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1. INTRODUCTION

In formal concept analysis (FCA) [1, 2], formal
concepts are used as classification units that arise in
relational data analysis. These kinds of data are pre�
sented as tables (formal context) over sets of objects G
and attributes M in which the rows are labeled by the
names of objects from G and the columns, by the
names of attributes from M. In this case each cell (i, j)
of a table contains the value 1 if and only if the ith
object has attribute j. During the analysis, the objects
are grouped into classes in such a way that objects that
have some common set of attributes fall into one class
and this set of objects is maximal: i.e., no other object
outside this class has precisely this set of attributes. It is
well known that the pairs <object group, attribute set>
thus obtained can be ordered in a natural way and rep�
resented as a complete lattice. FCA is closely related
to the studies on association rules, which have been
the subject of intense investigation in the field of data
mining. For example, it is known [3] that, having the
set of all formal concepts of a given context, one can
construct a basis for finding association rules in this
context.

The goal of association rules is to find all the rela�
tionships between attributes in relational data. Origi�
nally this problem arose from the analysis of the basket
of goods and from the problem of finding relationships
between the sales of different groups of commodities.
The dimension of real databases may be very large;
therefore, the number of detectable rules may be very
large, and is really such in practice. The selection of
significant association rules is quite a nontrivial prob�
lem and is related to the problem of assessing the qual�

ity of rules [4]. One of approaches to solving this prob�
lem consists in determining the statistical estimates of
association rules [4, 5].

If, in addition, we want that the rules have predic�
tive force, then we fall into another paradigm of data
mining methods—the paradigm of inductive infer�
ence of rules. As mentioned in [6], these two
approaches (finding association rules and inductive
inference of rules) have different goals. The problem of
inductive inference of rules consists in providing pre�
dictions, while the problem of association rules con�
sists in providing a data overview to a user.

The paradigm of FCA is related to association rules
and consists in detecting a complete set of classifica�
tion units and their relationships on relational data.
Here the following questions that may arise in the
inductive paradigm are skipped:

1. The predictive force of these concepts: the possi�
bility of assigning a new object to a given concept.

2. The stability of a concept with respect to possible
data errors.

3. Minimality of the description of concepts: elim�
ination of random attributes from the description of a
concept.

Today, there is no inductive paradigm for FCA. In
the related paper [7], the main objects of FCA are refor�
mulated in terms of probabilistic logic and are used for
formulating new patterns. However, the definition of
these objects within FCA remains unchanged.

The goal of the present study is to propose an
inductive generalization of FCA and answer ques�
tions 1–3 formulated for the inductive paradigm.
To this end, we consider two different types of proba�
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bility: probability on the families of formal contexts as
sets of possible worlds (Section 3), and probability on
the set of objects of the same context as a general pop�
ulation (Section 4). It is well known that, within for�
mal logic, probability can be introduced by these two
methods: on the set of possible worlds (models), and
on the domain (the underlying sets of a specific model)
[8]. To pass to the predictive definition of a formal
concept, we take, as a basis, the definition of a formal
concept in FCA in terms of fixed points of implica�
tions that are true on data. We generalize the concept
of the truth of an implication on data, which is stan�
dard in FCA, by a certain truth estimate based on a
probability measure in such a way that, first, consis�
tency with the original definition of a formal concept
is preserved and, second, these implications follow the
idea of inductive rules—the minimization of the
intent of concepts and elimination of random
attributes—rather than the idea of association rules
(finding all possible associations). After that, by anal�
ogy with the definition of a formal concept in FCA, we
define a probabilistic formal concept in terms of the
fixed points of probabilistic implications.

As a result, we obtain an inductive probabilistic
definition of a formal concept that

• is related to the objects of some general popula�
tion;

• coincides, under standard restrictions, with the
original definition of a formal concept in FCA;

• has predictive force: new objects can be classified
under earlier found probabilistic formal concepts;

• minimizes the description of a formal concept by
eliminating random attributes from implications;

• is stable with respect to some types of noise in
data.

In Section 2, we give all definitions and results of
FCA that are necessary for reading the present article.
To demonstrate the definitions, at the end of Section 4
we present examples of numerical experiments on the
detection of probabilistic formal concepts on data.

2. PRELIMINARY DEFINITIONS

We begin with the main definitions and results of
FCA.

Definition 1. A formal context is a triple (G, M, I),
where G and M are some sets and I ⊆ G × M is a relation
between the elements of G and M. The elements of G are
called objects of the context, and the elements of M are
called attributes of the context. A formal context is said to
be finite if G and M are finite sets.

Henceforth, we omit, for brevity, the word “for�
mal” and call the triples (G, M, I) mentioned in the
definition contexts. Any context can be represented as a
table, as we pointed out in the Introduction. If (G, M, I)
is a context, then we define the operation ' on subsets
A ⊆ G and B ⊆ M as follows:

If g ∈ G, then the symbol g' serves as an abbreviation
for the set {g}'.

Definition 2. By a concept in the context (G, M, I) is
meant a pair (A, B), where A ⊆ G, B ⊆ M, A' = B, and
B' = A. Here the set A is called the extent and B, the
intent of the concept (A, B).

In fact, a concept is a classification unit that groups
the objects and the attributes of the context.

In the proofs of the main propositions of this paper,
we will repeatedly use the following simple fact:

Lemma 1. The following relations are valid for any
context (G, M, I) and sets B1, B2 ⊆ M:

1. B1 ⊆ B2 ⇒  ⊆ ,

2. B1 ⊆ .

Definition 3. Define a (partial) order ≤ of the con�
cepts of a context as follows: if (A1, B1) and (A2, B2) are
concepts in a certain context, then we assume that (A1,
B1) ≤ (A2, B2) if A1 ⊆ A2 (or, which is equivalent by
Lemma 1, if B2 ⊆ B1).

Theorem. The relation ≤ induces a complete lattice
on the set of concepts of a context, in which the infimum
and supremum of the subsets are respectively defined as
follows:

A ' m M g∀ A g m,( ) I∈ ∈ ∈{ },=

B ' g G m∀ B g m,( ) I∈ ∈ ∈{ }.=
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Fig. 1. Context and the corresponding lattice of concepts.
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Example 1. Consider a finite context K = ({g1, g2,
g3, g4}, {m1, m2, m3, m4}, I) represented in a tabular
form in Fig. 1. The lattice of all concepts in the context
K is also represented in this figure; each element of the
lattice is marked by a set of objects and attributes,
which are the extent and the intent of a concept,
respectively.

The computation of the complete lattice of con�
cepts by a given finite context [9, 10] is one of the key
procedures in the FCA method. In fact, this procedure
classifies the objects of the context according to
appropriate attributes and enables one to find all the
existing classes.

Given a context K = (G, M, I), we can speak of the
truth of assertions of the following type on K: “all
objects possessing attributes B1 ⊆ M also possess a set
of attributes B2 ⊆ M.” Since all properties of the con�
text are in a sense symmetric with respect to the sets G
and M, we can formulate a similar assertion for the
subsets of G: “all attributes whose objects are A1 ⊆ G
also have A2 ⊆ G as their objects.” Without loss of gen�
erality, we will consider only assertions of the first type.
In fact, these assertions define a monotonic operator,
an implication, on the Boolean algebra of the subsets
of M. It is clear that if a context K is finite, then the set
of all such assertions that are true on K is also finite.
Let us formalize the concept of an implication that is
true on a context with the use of definitions of Sec�
tion 2.3 in [1].

Definition 4. An implication on a set M is an ordered
pair of subsets A, B ⊆ M denoted as A  B. The set A
is called the premise, and B is called the conclusion of the
implication A  B. A set T ⊆ M is said to respect the
implication A  B if either A  T or B ⊆ T. A family
of subsets of M respects an implication if each set from
this family respects this implication.

If K = (G, M, I) is a context, then the implication
A  B is true on K (which is denoted as K  A  B)
if A, B ⊆ M and the family of sets {g'|g ∈ G} respects
A  B.

The premise of an implication A  B is said to be
false on K if there does not exist an g ∈ G such that A ⊆ g'.
An implication A  B is called a tautology if B ⊆ A.

For a context K = (G, M, I), we will denote the set
of all implications on M that are true on the context K
by Imp(K). One can easily verify that the set of tautol�
ogies and the set of implications whose premise is false
on K are subsets of Imp(K). When this does not lead to
confusion, we will use the same symbol  to denote
the fact that a set or a family of sets respects a certain
implication.

Any family L of implications on the set M generates
a monotone operator fL : 2M  2M given by

It is clear that fL(X) = X ⇔ X  L for any X ⊆ M.

⊆

=

=

fL X( ) X B A B L∈ A, X⊆{ }.∪=

=

Remark 1. Let L be a family of implications on a set M.
Then, for any X ⊆ M, there exists a minimal set Y ⊆ M
such that X ⊆ Y and fL(Y) = Y.

Proof. Consider the standard inductive construc�
tion of the extensions of a given set X ⊆ M. Let X0 = X
be the initial set. If a set Xi has been constructed, then
we set Xi + 1 = fL(Xi). Then the sought set is Y =

.

Thus, any family of implications L on the set M

defines an operator : 2M  2M, which, for every
X ⊆ M, gives a minimal set Y ⊆ M that satisfies the
conditions of the remark. It is obvious that the follow�
ing relation holds for any set X ⊆ M: fL(X) = X ⇔

(X) = X.

Remark 2. If K = (G, M, I) is a context and A  B
is an implication on M, then K  A  B ⇔ ∀m ∈ B
(K  A  {m}).

In what follows, we will consider only implications
of the form A  {m} and denote them by A  m.

If K is a context in which a set of objects is compact
(below we will assume that all the contexts considered
are of this kind), then, for any implication A  m ∈
Imp(K), there exists a set {A0  m ∈ Imp(K)|A0 ⊆ A
and, for any set A1 ⊆ A, A1 ⊂ A0 implies A1  m ∉
Imp(K)}. For the context K, denote by MinImp(K) the
set of all implications of the form A0  m that are
true on K, in which the set A0 is minimal in the above�
indicated sense. Note that the definition of implica�
tions of this kind is a variant of the definition of impli�
cations as a law, given in [13–15].

Next, we give a proof of a slightly modified Propo�
sition 20 from [1], which is central in this paper.

Proposition 1. Let K = (G, M, I) be a context, T ⊆
Imp(K) be a set of tautologies on M, and F ⊆ Imp(K) be
a set of implications whose premises are false on K. Then
the following is valid for any set B ⊆ M:

1. fMinImp(K)\T(B) = B ⇔ B'' = B;
2. if B' ≠ ∅, then fMinImp(K)\{F ∪ T}(B) = B ⇔ B'' = B.
Proof. First, we show that, for any subset B ⊆ M,

fImp(K)(B) = B if and only if fMinImp(K)(B) = B. Indeed, if
fImp(K)(B) ⊃ B for some B, then (with regard to Remark 2),
there exists an implication A  m ∈ Imp(K) such that
A ⊆ B but m ∉ B. Then, there exists an implication
A  m ∈ MinImp(K), where A0 ⊆ A and therefore
A0 ⊆ B, m ∉ B, and fMinImp(K)(B) ⊃ B a contradiction.
The converse assertion is obvious because MinImp(K) ⊆
Imp(K).

In a similar way, we can verify that fMinImp(K)\L(B) =
B ⇔ fImp(K)\L(B) = B, where either L = T or L = F ∪ T.
This follows from the fact that, for any implication
A  m on M and any subset A0 ⊆ A, the condition
A  m ∉ T obviously implies A0  m ∉ T, and the

condition A' ≠ ∅ implies  ≠ ∅ by Lemma 1. There�
fore, we will prove assertions 1 and 2 of this proposi�

Xii ω∈∪

f L

f L

=
=

A0'
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tion with respect to the set Imp(K) rather than with
respect to the set MinImp(K).

1. ⇐: Let B'' = B, A1  A2 ∈ Imp(K)\T, and A1 ⊆ B.
Let us show that then A2 ⊆ B. Indeed, for any g ∈ B',
we have g' ⊇ A2 because, by Lemma 1, g' ⊇ B'' = B and
the implication A1  A2 is true on K. Hence,

 ⊇ A2. On the other hand,

 = B''; however, since B'' = B, we obtain
B ⊇ A2.

1. ⇒: By Lemma 1, we have B'' ⊇ B in any case;
therefore, suppose that fImp(K)\T(B) = B but B''  B.
Then B  B  B'' ∉ T, and to arrive at a contradic�
tion, it suffices to show that B  B'' ∈ Imp(K).

(a) If B ' = ∅, this is obviously true because in this
case there does not exist a g ∈ G such that B ⊆ g'; i.e.,
the premise of the implication is false on K.

(b) Let B' ≠ ∅. We have to show that ∀g ∈ G(B ⊆ g' ⇒
B'' ⊆ g'). It is clear that ∀g ∈ G (B ⊆ g' ⇔ g ∈ B') and,
by Lemma 1, ∀g ∈ B ' (B'' ⊆ g'). Thus, if B ⊆ g' for some
g ∈ G, then B'' ⊆ g'; i.e., B  B'' ∈ Imp(K). Moreover,
B  B'' ∈ Imp(K)\F because B' ≠ ∅.

2. The sufficiency follows from the proof of item 1,
because it is clear that if fMinImp(K)\T(B) = B, then
fMinImp(K)\{F ∪ T}(B) = B. The necessity follows from item
(b) above.

For any context K = (G, M, I) from Definition 2, it
obviously follows that the subset B ⊆ M is the intent of
some concept in the context K if and only if B'' = B.
Thus, given a context K = (G, M, I), we have the set
Imp(K) of all implications that are true on K, and the
fixed points of the operator fMinImp(K)\T : 2M  2M

coincide with the intents of the concepts of the context
K. If we exclude the set of those implications K whose
premise is false on K from the implications of Min�
Imp(K)\T, then the fixed points of the operator
fMinImp(K)\{F ∪ T}: 2

M  2M coincide with the intents of
the concepts of the context K except for the single
concept (∅, M). This follows from the fact that, for
any B ⊆ M, the condition B'' ≠ M obviously implies
B' ≠ ∅.

3. PROBABILISTIC CONCEPTS
ON A CLASS OF CONTEXTS

Above we have defined the concept of the truth of
an implication on a certain individual context. Let us
describe how to generalize this concept by evaluating
the truth of an implication on a class of contexts. Let
us describe the ideas of the method of semantic prob�
abilistic inference as applied to FCA. Within this
method, which is presented in [13–15], regularities on
data (in particular, implications) are formalized as
universal formulas of the language of first�order logic
of a countable signature consisting of predicates and
constants. Thus, the standard notion of implication
defined in [1] turns out to be far more specific than the
concept of regularity on data considered in semantic

g' g B '∈( ){ }∩
g' g B'∈{ }∩

⊆
=

probabilistic inference (note that implications that go
far beyond the definitions given in [1] were also con�
sidered in papers on FCA). However, to demonstrate
that this method can be applied to FCA, it is conve�
nient to stay within the standard algebraic definitions.
Therefore, below we present a restriction of the
method of semantic probabilistic inference in terms
close to those used in FCA.

Definition 5. A class of contexts over sets G and M is
a family � = , where, for every j ∈ J,
the triple (G, M, Ij) is a context. We use the notation
�(G, M) for a class � of contexts over the sets G and M.
A probability model of type I is a pair � = (�(G, M), ρ),
where G ≠ ∅ and ρ is a probability measure on the set �,
that satisfies the condition

If S ⊆ G × M, then we call the value of the function
ν�(S) = ρ({(G, M, I) ∈ �|S ⊆ I}) the probability of the
set S on �.

In this section, for brevity, we call the pairs (�(G,
M), ρ) from Definition 5 above probability models or,
simply, models.

Let � = (�(G, M), ρ) be a probability model and
A  m be an implication on the set M. A pair 〈g,
A  m〉, where g ∈ G, is called an instantiation of
the implication A  m on the model �. The value
of the function μ�(〈g, A  m〉) =

The value of the function η�(A  m) =

Thus, we adopt a cautious strategy to estimate the
probabilities of implications—a strategy involving the
least value of probability from among the instantia�
tions.

Remark 3. Let � = (�(G, M), ρ) be a probability
model and A  m be an implication on the set M whose
probability on the model � is defined. Then η�(A 
m) = 1 if and only if ∀K ∈ �(A  m ∈ Imp(K)).

G M Ij, ,( ){ }j J ∅≠∈

S1∀ S2, M G M I, ,( )∀ � S1 I or S2 I⊆ ⊆( )∈⊆

⇔

ρ G M Ij, ,{ } S1 S2∪ Ij⊆( )

=  ρ G M Ij, ,( ) S1 Ij⊆{ }( ).

ν� S g m,〈 〉{ }∪( )
ν� S( )

�������������������������������������, if ν� S( ) 0,≠

 where S g a,〈 〉 a A∈{ }=

 undefined otherwise.⎩
⎪
⎪
⎨
⎪
⎪
⎧

undefined,  if g∀ G∈

μ� g A,( ) m〈 〉( )

undefined

μ� g A m,〈 〉( ) otherwise.
g G∈
inf⎩

⎪
⎪
⎨
⎪
⎪
⎧
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Proof. ⇒: The condition η�(A  m) = 1 implies
that, for every g ∈ G, the value of μ�(〈g, A  m〉) is
either undefined or equal to one. Therefore, for every
g ∈ G and every context K ∈ �, either A  g' or m ∈ g'
by the definition of the functions μ� and ρ. But this
means that ∀K ∈ � (A  m ∈ Imp(K)).

⇐: Suppose that η�(A  m) < 1. Then there
exists a g ∈ G such that the value of μ�(〈g, A  m〉) is
defined and is also strictly less than one. In turn, there
exists a K ∈ � in which A ⊆ g' but m ∉ g'; but this
means that A  m ∉ Imp(K). 

Definition 6. Let � = (�(G, M)ρ) be a probability
model and imp(M) be a set of those implications on M
whose probability is defined on �. Implications A  m ∈
imp(M) such that

•η�(A  m) ≠ 0 and
• if A0  m ∈ imp(M) and A0 ⊂ A, then η�(A0 

m) < η�(A  m) are called probability regularities
(probability laws [13–15]) on �.

An implication A  m ∈ imp(M) is called a maxi�
mally specific probability regularity (maximally specific
law [13, 14]) on � if it is a probability regularity on �,
A ≠ {m} and there does not exist a probability law A0

m on � such that A ⊂ A0 and A0  m is not a tautology.
Note that the fundamental difference of the proba�

bility regularities with probability 1 from the well�
known Duequenne–Guigues basis [11] consists in the
necessity to ensure the predictive force by the second
condition in Definition 6, which is missing in the
implications of the Duequenne–Guigues basis. This
condition guarantees a strict increase in the condi�
tional probability under the extension of the premise
of an implication, which increases its predictive force
and precludes the possibility that random attributes
that do not increase the probability of prediction fall
into the predictive force.

Remark 4. If an implication is a maximally specific
probabilistic law on the model �, then it is not a tautology.

Definition 7. A semantic probabilistic inference is a
sequence of probabilistic laws (A0  m), …, (An  m)
such that A0 ⊂ … ⊂ An, η�(A0  m) < … < η�(An  m),
and An  m is a maximally specific probabilistic law.

The concept of semantic probabilistic inference
maximally expresses the inductive essence of the defi�
nitions. In addition to the inductive properties that are
inherent in probabilistic laws, semantic probabilistic
inference implies a directed choice of attributes that
substantially increase the prediction probability in the
conclusion. Therefore, only specific information signif�
icant for predicting is included in the premise of an
implication. Note that association rules do not have
such properties. In addition, we can argue that logic,
probability, and learning are combined in this way [12].

Definition 8. Let � = (�(G, M), ρ) be a probability
model and S(�) be the set of all maximally specific prob�
ability laws on �. An implication A  m ∈ S(�) is
called the strongest probability law on � if the value of

⊆

its probability on � is maximal among all the implica�
tions B  m ∈ S(�).

We will use the notation D(�) for the set of all stron�
gest probability laws on the model �.

Note that, in view of the rather arbitrary form of the
function ρ in the definition of a probability model,
there is nothing to guarantee the existence of a maxi�
mum in the sense of Definition 8 and, hence, the
existence of the strongest probability laws themselves.
However, below we give a method for defining a prob�
ability model (on the basis of a finite class of finite
contexts) that gives rise to a wide class of models that
guarantee the presence of such implications. Note
that, in the general case, for an arbitrary m, there may
exist several implications of the form A  m that are
strongest probabilistic laws.

Informally, every implication on a probability
model should be considered as a prediction with some
assessment of the truth of the fact that each object pos�
sessing a set of attributes from the premise will also
possess an attribute from the conclusion of the impli�
cation. Just as in FCA (recall Proposition 1), implica�
tions in the method of semantic probabilistic inference
are directly related to the grouping of objects and
attributes into classification units. If data are repre�
sented as a class of contexts �, then the type of impli�
cations selected among all possible implications on the
probability model (�, ρ) determines the formation of
the classes themselves on the basis of the data pre�
sented. Minimal implications in the sense of the set
MinImp(K), as well as probability laws (maximally spe�
cific and the strongest probability laws) are an adapta�
tion of appropriate probability definitions from [13–16]
as applied to the FCA method. Such implications pos�
sess a number of theoretical and practically useful
properties that justify their application:

• the set of all minimal implications that are true
on every context from a class � yields, in a sense, an
axiomatization of this class of contexts: from this class,
one can semantically derive an implication theory of
� that is restricted to implications with nonfalse pre�
mises [13, 15] (an analog of the Duequenne–Guigues
theorem on implication base [11]);

• a probabilistic law precludes the prediction of an
attribute in its conclusion by a certain proper subset of
attributes of the premise with probability greater than
(or equal to) that of the law itself; together with the
requirement of maximal specificity, this leads in prac�
tice to grouping attributes into smaller classes, with
maximum probability [12];

• it is proved in [13, 14] that if implications admit
negative information, then maximally specific proba�
bilistic laws form a consistent set of propositions (i.e.,
there is no situation where the presence or absence of
some attribute is predicted simultaneously);

• the strongest probabilistic laws lead to assigning
an attribute to the class that predicts it with maximum
probability; at the same time, a situation is possible
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when the same attribute may belong to different
classes [17];

• a Discovery software tool is implemented that
allows one to find the above�mentioned types of impli�
cations on tabular data and construct the correspond�
ing object–attribute classes. This software has been
successfully applied to solving a large number of
applied problems [18, 13, 16].

Definition 9. Let � = (�(G, M), ρ) be a probability
model of type I. A pair of sets (A, B) is called a probabi�
listic concept of a context (G, M, I) ∈ � in the model �
if it satisfies the following conditions:

• A ⊆ G, B ⊆ M,
• fD(�)(B) = B,

• ∃E ⊆ B ( (E) = B and E ≠ ∅ ≠ E '),

• A = |∅ ≠ E ⊆ B, (E) = B}, where '
denotes an operation within the context (G, M, I). The
set A is called the extent and B, the intent of the probabi�
listic concept (A, B).

Thus, given a probability model � = (�(G, M), ρ),
the set of fixed points of the operator fD(�) restricts the
set of all possible probabilistic concepts of contexts
from the class � in the model �.

Theorem 1. Consider a context K = (∅ ≠ G, M, I)
and a probability model � = ({K}, ρ). Then, for any
nonempty subsets A ⊆ G and B ⊆ M, the pair (A, B) is a
concept in the context K if and only if (A, B) is a proba�
bilistic concept of the context K in the model �.

Proof. Let S ⊆ Imp(K) be the set consisting of all
tautologies on M and all implications whose premises
are false on the context K. Let us show that Min�
Imp(K)\S = D(�).

⊆: Consider an arbitrary implication A  m ∈
MinImp(K)\S. By the definition of the model �, for
any subset S ⊆ G × M, we have ρ(S) = 0 ⇔ S  I. Since
the premise A is not false on K, we find that the prob�
ability of the implication A  m on the model � is
defined; then, according to Remark 3, we have
η�(A  m) = 1. In view of the minimality of the
premise A, any implication A0  m, where A0 ⊂ A, is
no longer true on K. Moreover, since the premise A is
not false on K, A0 is not false on K either. According to
Remark 3, then η�(A  m) = 0, and thus the impli�
cation A  m is a probabilistic law on �. Taking into
account that η�(A  m) = 1 and m ∉ A, hence we
find that A  m ∈ D(�).

⊇: By the definition of the model �, we have ∀S ⊆
G × M ρ(S) ∈ {0, 1}; hence, for any implication A 
m ∈ D(�), the definition of a probabilistic law implies
η�(A  m) = 1. By the definition of the function μ�,
then we find that the premise A is not false on K; there�
fore, with regard to Remarks 3 and 4, we obtain A 
m ∈ Imp(K)\S. Suppose that there exist an implication
A0  m ∈ Imp(K) such that A0 ⊂ A. Then A0  m ∈
Imp(K)\S, η�(A0  m) = 1, and we arrive at a con�

f D �( )

{E '∪ f D �( )

⊆

tradiction to the fact that A  m is a probabilistic law
on �. Hence, A  m ∈ MinImp(K)\S.

Suppose that (A, B) is a probabilistic concept of the
context K in the model �. Let us show that (A, B) is a
concept in the context K. To this end, it suffices to ver�
ify that A' = B and B ' = A. Consider the set � = {E ⊆
B | (E) = B, E ≠ ∅ ≠ E '}. By the definition of a
probabilistic concept, this set is nonempty. By virtue of

(E) = B and what has been proved above, for
every E ∈ �, there exists an implication E  B ∈
Imp(K); therefore, B ' ≠ ∅, and, taking into account
that fD{�}(B) = B, from item 2 of Proposition 1 we find
that B '' = B. In addition, it follows from E  B ∈
Imp(K) that g' ⊇ B for every g ∈ E '. This means that
g' ⊇ B for every g ∈  = A; therefore,
A ⊆ B '. On the other hand, for every E ∈ �, from the
condition E ⊆ B we obtain B ' ⊆ E '; therefore, B ' ⊆

 = A. Thus, we have A = B ', which,
combined with B '' = B, yields A' = B.

Let (A, B) be a concept in the context K, and sup�
pose that the sets A and B are nonempty. Let us verify
that (A, B) is a probabilistic concept of the context K
in the model �. Indeed, since A ≠ ∅ and B ' = A, we
have B ' ≠ ∅, and, since B '' = B, by item 2 of Proposi�
tion 1, in view of what has been proved above, we
obtain fD(�)(B) = B. It remains to verify that A =

, where � = {E ⊆ B |E ≠ ∅,

(E) = B}, because it is obvious that B ∈ �.

We have  ⊇ B ' = A. Conversely, if g ∈

, then there exists an E ∈ � such that

g ∈ E ' and thus g' ⊇ E. In view of (E) = B, we
have E  B ∈ Imp(K); therefore, g' ⊇ B, and hence
g ∈ B ' = A. Thus, all the conditions in the definition of
a probabilistic concept are satisfied. 

Let � =  be a finite class con�
sisting of finite contexts. Let us show a natural method for
defining a probability model (�, ρ) on the class �. For
each context K ∈ �, we set ρ({K}) = 1/  and, for a sub�

set � ⊆ �, define ρ(�) = .

Then ρ is a discrete probability measure on �, and,

for every S ⊆ G × M, we have ν�(S) = , where 

is a maximal subset of J satisfying the condition ∀j ∈ 
(S ⊆ Ij). It is easy to verify that then (�, ρ) is indeed a
probability model. We call the model � defined in this
way a frequency probability model.

Let us illustrate the definitions given above.
Example 2. Suppose given sets G = {g1, g2} and M =

{m1, m2, m3}. Consider a class � = 
consisting of three contexts given in the tabular form
below:

f D �( )

f D �( )

E ' E �∈{ }∪

E ' E �∈{ }∪

E ' E �∈{ }∪
f D �( )

E ' E �∈{ }∪
E ' E �∈{ }∪

f D �( )

∅ G M Ij, ,≠( ){ }j J ∅≠∈

J

ρ K{ }( )
K �∈∑

J̃ / J J̃

J̃

G M Ij, ,( ){ }j 1 2 3, ,{ }∈
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Then the pairs ({g1}, {m1, m2, m3}) and ({g1, g2}, {m1,
m2}) are the only probabilistic concepts of the context (G,

M, I1) in the frequency probability model � = (�, ρ).

Proof. The probability measure ρ uniquely defines
the value η�(A  m) for every implication A  m
on the set M. In the tables below, we give the probabil�
ities of all possible implications of the form A  m on
� that are not tautologies.

The premises of implications that form the set
D(�) of all the strongest probabilistic laws on � are
given in curly brackets. Let us give an example of com�
puting the probability of one of the implications from
the table above:

because the value of μ�(〈g2, m3  m1〉) is undefined

due to ν�( ) = 0. Note, however, that the

implication m3  m1 is not a probabilistic law,
because there exists an implication ∅  m1 with the
same probability on �.

A → m η�(A → m)

{∅} → m1 2/3

m2 → m1 0

m3 → m1 2/3

m2, m3 → m1 0

{∅} → m2 1/3

m1 → m2 0

m3 → m2 1/3

m1, m3 → m2 0

{∅} → m3 0

m1 → m3 0

m2 → m3 0

m1, m2 → m3 0

I1 m1 m2 m3

g1 × ×

g2 ×

I2 m1 m2 m3

g1 × ×

g2 × ×

I3 m1 m2 m3

g1 × ×

g2 × ×

η� m3 m1( ) μ� g m3 m1,〈 〉( )
g G∈
inf=

=  
ν� g m3,〈 〉 g m1,〈 〉,{ }( )

ν� g m3,〈 〉{ }( )
����������������������������������������������

g G∈
inf

=  
ν� g1 m3,〈 〉 g1 m1,〈 〉,{ }( )

ν� g1 m3,〈 〉{ }( )
������������������������������������������������� 2/3,=

g2 m3,〈 〉

Let us give the values of the operator fD(�) on the
subsets B ⊆ M:

Obviously, there are exactly two subsets B ⊆ M that
satisfy the condition fD(�)(B) = B, namely, {m1, m2} and
{m1, m2, m3}. Finally, we have

The only subset E ⊆ {m1, m2, m3} that satisfies the
conditions in the definition of a probabilistic concept
is the set {m3}, for which we have {m3}' = g1.

Thus, ({g1}, {m1, m2, m3}) and ({g1, g2}, {m1, m2}) are
the only probabilistic concepts of the context (G, M, I1)
in the model �. �

4. PROBABILISTIC CONCEPTS
ON ONE CONTEXT

In Section 3, we considered the notion of a proba�
bility model of type I defined on a class of contexts. In
fact, any class � of contexts that admits the definition
of a probability measure generates a set of probability
models and thus defines possible families of implica�
tions that are strongest probabilistic laws. Using such
families of implications, we predicted the existence of
attributes in objects in an arbitrarily chosen context
from the class �. Similar to this approach, we can
define the strongest probabilistic laws on the basis of a
single given formal context. To this end, we merely
need to slightly modify Definition 5 of a probability
model.

Definition 10. A probability model of type II (a proba�
bilistic context) is a pair � = (K, ρ), where � = (G, M, I)
is a context and ρ is a probability measure on the set G,
that satisfies the condition

B ⊆ M fD(�)(B)

m1 m1, m2

m2 m1, m2

m3 m1, m2, m3

m1, m2 m1, m2

m1, m3 m1, m2, m3

m2, m3 m1, m2, m3

m1, m2, m3 m1, m2, m3

{∅} m1, m2

E ' ∅ E≠ m1 m2,{ }⊆ f D �( ) E( ) = m1 m2,{ },{ }∪
=  g1 g2,{ },

E ' ∅ E≠ m1 m2 m3, ,{ }⊆ f D �( ) E( ),{∪
=  m1 m2 m3, ,{ } } g1{ }.=

B∀ C, M B' C '⊆ ρ B C∪( )'( ) = ρ B '( )⇔( ).⊆
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If B  m is an implication on the set M, then its
probability on the model � is the value of the function

η�(B  m) = 

For brevity, in this section we will call the pairs
(K, ρ) from the definition above probability models, or,
simply, models.

If K = (∅ ≠ G, M, I) is a finite context, then we call a
model a frequency probability model if, for every g ∈ G,
we have ρ({g}) = 1/  and, for every subset A ⊆ G, we

have ρ(A) = . Thus, ∀B ⊆ M (ρ(B') =

). We stress that � is indeed a model because
the equality B ' ⊆ C ' ⇔ (B ∪ C)' = B ' ⇔ |(B ∪ C)'| = |B '|
holds for any subsets B, C ⊆ M.

Remark 5. For any probability model � = (K, ρ),
where K = (G, M, I), and any implication B  m on
the set M, we have η�(B  m) = 1 if and only if B 
m ∈ Imp(K) and B ' ≠ ∅ (where ' is an operation within
the context K).

Proof. If η�(B  m) = 1, then ρ(B ') ≠ ∅, and
hence B ' ≠ ∅; i.e., the premise B is not false on K. On
the other hand, this condition implies that ρ((B ∪
{m})') = ρ(B '); therefore, we have B ' ⊆ {m}', which is
equivalent to B  m ∈ Imp(K). This argument also
proves the converse proposition. 

Let us define the notions of a probabilistic law,
maximally specific probabilistic law, and the strongest
probabilistic law on a model of type II in complete
analogy with Definitions 6 and 8. We use the same
notation D(�) for the set of all strongest probabilistic
laws on a model � of type II as that used in Section 3.

Proposition 2. Let � = (K, ρ) be a probability model,
where K = (G, M, I), and S ⊆ Imp(K) be the set consisting
of all tautologies on M and all implications whose premise is
false on K. Then we have MinImp(K)\S ⊆ D(�). 

Proof. Indeed, B ' ≠ ∅ for every implication B 
m ∈ MinImp(K)\S; therefore, in view of Remark 5, we
have η�(B  m) = 1. The maximality condition of
the value of probability for the implication B  m on
the model � is satisfied; hence, there cannot exist a
probabilistic law B1  m on � such that B ⊂ B1.
Moreover, the implication B  m itself is a probabilis�
tic law, because the condition B  m ∈ MinImp(K)\S
and Remark 5 imply that η�(B0  m) < 1 for any set
B0 ⊂ B. Thus, all the conditions in the definition of the
strongest probabilistic law are satisfied, and B  m ∈
D(�). 

Definition 11. Let � = (K, ρ) be a probability model of
type II, where K = (G, M, I). A pair of sets (A, B) is called
a probabilistic concept in the model � (a concept in the
probabilistic context �) if it satisfies the conditions of
Definition 9.

ρ B m{ }∪( ) '( )
ρ B '( )

������������������������������, if ρ B'( ) 0≠

undefined otherwise.⎩
⎪
⎨
⎪
⎧

G

ρ g{ }( )
g A∈∑

B ' / G

Let � = (K, ρ) be a probability model, where K =

(G, M, I). Consider a context  = (G, M, ), where

= { |g ∈ G, m ∈ (g')} and ' is an operation

within the context K. In other words, I ⊆ , and the

ratio  is obtained from the original I by adding pairs
〈g, m〉 predicted by the family of implications D(�).
To clarify the relationship between the concepts in the
context K and probabilistic concepts in the model �,
it is important to note that the following assertion is
false in both directions:

for any nonempty subsets A ⊆ G and B ⊆ M, the pair
(A, B) is a probabilistic concept in the model � if and

only if (A, B) is a concept in the context .

To prove this, it suffices to consider any of the con�
texts K1 = ({g1, g2}, {m1}, I1) and K2 = ({g1, g2}, {m1, m2,
m3}, I2) given below, together with the corresponding
frequency probability models �1 = (K1, ρ1) and �2 =
(K2, ρ2).

For these models, we have D(�1) = {∅  m1} and
D(�2) = {ƒ  m1, {m2}  m3, {m3}  m2}. There�
fore, the set of all probabilistic concepts in the model
�1 consists of a single concept ({g1}, {m1}), and the set
{({g1}, {m1}), ({g2}, {m1, m2, m3})} represents all the
probabilistic concepts in the model �2.

We can easily verify that, for every j = 1, 2, the context

 is obtained from Kj by setting  = Ij ∪ { }.
It remains to note that the set of all concepts in the

context  consists of a single pair ({g1, g2}, {m1}),
while the set {({g1, g2}, {m1})} represents all the con�

cepts in the context .

Nevertheless, we can guarantee the following prop�
erty, which characterizes the relationship between the
concepts in the context K and the probabilistic con�
cepts in the model � = (K, ρ):

Theorem 2. The following properties are valid for any
probability model � = (K, ρ), where K = (G, M, I):

1. if (A, B) is a concept in the context K with A ≠ ∅ ≠ B,
then there exists a probabilistic concept (A1, B1) in the
model � such that A ⊆ A1 and B ⊆ B1;

2. if (A1, B1) is a probabilistic concept in the model
�, then there exists a concept (A, B) in the context K
such that ∅ ≠ A ⊆ A1 and ∅ ≠ B ⊆ B1. Moreover, the set
A1 is a union of the extents of some of these concepts.

Proof. 1. Let S ⊆ Imp(K) be the set consisting of all
tautologies on M and all implications whose premise is
false on K. Since (A, B) is a concept in the context K,

K I

I g m,〈 〉 f D �( )

I

I

K

I1 m1

g1 ×

g2

I2 m1 m2 m3

g1 ×

g2 × ×

Kj I j g2 m1,〈 〉

K1

K2
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we have B'' = B and B ' = A ≠ ∅, and, by Proposition 1,
we find that fMinImp(K)\S(B) = B.

By Proposition 2, the inclusion MinImp(K)\S ⊆
D(�) is valid. Moreover, for any families of implica�
tions L1 and L2 on the set M and any subset B ⊆ M,

L1 ⊆ L2 implies (B) ⊆ (B); therefore, B ⊆

(B). Denote B1 = (B), � = {E ⊆

B1| (E) = B1, E ≠ ∅ ≠ E '}, and A1 = ∪{E ' |E ∈ �}.

It is clear that (B1) = B1. In addition, notice that
B ∈ �, A = B ', and B ' ⊆ A1. Therefore, we have A ⊆ A1;
thus, (A1, B1) is the sought probabilistic concept in the
model �.

2. Consider the set � = {E ⊆ B1| (E) = B1, E ≠
∅ ≠ E'} and an arbitrary E ∈ �. We have MinImp(K)\S ⊆
D(�); therefore, (E) ⊆ B1. Denote B =

(E); it is clear that D(�); therefore,

(E) ⊆ B1. Denote B = (B) = B.
Moreover, it follows from E ≠ ∅ ≠ E ' that B ≠ ∅ ≠ B ';
therefore, by Proposition 1, we obtain B '' = B. On the
other hand, E ⊆ B; therefore, E' ⊇ B' and A1 = ∪{E'|E ∈
�} ⊇ B'. We find that (B ', B) is the sought concept in
the context K.

Now, notice that the condition B = (E)
implies E  B ∈ Imp(K), which is equivalent to E' ⊆ B';
therefore, we obtain E' = B'. In view of arbitrary choice
of the set E ∈ � and the fact that A1 = ∪{E'|E ∈ �}, we
conclude that the set A1 is a union of the extents of some
concepts (A, B) in the context K such that ∅ ≠ B ⊆ B1.

Below, we give computational schemes for finding
probabilistic laws and probabilistic concepts for a
given frequency probability model � = (K, ρ), where
K = (G, M, I).

Let S ⊆ Imp(K) be the set consisting of all tautolo�
gies on M and all the implications whose premise is
false on K. Note that, for a given context K, the cardi�
nality of the set MinImp(K)\S may exponentially
depend on the value of |G | × |M |. This follows from
Theorem 1 in [19], where an example of construct�
ing such a context is given. By Proposition 2, we have
MinImp(K)\S ⊆ D(�), and the set of all probabilistic
laws on � contains D(�) by definition. Therefore,
the procedure of finding probabilistic laws is based on
heuristics.

Let us introduce a few auxiliary definitions. The
length of an implication A  m on a set M is the car�
dinality of its premise, i.e., the cardinality of the set A; we
will denote it by len(A  m). We say that an implication
A2  m is a specification of implication A1  m if
A2 = A1 ∪ {n}, where n ∈ M\A1. If L is a family of
implications, we denote by Spec(L) the set of all possi�
ble specifications of implications from L.

The computational procedure for finding probabi�
listic laws is based on the concepts of semantic proba�

f L1
f L2

f D �( ) f D �( )

f D �( )

f D �( )

f D �( )

f MinImp K( )\S

f MinImp K( )\S

f MinImp K( )\S f MinImp K( )\S

f MinImp K( )\S

bilistic inference. The main idea consists in the suc�
cessive specification of implications and checking if
the conditions for a probabilistic law can be fulfilled.
In fact, this implements a directed search for implica�
tions that allows one to considerably reduce the search
space. The reduction is achieved due to the applica�
tion of the following heuristics: starting from the time
when the length of the generated implications reaches
a certain prescribed value (called the base enumera�
tion depth), the specification is applied only to those
implications that are probabilistic laws.

For simplicity, we describe the computational proce�
dure for finding probabilistic laws of the form A  m
on the model � for a chosen attribute m ∈ M. In addi�
tion to the probability model � and the element m ∈ M,
the base enumeration depth d, 1 ≤ d ≤ |M |, is also an
input parameter of this procedure. The output of the
procedure is the set of the probabilistic laws on the
model � with the element m in the conclusion.

At step k = 0, a set imp(�)(k) of implications is gen�
erated that consists of a single implication of zero
length of the form R = ∅  m. The implication R is
checked as to if the conditions on a probabilistic law
that are formulated in Definition 6 are satisfied.
Denote the set of all probabilistic laws found at step k

of the computational procedure by (m). If R is

a probabilistic law, then (m) = {R}; otherwise,

(m) = ∅ and the procedure outputs the empty
set. Indeed, in this case we have η�(∅  m) = 0;
therefore, by the definition of the model �, the prob�
ability of any implication of the form B  m is either
undefined or vanishes on �. This means that none of
such implications can be a probabilistic law on the
model �.

At step 1 ≤ k ≤ d, the set imp(�)(k) of all specifica�
tions is computed for all implications obtained at the
previous step, whose probability is defined but not equal
to zero or one: imp(�)(k) = Spec({R |R ∈ imp(�)(k – 1),
0 < η�(R) < 1}). Each implication in this set has length
k. Each implication from imp(�)(k) is checked as to if
it satisfies the conditions in the definition of a proba�

bilistic law. Then, the set (m) is formed.

At step d < k ≤ |M |, the set imp(�)(k) of all specifi�
cations is generated for all probabilistic laws, found at
the previous step, that have a probability strictly less

than one: imp(�)(k) = Spec({R |R ∈ (m),
η�(R) < 1}). All the implications obtained are checked as
to if they satisfy the conditions for the probabilistic laws.

Then, the set (m) is formed. The computational
procedure ends either at the step k = |M| or when no
probabilistic law is obtained at some step d < k < |M|, i.e.,

when (m) = ∅. The sought set of probabilistic

REG�
k( )

REG�
0( )

REG�
0( )

REG�
k( )

REG�
k 1–( )

REG�
k( )

REG�
k( )
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laws for the attribute m is given by the union

(m); this is the output of the procedure.

In order to choose a family of the strongest (with
respect to the input parameters) probabilistic laws
from the set of implications obtained, it suffices to
directly verify the conditions of Definition 8.

The steps k ≤ d of the procedure are called base
enumeration steps, and the steps k > d are called addi�
tional enumeration steps. According to experiments,
for a large number of practical problems, it suffices to
use a base enumeration depth of d ≤ 3. Note that, in
practice, the inequalities in Definition 6 are verified
with regard to Fisher’s statistical criterion (Fisher’s
exact test for contingency tables), which is applied
with some (user�defined) confidence level α.

Let L be a nonempty set of probabilistic laws on the
model �. Note that if L is the output of the above pro�
cedure for the base enumeration depth d = |M |, then
we have L = D(�).

Let us describe the iterative procedure for finding
probabilistic concepts in the model � with respect to
the family L of implications.

At step k = 1, the following set is generated: C(1) =
{ (A ∪ {m})|A  m ∈ L}.

At step k > 1, in case of C(k – 1) = ∅, the procedure
outputs the list of probabilistic concepts found. Other�
wise, for each B ∈ C(k – 1), we consider the family of
implications LB = {A  m ∈ L |A ⊆ B} and compute
the set A = {g ∈ G |g' ∩ B ≠ ∅, (g' ∩ B) = B}. If A ≠ ∅,

then the pair (A, B) is added to the list of probabilistic

concepts obtained. Then, the set C(k) = { (B ∪ C)|B,

C ∈ C(k – 1), (B ∪ C) ∉ C(k – 1)} is generated, and the
procedure goes to the next iteration step. The descrip�
tion of the procedure is complete.

Example 3. Consider the contexts K1 and K2 shown
in Fig. 2. Concepts with nonempty extent and intent
in the context K1 are given by the pairs ({g1, …, g20},
{m1, …, m5}) and ({g21, …, g40}, {m6, …, m10}). The con�
text K2 was obtained from K1 by adding random noise.
The task is to recover the initial concepts in a noisy con�
text K2. In accordance with the algorithms described, the
set of the strongest probabilistic laws is computed on the
frequency model � = (K2, ρ); it consists of 22 impli�
cations. The set of probabilistic concepts in the model
� turns out to be equal to the set of concepts in the
initial context K1 with nonempty extents and intents.

Now we present an example in which probabilistic
concepts are applied to the problem of classification of
symbols displayed in different fonts.

Example 4. Consider the symbols of the letters A
and B presented in Fig. 3 in three standard fonts where
each symbol is depicted in a pixel representation as a
matrix of dimension m = 5 × 6. We can naturally enu�
merate the cells of a matrix and the matrices them�
selves and find a one�to�one correspondence between

REG�
k( )

k∪
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Fig. 2. Recovery of a concept in a noised context.
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the families of cardinality n of this kind of matrices and
a family of formal contexts of the form ({1…n}, {1…m}, I),
where  ∈ I ⇔ matrix with number i in the cell
with number j has a value of 1. Then it becomes possi�
ble to apply probability models to the symbols in the
pixel representation and consider the contexts
obtained as frequency probability models.

For the probabilistic context constructed by the
family of six matrices shown in Fig. 3, we computed
the set of the strongest probabilistic laws and the set of
probabilistic concepts in accordance with the algo�
rithms described. The set of probabilistic concepts
together with their ordering by the inclusion of the
intents of concepts is shown in Fig. 4. For conve�
nience, the intents of the concepts are given in the
matrix representation according to the above�men�
tioned one�to�one correspondence.

The family of concepts obtained demonstrates that
the symbols of the letters A and B are assigned to dif�
ferent classification units and that different ways of
depicting the same letter exhibit common parts.

CONCLUSIONS

It easy to notice from Definitions 5 and 10 that,
from the theoretical point of view, the distinction
between probability models of type I and II is quite rel�
ative. In particular, for any model �2 = (K, ρ2) of type
II with K = (∅ ≠ G, M, I), one can define a model �1 =
(�, ρ1) of type I so that D(�1) = D(�2). Indeed, it
suffices to set � = {�g |g ∈ G, Kg = ({h}, M, Ig), Ig =
{ |  ∈ I}} and define ∀� ⊆ � ρ1(�) =
ρ2({g |Kg ∈ �}). Then, for every implication B  m
on the set M, we have (B  m) = (〈h, B 

m〉) =  =

; thus, (B  m) = (B  m),

which obviously implies D(�1) = D(�2). Neverthe�
less, in practice it is important to distinguish between
the analysis of data represented by a class of contexts
and the analysis of data on the basis of a single given
context. In the first case, we have a problem of classi�
fication of objects that are observed in a number of
experiments each of which establishes whether an
object has a certain attribute. In the second case, the
classification of objects is based on a single context,
which represents the whole body of experimental data
on these objects. A context uniquely determines
whether an object has a particular attribute, and the
FCA method provides tools for constructing a precise
classification of objects on the basis of a given context.
In turn, revealing probabilistic laws on a model
defined on a given context allows one to obtain noise�
immune classification units.

i j,〈 〉

h m,〈 〉 g m,〈 〉

η�1
μ�1

ρ1 Kg h n,〈 〉 n B m{ }∪∈{ } Ig⊆{ }( )

ρ1 Kg h n,〈 〉 n B∈{ } Ig⊆{ }( )
����������������������������������������������������������������������������

ρ2 B m{ }∪( ) '( )
ρ2 B '( )

�������������������������������� η�1
η�2

A_Arial

A_Georgia

A_Tahoma B_Verdana

B_TimesNewRoman

B_SansSerif

Fig. 3. Symbols of letters in a pixel representation.
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B_Verdana

B_TimesNewRoman
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Fig. 4. Probabilistic concepts in the problem of classifica�
tion of symbols.
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Example 3 demonstrates that noise of a certain level
does not change the set of concepts in a context; i.e., the
set of concepts with nonempty extent and intent in a
given initial context is equal to the set of probabilistic
concepts in a new context obtained by adding noise to
the initial one. There exist types of noise (a formal def�
inition is given in [13]) such that any level of noise of this
kind does not change the set of concepts in a context;
the sets of concepts and probabilistic concepts coincide
for this kind of noise; such noise is called concept pre�
serving noise [13]. This raises the problem of character�
ization of these types of noise.

The definitions of implications and probabilistic
laws considered in this paper do not involve the notion
of negation. Therefore, the formulation of Theorem 2
seems to be weaker than expected. This is because the
very fundamentals of FCA lack negation; in this paper,
we aimed at obtaining the simplest generalization of
the basic concepts of this method. The generalization
of FCA within the class of given ideas will allow one to
formalize the notions of “natural classification” and
“idealization” as they are defined in [13, 20].

The semantic probabilistic inference, which is cen�
tral in the definitions of probabilistic concepts, has
been first introduced for first�order logic and provides
a method for revealing rather complicated regularities
on data compared with those considered in this paper.
Moreover, in the relational approach described in mono�
graphs [13, 18], it is argued that the formalization of reg�
ularities in the language of first�order logic is essential for
analyzing the whole body of information contained in
data. Some examples of such regularities are given on the
website [16] at http://math.nsc.ru/AP/Scientific Dis�
covery/pages/Examples_of_rules.html.
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