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Abstract. Polynomial factorization is a classical algorithmic problem in
algebra, which has a wide range of applications. Of special interest is fac-
torization over finite fields, among which the field of order two is probably
the most important one due to the relationship to Boolean functions. In
particular, factorization of Boolean polynomials corresponds to decom-
position of Boolean functions given in the Algebraic Normal Form. It has
been also shown that factorization provides a solution to decomposition
of functions given in the full DNF (i.e., by a truth table), for positive
DNFs, and for cartesian decomposition of relational datatables. These
applications show the importance of developing fast and practical fac-
torization algorithms. In the paper, we consider some recently proposed
polynomial time factorization algorithms for Boolean polynomials and
describe a parallel MIMD implementation thereof, which exploits both
the task and data level parallelism. We report on an experimental eval-
uation, which has been conducted on logic circuit synthesis benchmarks
and synthetic polynomials, and show that our implementation signifi-
cantly improves the efficiency of factorization. Finally, we report on the
performance benefits obtained from a parallel algorithm when executed
on a massively parallel many core architecture (Redefine).

Keywords: Boolean Polynomials · Factorization · Reconfigurable Com-
puting.

1 Introduction

Polynomial factorization is a classical algorithmic problem in algebra, [8], which
has numerous important applications. An instance of this problem, which de-
serves a particular attention, is factorization of Boolean polynomials, i.e., mul-
tilinear polynomials over the finite field of order 2. A Boolean polynomial is one
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of the well-known sum-of-product representations of Boolean functions known
as Zhegalkine polynomials [14] in the mathematical logic or the Reed–Muller
canonical form [10] in the circuit synthesis. The advantage of this form that has
recently made it popular again is a more natural and compact representation of
some classes of Boolean functions (e.g., arithmetical functions, coders/cyphers,
etc.), a more natural mapping to some circuit technologies (FPGA–based and
nanostructure–based electronics), and good testability properties.

Factorization of Boolean polynomials is a particular case of decomposition
(so–called disjoint conjunctive or AND–decomposition) of Boolean functions.
Indeed, in a Boolean polynomial each variable has degree at most 1, which
makes the factors have disjoint variables: F (X,Y ) = F1(X) ·F2(Y ), X ∩Y = ∅.

It has been recently shown [4, 5] that factorizaton of Boolean polynomials pro-
vides a solution to conjunctive decomposition of functions given in the full DNF
(i.e., by a truth table) and for positive DNFs without the need of (inefficient)
transformation between the representations. Besides, it provides a method for
Cartesian decomposition of relational datatables [3, 6], i.e., finding tables such
that their unordered Cartesian product gives the source table. We give some
illustrating examples below.

Consider the following DNF

ϕ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v) ∨ (x ∧ u ∧ v)

It is equivalent to

ψ = (x ∧ u) ∨ (x ∧ v) ∨ (y ∧ u) ∨ (y ∧ v)

since the last term in ϕ is redundant. One can see that

ψ ≡ (x ∨ y) ∧ (u ∨ v)

and the decomposition components x ∨ y and u ∨ v can be recovered from the
factors of the polynomial

Fψ = xu+ xv + yu+ yv = (x+ y) · (u+ v)

constructed for ψ.

The following full DNF
ϕ = (x ∧ ¬y ∧ u ∧ ¬v) ∨(x ∧ ¬y ∧ ¬u ∧ v)∨

∨(¬x ∧ y ∧ u ∧ ¬v) ∨ (¬x ∧ y ∧ ¬u ∧ v)
is equivalent to

(x ∧ ¬y) ∨ (¬x ∧ y)
∧

(u ∧ ¬v) ∨ (¬u ∧ v)

and the decomposition components of ϕ can be recovered from the factors of the
polynomial

Fϕ = xȳuv̄ + xȳūv + x̄yuv̄ + x̄yūv = (xȳ + x̄y) · (uv̄ + ūv) (1)

constructed for ϕ.

Finally, Cartesian decomposition of the following table
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can be obtained from the factors of the polynomial

zB · q · u · xA · yC+ yB · q · u · xA · yC+
yB · r · v · xA · zC+ zB · r · v · xA · zC +
yB · p · u · xA · xC+ zB · p · u · xA · xC =

= (xA · yB + xA · zB) · (q · u · yC + r · v · zC + p · u · xC)

constructed for the table’s content.

Decomposition facilitates finding a more compact representation of Boolean
functions and data tables, which is applied in the scope of the Logic Circuit
Synthesis, self-organizing databases, and dependency mining, respectively. Due
to the typically large inputs in these tasks, it is important to develop efficient
and practical factorization algorithms for Boolean polynomials.

In [13], Shpilka and Volkovich showed a connection between polynomial fac-
torization and identity testing. It follows from their results that a Boolean poly-
nomial can be factored in time O(l3), where l is the size of the polynomial given
as a symbol sequence. The approach employs multiplication of polynomials ob-
tained from the input one, which is a costly operation in case of large inputs. In
[4], Emelyanov and Ponomaryov proposed an alternative approach to factoriza-
tion and showed that it can be done without explicit multiplication of Boolean
polynomials. The approach has been further discussed in [7].

In this paper, we propose a parallel version of the decomposition algorithm
from [4, 7]. In Section 2, we revisit the sequential factorization algorithm from
these papers. In Section 3, we describe a parallel MIMD implementation of the
algorithm and further in Section 4 we perform a quantitative analysis of the
parallel algorithm versus the sequential one. Finally, in Section 5 we evaluate
our algorithm on a massively parallel many core architecture (Redefine) and
outline the results.

2 Background

In this section we reproduce the sequential algorithm from [4, 7] for the ease of
exposition. Let us first introduce basic definitions and notations.

A polynomial F ∈ F2[x1, . . . , xn] is called factorable if F = F1 · . . . · Fk,
where k ≥ 2 and F1, . . . , Fk are non-constant polynomials. The polynomials
F1, . . . , Fk are called factors of F . It is important to realize that since we consider
multilinear polynomials (every variable can occur only in the power of ≤ 1), the
factors are polynomials over disjoint sets of variables. In the following sections,
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we assume that the polynomial F does not have trivial divisors, i.e., neither x,
nor x+ 1 divides F . Clearly, trivial divisors can easily be recognized.

For a polynomial F , a variable x from the set of variables V ar(F ) of F ,
and a value a ∈ {0, 1}, we denote by Fx=a the polynomial obtained from F
by substituting x with a. ∂F

∂x denotes a formal derivative of F wrt x. Given a
variable z, we write z|F if z divides F , i.e., z is present in every monomial of F
(note that this is equivalent to the condition ∂F

∂z = Fz=1). Given a set of variables
Σ and a monomial m, the projection of m onto Σ is 1 if m does not contain any
variable from Σ, or is equal to the monomial obtained from m by removing all
the variables not contained in Σ, otherwise. The projection of a polynomial F
onto Σ, denoted by F |Σ , is the polynomial obtained as the sum of monomials
from the set S projected onto Σ, with duplicate monomials removed.

2.1 Factorization Algorithm

Algorithm 1 describes the sequential version of the factorization algorithm. As
already mentioned, the factors of a Boolean polynomial have disjoint sets of
variables. This property is employed in the algorithm, which tries to compute a
variable partition. Once it is computed, the corresponding factors can be easily
obtained as projections of the input polynomial onto the sets from the partition.

The algorithm chooses a variable randomly from the variable set of F. As-
suming the polynomial F contains at least two variables the algorithm partitions
the variable set of F into two sets with respect to the chosen variable:

– the first set Σsame contains the selected variable and corresponds to an
irreducible polynomial;

– the second set Σother corresponds to the second polynomial which can admit
further factorization.

The factors of F, Fsame and Fother are obtained as the projections of the input
polynomial onto Σsame and Σother, respectively.

In lines 1-3, we select an arbitrary variable x from the variable set of F and
compute the polynomials A and B. A is the derivative of F wrt x and B is the
polynomial obtained by setting x to zero in F. In lines 4-10, we loop through the
variable set of F excluding x, calculate the polynomials C and D, and check if
the product AD is equal to BC. C is the derivative of polynomial A and D is
the derivative of polynomial B. To check whether AD is equal to BC we invoke
the IsEqual procedure in line 6. We describe the IsEqual procedure in detail
in the next subsection.

2.2 IsEqual Procedure

Algorithm 2 describes the sequential version of the IsEqual procedure.
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Algorithm 1 Sequential Factorization Algorithm

Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F

1: Take an arbitrary variable x occurring in F
2: Let A = ∂F

∂x
, B = Fx=0

3: Let Σsame = x,Σother = ∅, Fsame = 0, Fother = 0
4: for each y ∈ var(F ) \ {x} do
5: Let C = ∂A

∂y
, D = ∂B

∂y

6: if IsEqual(A,D,B,C) then
7: Σother = Σother ∪ {y}
8: else
9: Σsame = Σsame ∪ {y}

10: end if
11: end for
12: If Σother = ∅ then F is non-factorable
13: Return polynomials Fsame and Fother obtained as projections onto Σsame and

Σother respectively.

– The procedure takes input polynomials A,B,C,D and computes whether
AD = BC by employing recursion.

– Lines 1-2,7-16 implement the base cases when AD = BC can be determined
trivially.

– In Line 3-5, we check whether a variable z divides the polynomials A,B,C,D
such that the condition in Line 4 holds. If this is not the case, then we
can eliminate z from A,B,C,D and check if the products of the resulting
polynomials are equal.

– In Lines 17-25, we recursively invoke IsEqual procedure on polynomials,
whose sizes are smaller than the size of the original ones.

2.3 Scope for Parallelism

The crux of Algorithm 1 is the loop in Lines 4-11. We observe that the different
iterations of the loop are independent of each other. Hence the loop exhibits
thread level parallelism which can be exploited for performance gain. The con-
ditional block inside the loop in Lines 6-10 can be used to exploit the task level
parallelism between the multiple threads.
Multiple sections of Algorithm 2 are amenable for parallelization. Checking the
divisibility of the polynomials A,B,C,D in Lines 3-6 of IsEqual procedure can
be performed independently. In Lines 16-23, the recursive calls to IsEqual pro-
cedure are independent of each other and exhibit thread level parallelism.
In the next section we propose a parallel algorithm using the above observations.
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Algorithm 2 Sequential IsEqual Procedure

Input Boolean polynomials A,B,C,D
Output TRUE if AD is equal to BC and FALSE otherwise.

1: If A=0 or D=0 then return (B=0 or C=0)
2: If B=0 or C=0 then return FALSE
3: for each z occurring in at least one of A,B,C,D do
4: if z|A or z|D xor z|B or z|C then
5: return FALSE
6: end if
7: Replace every X ∈ {A,B,C,D} with ∂X

∂z
, provided z|X

8: end for
9: if A=1 and D=1 then return (B=1 and C=1)

10: end if
11: if B=1 and C=1 then return FALSE
12: end if
13: if A=1 and B=1 then return (D=C)
14: end if
15: if D=1 and C=1 then return (A=B)
16: end if
17: Pick a variable z
18: if not(IsEqual(Az=0, Dz=0, Bz=0, Cz=0)) then return FALSE
19: end if
20: if not(IsEqual( ∂A

∂z
, ∂D

∂z
, ∂B

∂z
, ∂C

∂z
)) then return FALSE

21: end if
22: if IsEqual( ∂A

∂z
, Bz=0, Az=0,

∂B
∂z

) then return TRUE
23: end if
24: if IsEqual( ∂A

∂z
, Cz=0, Az=0,

∂C
∂z

) then return TRUE
25: else return FALSE
26: end if

3 Proposed Approach

3.1 Parallel Factorization Algorithm

Algorithm 3 describes the parallel version of the factorization algorithm. In Lines
1-3, we select an arbitrary variable x from the variable set of F and compute
the polynomials A and B. In Lines 4-11, we perform multiple loop iterations
independently in parallel by spawning multiple threads. Each thread will return
two sets Σtid

same and Σtid
other specific to the scope of the thread designated by

thread identifier tid. In Lines 12-13, the variable sets Σsame and Σother are
computed as the union of the thread specific instances, respectively. Note that
Lines 12-13 perform barrier synchronization of all the parallel threads.

3.2 Parallel IsEqual Procedure

Algorithm 4 describes the parallel version of the IsEqual procedure. This algo-
rithm takes as input four polynomials A,D,B,C and checks whether the prod-
uct AD is equal to the product BC. Lines 1-2 and lines 14-21 describe the cases
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Algorithm 3 Parallel Decomposition Algorithm

Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F

1: Take an arbitrary variable x occurring in F
2: Let A = ∂F

∂z
, B = Fz=0

3: Let Σsame = x,Σother = ∅, Fsame = 0, Fother = 0
4: for each y ∈ var(F ) \ {x} do in parallel
5: Let C = ∂A

∂y
D = ∂B

∂y

6: if IsEqual(A,D,B,C) then
7: Σtid

other = Σtid
other ∪ {y}

8: else
9: Σtid

same = Σtid
same ∪ {y}

10: end if
11: end for Wait for all the parallel threads to finish
12: Σother =

⋃
tidΣ

tid
other

13: Σsame =
⋃

tidΣ
tid
same

14: If Σother = ∅ then F is non-factorable; stop
15: Return polynomials Fsame and Fother obtained as projections onto Σsame and

Σother, respectively.

when determining AD = BC is trivial. In lines 3-9, we check whether a variable
z divides the input polynomials A,D,B,C such that the condition in Line 5
holds. If this is not the case, we divide them by z to obtain the reduced poly-
nomials. The above operations are performed for each variable independently
in parallel by spawning multiple threads. In Line 8 each thread checks whether
a variable ztid (tid denotes the thread id) is a divisor of any of A,B,C,D. If
ztid divides any of A,B,C,D it computes the corresponding reduced polyno-
mials Atid, Dtid, Btid, Ctid obtained by dividing any of A,D,B,C by ztid, re-
spectively. In line 10 we wait for all the threads to finish. In Line 13 we take
pairwise intersection of the corresponding monomials of thread specific polyno-
mials Atid, Dtid, Btid, Ctid to form polynomials which are free of trivial divisors.
Intersection of two monomials m1,m2 is 1 if m1,m2 do not contain common vari-
ables and otherwise it is the monomial, which consists of the variables present in
both m1 and m2. In Lines 23-27, we perform four recursive calls to the IsEqual
function independently in parallel by spawning multiple threads. In Line 28-37,
we wait for all the threads to finish and compare the outputs of each threads to
form the final output. Note that lines 10 and 28 perform barrier synchronization
of all the parallel threads.

4 Experiments and Results

Experimental evaluation of the sequential and parallel algorithms was made on
Logic circuit synthesis benchmarks and synthetic Boolean polynomials.
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Algorithm 4 Parallel IsEqual Function

Input Boolean polynomials A,B,C,D
Output TRUE if AD is equal to BC and FALSE otherwise.

1: If A =0 or D=0 then return (B=0 or C=0)
2: If B=0 or C=0 then return FALSE
3: for each z occurring in at least one of A,B,C,D do in parallel
4: set flagtid= True
5: if z|A or z|D xor z|B or z|C then
6: set flagtid= FALSE
7: end if
8: Replace every Xtid ∈ {A,B,C,D} with ∂Xtid

∂z
, provided z|Xtid

9: end for
10: Wait for all threads to finish
11: if

∧
tid

flagtid = FALSE then return FALSE

12: end if
13: X =

⋂
tidX

tid, for X ∈ {A,B,C,D}
14: if A=1 and D=1 then return (B=1 and C=1)
15: end if
16: if B=1 and C=1 then return FALSE
17: end if
18: if A=1 and B=1 then return (D=C)
19: end if
20: if D=1 and C=1 then return (A=B)
21: end if
22: Pick a variable z
23: Do the next 4 lines in parallel
24: x = not(IsEqual(Az=0, Dz=0, Bz=0, Cz=0))
25: y = not(IsEqual( ∂A

∂z
, ∂D

∂z
, ∂B

∂z
, ∂C

∂z
))

26: z = IsEqual( ∂A
∂z
, Bz=0, Az=0,

∂B
∂z

)
27: w = IsEqual( ∂A

∂z
, Cz=0, Az=0,

∂C
∂z

)
28: Wait for all threads to finish
29: if not(x) then return FALSE
30: end if
31: if not(y) then return FALSE
32: end if
33: if z then return TRUE
34: end if
35: if w then return TRUE
36: else return FALSE
37: end if
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4.1 Logic Circuit Synthesis Benchmarks

We used ITC’99 [2], Iscas’85 [9], and n-bit ripple carry adder [12] benchmarks.
RTL designs of the digital logic circuits were converted from Verilog to the full
disjunctive normal form to obtain the corresponding Boolean polynomial. The
sequential and parallel algorithms were evaluated on the obtained Boolean poly-
nomials. Table 1 shows the execution time of sequential and parallel algorithms
executed on Xeon processor running at 2.8 GHz with 4 threads averaged over
5 runs. One can observe a considerable performance speedup of the parallel
algorithm over the sequential one.

Table 1. Results on Xeon processor at 2.8 GHz using 4 threads

Benchmark Sequential Multi-Threaded Speedup

ITC’99 4324(s) 1441(s) 3.01
Iscas’85 7181(s) 2633(s) 2.73
EPFL Adder 1381(s) 374(s) 3.69

4.2 Synthetic Polynomials

Synthetic polynomials of varying complexities were generated at random and
sequential and parallel algorithms were evaluated on them. Table 2 shows exe-
cution times for the sequential and parallel algorithms executed on Xeon pro-
cessor running at 2.8 GHz with 4 threads averaged over 5 runs. We observe that
the execution time of both sequential and multithreaded algorithm increases
drastically with the increase in the complexity of Boolean polynomials. We also
observe that the speedup due to parallelization decreases with the increase in
the complexity of Boolean polynomials.

Table 2. Execution time of factoring synthetic polynomials on Xeon processor at 2.8
GHz using 4 threads

Number of Monomials Sequential Multi-Threaded Speedup

10 0.023(s) 0.0074(s) 3.12
50 16.29(s) 5.07(s) 3.21
100 103.5(s) 30.44(s) 3.4
500 483.6(s) 178.1(s) 2.7
1000 1165(s) 520.9(s) 2.2
5000 1430(s) 735.11(s) 1.91
10000 12614(s) 8034(s) 1.57
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(a) (b)

Fig. 1. (a) Parallel speedup vs number of threads with fixed problem size
(b) Parallel speedup vs number of threads with fixed problem size per thread

4.3 Scaling Results

Figure 1a shows the speedup of the parallel decomposition algorithm over the
sequential one wrt the number of threads. Here, the problem size is fixed to
examine the strong scaling behaviour of the parallel decomposition algorithm.
We observe that the parallel speedup is decreased as the size (complexity) of
the problem increases. As the problem size increases, so does the call to the
sequential bottleneck of the algorithm (simplification of Boolean polynomials),
which causes the speedup to reduce.
Figure 1b shows the speedup of the parallel decomposition algorithm over the se-
quential algorithm wrt the number of threads. Here, the problem size per thread
is fixed to examine the weak scaling behaviour of the parallel algorithm. The in-
crease in the parallel speedup with the increase in the number of threads is less
than the ideal linear speedup. This is due to the sequential bottlenecks in the
decomposition algorithm (simplification of Boolean polynomials) and the com-
munication bottleneck among multiple threads. Note that in these tests number
of variables ranges from tens to two hundreds.

5 Implementation on Redefine

The REDEFINE architecture [1] comprises Compute Resources (CRs) connected
through a Network-on-Chip (NoC) (see Figure 2a). REDEFINE is an application
accelerator, which can be customized for a specific application domain through
reconfiguration. Reconfiguration in REDEFINE can be performed primarily at
two levels, viz. the level of aggregation of CRs to serve as processing cores for
coarse grain multi-input, multi-output macro operations, and at the level of
Custom Function Units (CFU) presented at the Hardware Abstraction Layer
(HAL) as Instruction Extensions. Unlike traditional architectures, Instructions
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Fig. 2. (a) A 16 node REDEFINE comprising of a 4x4 toriodal mesh of routers and a
redefine resource manager(RRM) for interfacing with the host
(b) Composition of a compute Node

Extensions in REDEFINE can be defined post-silicon. Post-silicon definition
of Instruction Extensions in REDEFINE is a unique feature of REDEFINE
that sets it aside from other commercial multicores by allowing customization of
REDEFINE for different application domains.

REDEFINE execution model is inspired by the macro-dataflow model. In this
model, an application is described as a hierarchical dataflow graph, as shown in
Figure 3, in which the vertices are called hyperOps, and the edges represent
explicit data transfer or execution order requirements among hyperOps. A hy-
perOp is a multiple-input and multiple-output (MIMO) macro operation. A
hyperOp is ready for execution as soon as all its operands are available and all
its execution order or synchronization dependencies are satisfied. Apart from
the arithmetic, control, and memory load and store instructions, the REDE-
FINE execution model includes primitives for explicit data transfers and syn-
chronization among hyperOps and primitives for adding new nodes (hyperOps)
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and edges to the application graph during execution. Thus, the execution model
supports dynamic (data-dependent) parallelism. The execution model follows
non-preemptive scheduling of hyperOps; therefore cyclic dependencies are for-
bidden among hyperOps. The runtime unit named Orchestrator schedules ready
hyperOps onto CRs. A CR comprises four Compute Elements (CEs). Each CE
executes a hyperOp (see Figure 2b). All communications among hyperOps are
unidirectional i.e., only producer hyperOp initiates and completes a communi-
cation. Thus with sufficient parallelism, all communications can overlap with
computations. Compared to other hybrid dataflow/control-flow execution mod-
els, REDEFINE execution model simplifies the resource management and the
memory model required to support arbitrary parallelism.

Fig. 3. Macro-dataflow execution model. An application described as a hierarchical
dataflow graph, in which vertices represent hyperOps and edges represent explicit data
transfer or execution order requirements between the connected hyperOps.

5.1 Decomposition Algorithm Using HyperOps

Algorithm 5 describes in pseudo-code the decomposition algorithm when written
using ”C with HyperOps”. The code snippet, corresponding to Algorithm 5 is
presented in the listing below. In the code snippet the terms CMAddr, Sync,

kernel, WriteCM, CMADDR are REDEFINE specific annotations. Lines 2-8
and 12-13 of Algorithm 5 are the same as Lines 5-10 and 1-3 of Algorithm 1,
respectively. In Lines 15-17 of Algorithm 5, for each variable y in the variable
set of F (excluding x) we spawn HyperOps in parallel to calculate whether y
belongs to Σsame or Σother. In Lines 1-10, we define the HyperOp. It takes as
input Boolean polynomials A,B and a variable y and adds y to Σsame or Σother.
In Lines 18-20, we wait for the all the HyperOps to finish and output Fsame and
Fother.

Listing 1.1 below shows the decomposition algorithm written in C with Hy-
perOps.

The proposed algorithm with HyperOps was evaluated using REDEFINE em-
ulator executed on Intel Xeon processor. Table 3 shows the execution time of the
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Algorithm 5 Decomposition Algorithm using HyperOps

Input Boolean polynomial to be factored F
Output Fsame and Fother which are the factors of the input polynomial F
Global variables Σsame, Σother

1: Begin HyperOp
2: Inputs: A,B, variable y
3: Calculate C = ∂A

∂y
, D = ∂B

∂y

4: if IsEqual(A,D,B,C) then
5: Σother = Σother ∪ {y}
6: else
7: Σsame = Σsame ∪ {y}
8: end if
9: Call Sync HyperOp

10: End HyperOp
11: Take an arbitrary variable x occurring in F
12: Let A = ∂F

∂z
, B = Fz=0

13: Let Σsame = x,Σother = ∅, Fsame = 0, Fother = 0
14: for each y ∈ var(F ) \ {x} do in parallel
15: Spawn HyperOp with inputs A,B, y
16: end for
17: Wait for the Sync HyperOp to return
18: If Σother = ∅ then F is non-factorable; stop
19: Return polynomials Fsame and Fother obtained as projections onto Σsame and

Σother, respectively.

Table 3. Parallel factoring of synthetic boolean polynomials using REDEFINE emu-
lation running on Intel Xeon processor at 2.8 GHz

Number of
Monomials

Sequential
(cpu cycles)

Multi-Threaded
(cpu cycles)

Redefine
(cpu cycles)

30 17192× 103 7896× 103 6837× 103

50 45612× 103 14196× 103 12320× 103

decomposition algorithm executed on Redefine emulator on synthetic Boolean
polynomials. The Redefine implementation has the lowest CPU cycles.

6 Conclusions and Future Work

In this paper, we have reviewed the factorization problem for Boolean polyno-
mials. Factorization provides the basis for decomposition of Boolean functions
in DNF and for decomposition of data tables. Hence, it is important to develop
efficient factorization procedures. We have considered the approach from [4] for
factoring Boolean polynomials and presented a MIMD implementation thereof,
which exploits task and data level parallelism to achieve better performance.
Evaluation of the sequential and parallel algorithms on logic circuit synthesis
benchmarks and synthetic Boolean polynomials showed a considerable speedup
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obtained by parallelization. The implementation of the parallel algorithm on a
REDEFINE emulator outlined the performance benefits under execution on a
massively parallel many core architecture. REDEFINE execution model is based
on data flow principles and hence, the need for explicit barrier synchronization is
obviated. This results in better performance of MIMD applications (Ex:Boolean
factorization) on the REDEFINE architecture. In the future work we are go-
ing to benchmark the proposed parallel algorithm on REDEFINE hardware. We
also plan to use REDEFINE for an efficient hardware implementation of Boolean
functions given as Boolean polynomials and DNFs in order to efficiently imple-
ment decomposition algorithms for these representations. Finally, we are going
to use these implementations for non-disjoint decomposition of DNFs [11] and
data tables [3], which is based on massive computation of disjoint decompositions
as a subtask.

1 hyperOp void decompose ( CMAddr s e l f I d , Op32 a , Op32 b , Op32 p s , Op32 p o ,
Op32 m, Op32 n , Op32 i , Op32 consumerFrId ){

2
3 in t ∗A = a . ptr ;
4 i n t ∗B = b . ptr ;
5 i n t ∗par t i t i on same = p s . ptr ;
6 i n t ∗ pa r t i t i o n o t h e r = p o . ptr ;
7 i n t I = i . i 32 ;
8 i n t n = n . i32 ;
9 i n t m = m. i32 ;

10 in t I=0,J = 0 ;
11 in t ∗C, ∗D;
12
13 CMAddr con f r Id = consumerFrId . cmAddr ;
14 f o r ( I = 0 ; I<n ; I++){
15 ∗( par t i t i on same+J ) = 0 ;
16 ∗( p a r t i t i o n o t h e r+J ) = 0 ;
17 }
18
19 f o r ( I = 0 ; I<m; I++){
20 f o r ( J=0;J<n ; j++){
21 ∗(C+I∗columns+J ) = 0 ;
22 ∗(D+I∗columns+J ) = 0 ;
23 }
24 }
25 d e r i v a t i v e (A,B,C, i ) ;
26 d e r v i a t i v e (A,B,D, i ) ;
27 i f ( IsEqual (A,D,B,C) ){
28 ∗( p a r t i t i o n o t h e r+i ) =1;
29 }
30 e l s e {
31 ∗( pa r t i t i on same+i ) =1;
32 }
33 Sync ( confr Id , −1) ;
34 }
35
36
37 k e r n e l i n t decompose start ( i n t ∗A, in t ∗B, in t ∗part i t ion same , i n t ∗

pa r t i t i on o th e r , i n t N){
38
39 in t i = 0 , j = 0 ;
40 s t a t i c i n t counter = 0 ;
41 CMAddr decomposeFr ;
42 CMAddr syncFr = Crea t e In s t (&smd Sync ) ;
43 WriteCM( CMADDR( syncFr , 15) , N−1) ;
44
45 f o r ( i = 1 ; i<N; i++){
46 decomposeFr = Crea t e In s t (&smd decompose ) ;
47 WriteCM( CMADDR( decomposeFr , 0) , ( void ∗) (A) ) ;
48 WriteCM( CMADDR( decomposeFr , 1) , ( void ∗) (B) ) ;
49 WriteCM( CMADDR( decomposeFr , 2) , ( void ∗) ( par t i t i on same ) ) ;
50 WriteCM( CMADDR( decomposeFr , 3) , ( void ∗) ( p a r t i t i o n o t h e r ) ) ;
51 WriteCM( CMADDR( decomposeFr , 4) , M) ;
52 WriteCM( CMADDR( decomposeFr , 5) , N) ;
53 WriteCM( CMADDR( decomposeFr , 6) , i ) ;
54 WriteCM( CMADDR( decomposeFr , 7) , CMADDR( syncFr , 15 ) ) ;
55 }
56 return 0 ;
57 }

Listing 1.1. Snippet of decomposition algorithm using Hyperops
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