Engine) includes all of
them

Jolie Programming Language

• A language for microservice
• Imperative with standard constructs such as assignments, conditionals and

loops

• Constructs dealing with distribution, communication and services

• Variables are trees to for easy marshal/unmarshal (XML)

• Separation of concerns between behaviour and deployment information

• Jolie takes inspiration from WS-BPEL and CCS
• transfers these ideas into a full-fledged programming language

Innopolis and the community

Jolie has a broad community
of both industrial and
academic partners

• Denmark, Russia, Italy, UK, France

• http://www.jolie-
lang.org/academia.html

Innopolis is a full partner of
the project

• We contributed on the
development of the language itself,
the type system, a static type
checker and IDE

3: Static Type
Checking

Static type checking

Effective technique
of program
verification

Identify bugs on
the level of
compilation

Improve software
quality and lower
number of bugs

Preventing
avoidable errors

Jolie type checker

• At the moment the language is dynamically typed

• Static Type system has been formally defined
• “A Type System for the Jolie Language” by J. Nielsen

• Prototype implemented for the core fragment of the Jolie language
• excluding recursive types, arrays, subtyping, faults and deployment

instructions

Jolie type
checker

architecture

Jolie type checker implementation

Jolie interpreter
reads a Jolie
program

1

Builds an abstract
syntax tree (AST),

2

Visits AST and
produces a set of
logical theorems
written in Z3

3

Theorems feed to
a Z3 solver as an
input

4

Z3 solver checks if
they are
SAT/UNSAT

5

Notation

• A behaviour (program) B, typed with respect to an environment Γ,
updates Γ to Γ’

Example: typing rule of IF

Example of IF statement (correctly-typed)

Z3 code

SAT

Example of IF statement (non correctly-typed)

Z3 code

UNSAT

4: Conclusions

Microservices, summary

Microservices architecture
is more complex than one
based on monoliths

•The cost of growing and scaling
easily

1

Companies of considerable
size migrated their mission
critical systems (of
considerable size) into the
new architectural style

•(not so) “Early” understanding of
how critical scalability is

2

A language-based approach
seems the best choice to
cope with related
challenges (not a new idea
though)

3

Jolie, summary

• Native support for scalability and reusability

• Communication mediums and protocols support

• Structured workflows

• Reliable parallel coding

• Formal specifications

• Used both in academia and industry

Additional
References

1. N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, and L. Safina - Microservices: yesterday, today, and tomorrow.
In Present and Ulterior Software Engineering, Springer, 2017

2. N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L. Safina.
Microservices: How to make your application scale. In PSI 11th edition.
Springer, 2017

3. N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara - Microservices:
Migration of a mission critical system. Technical report April 2017
https://arxiv.org/abs/1704.04173

4. Manuel Mazzara Fabrizio Montesi Claudio Guidi, Ivan Lanese.
Microservices: a language-based approach. In Present and Ulterior
Software Engineering. Springer, 2017

5. Alexey Bandura, Nikita Kurilenko, Manuel Mazzara, Victor Rivera, Larisa
Safina, Alexander Tchitchigin - Jolie Community on the Rise. 9th IEEE
International Conference on Service-Oriented Computing, 2016

6. Larisa Safina, Manuel Mazzara, Fabrizio Montesi, Victor Rivera - Data-
Driven Workflows for Microservices: Genericity in Jolie. 30th IEEE
International Conference on Advanced Information Networking and
Applications, 2016.

7. Alexander Tchitchigin, Larisa Safina, Manuel Mazzara, Mohamed Elwakil,
Fabrizio Montesi, Victor Rivera. Refinement types in jolie. In
Spring/Summer Young Researchers Colloquium on Software Engineering,
SYRCoSE, 2016.

https://arxiv.org/abs/1704.04173

