
Program Schemata Technique to Solve
Propositional Program Logics Revised?

Nikolay Shilov

A.P. Ershov Institute of Informatics Systems, Russian Academy of Sciences
Lavren’ev av. 6, 630090 Novosibirsk, Russia

shilov@iis.nsk.su

Abstract. Propositional program (dynamic, temporal and process) log-
ics are basis for logical specification of program systems (including par-
allel, distributed and multiagent systems). Therefore development of ef-
ficient algorithms (decision procedures) for validation, provability and
model checking of program logics is an important research topic for the
theory of programming.
The essence of a program schemata technique consists in the following.
Formulas of a program logic to be translated into uninterpreted nonde-
terministic monadic flowcharts (so called Yanov schemata) so that the
scheme is total (i.e. terminates) in all special interpretations if and only
if the initial formula is a tautology (i.e. is identically true). Since this
generalized halting problem is solvable (with an exponential complex-
ity), it implies the decidability of initial program logic (and leads to a
decidability upper bound).
The first version of the technique was developed by Nikolay V. Shilov
and Valery A. Nepomnjaschy in 1983-1987 for variants of Propositional
Dynamic Logic (PDL). In 1997 the technique was expanded on the propo-
sitional µ-Calculus. In both cases a special algorithm was used to solve
the generalized halting problem.
A recent development of program schemata technique consists in re-
vised decision procedure for the halting problem. A new decision proce-
dure consists in model checking of a special fairness property (presented
by some fixed µ-Calculus formula) in finite models presented by Yanov
schemata flowcharts. Exponential lower bound for transformation of µ-
Calculus formulas to equivalent guarded form is a consequence of the
new version of the decision procedure.

1 Propositional µ-Calculus

Let us define syntax and semantics of the propositional µ-Calculus (µC) [8], one
of the most expressive propositional program logics.

Definition 1. Let Con = {true, false} be Boolean constants and V ar and Act
be disjoint (countable) alphabets of propositional and program variables. Syntax
of µC consists of formulas to be defined by structural induction.

? This work is supported by the RFBR-grant # 13-01-00645-a.

– All constants in Con and variable in V ar are formulas.
– Any propositional combination of formulas is a formula: negation ¬φ, con-

junction (φ ∧ ψ) and disjunction (φ ∨ ψ) are formulas for any formulas φ
and ψ.

– For any program variable a ∈ Act and formula φ modal constructs sometimes
(〈a〉φ) and always ([a]φ) are formulas.

– For any propositional variable x ∈ V ar and formula φ without negative1 and
bound2 instances of x, the least fix-point (µx.φ) and the greatest fix-point
(νx.φ) are formulas too3.

Let us drop the top-level parenthesis around formulas as well as those paren-
thesis inside formulas that may be restored according to the standard precedence
rules for the propositional connectives: negation precedes conjunction that pre-
cedes disjunction

For any syntactic expression r and any two expressions of same kind4 s and
t let rt/s be the result of instantiation of t instead of all instances of s in r; also

let r0t/s denote the expression t itself, and for every n ≥ 0 let rn+1
t/s be rrn

t/s
/s i.e.

rmt/s stays for m-times substitution of t instead of s in φ. For example, if φ is a

formula ψ ∨ 〈a〉x (where x ∈ V ar and a ∈ Act are propositional and program
variables) then5

– φ0true/x ≡ true,
– φ1true/x ≡ (ψ ∨ (〈a〉true)),
– φ2true/x ≡ (ψ ∨ (〈a〉(ψ ∨ (〈a〉true)))), etc.

µC semantics is defined in models that are called labeled transition systems
(LTS) in Computer Science and Kripke systems/structures in Logic and Philos-
ophy; let us just use term model instead of both in this paper.

Definition 2. Each model M is a triple (D,R,E) where

– the domain D 6= ∅ is a set of states;
– the interpretation R : Act → 2D×D is a function that assigns a binary

relation R(a) ⊆ D ×D to each a ∈ Act;
– the valuation E : V ar → 2D is a function that assigns a unary predicate
E(x) ⊆ D to each x ∈ V ar.

If M = (D,R,E) is a model, S ⊆ D is a set of states, and x ∈ V AR is a propo-
sitional variable then let MS/x denote a model (D,R,ES/x) where6 valuation

1 An instance of a subformula is said to be negative if it is in the scope of odd number
of negations; otherwise the instance is said to be positive.

2 An instance of a variable x is said to be bound if it is in the scope of µx or νx;
otherwise it is said to be free.

3 The definition implies that all bound variable within a formula must be different.
4 i.e. both are simultaneously propositional variables, program variables, formulas, etc.
5 Hereafter we use ’≡’ for syntax identity, but ‘=’ for (set-theoretic) equality.
6 Acronym upd stays for update, i.e. the following second-order function modifier: for

any function f : X×Y , elements x ∈ X and y ∈ Y let upd(f, x, y) = λz ∈ X. if z =
x then y else f(y).

ES/x is upd(E, x, S) i.e. a valuation that may differ from E for propositional
variable x only: ES/x(x) = S.

Definition 3. µC semantics in may be defined by extending valuations (provided
by models) from propositional variables onto all formulas by structural induction
as follows. For any model M = (D,R,E) let

– M(true) = D, M(false) = ∅, and M(x) = E(x) for every x ∈ V ar;
– M(¬φ) = D \M(φ), M(φ∧ψ) = M(φ)∩M(ψ), M(φ∨ψ) = M(φ)∪M(ψ);
– M(〈a〉φ) = {s ∈ D : ∃t ∈ D((s, t) ∈ R(a) and t ∈M(φ))},
– M([a]φ) = {s ∈ D : ∀t ∈ D((s, t) ∈ R(a) implies t ∈M(φ))};
– M(µx.φ) is the least (w.r.t. ⊆) set of states S ⊆ D that MS/x(φ) = S;
– M(µx.φ) is the greatest (w.r.t. ⊆) set of states S ⊆ D that MS/x(φ) = S.

Satisfiability |= is a ternary relation between states, models and formulas defined
as follows: s |=M φ iff s ∈M(φ).

The above definition needs some justification since it refers to existence of
the set-theoretic least and greatest fix-points MS/x(φ) = S over 2D. Correctness
of this definition follows from monotonicity of a function λS ⊆ D.MS/x(φ) :
2D → 2D (assuming φ hasn’tt negative instances of x) and Knaster-Tarski fix-
point theorem [13, 8, 15]. We skip full details of this justification (due to space
limitations) but formulate a corollary that follows from the proof of the theorem7.

Corollary 1. For any propositional variable x ∈ V ar, µC-formula φ without
bound and negative instances of x, for every n ≥ 0 and every model M the
following inclusions hold: M(φnfalse/x) ⊆M(µx.φ) and M(νx.φ) ⊆M(φntrue/x).

Definition 4. Let φ be any µC-formula.

– φ is said to be valid in a model M (|=M φ), if M(φ) = DM where DM is the
domain of the model; φ is said to be valid (|= φ), if it is valid in all models.

– φ is said to be satisfiable in a model M , if there exists a state s such that
s |=M φ; φ is said to be satisfiable if it is so in some model.

The following definition just recalls some general logic concepts.

Definition 5.

– Calculus is a formal language provided with syntax-driven inference system;
if the inference system has axioms (i.e. premise-free inference rules) then
provable sentences are those of the language that may be inferred from ax-
ioms. A calculus with axioms is called axiomatic system.

– A formal language provided with model-base concept of validity (for its sen-
tences) is
• decidable if there exists an algorithm to solve the set of valid sentences;
• axiomatizeable if there exists an algorithm to enumerate all valid sen-

tences.

7 We need the corollary for justification of some statements in the paper.

– A calculus (or axiomatic system) provided with model-base validity is

• sound if all provable sentences are valid;
• complete if all valid sentences are provable.

– A formal language provided with model-base validity is said to be syntacti-
cally-axiomatizable if it has a sound and complete axiomatic system.

In the original paper [8] D. Kozen defined syntax, Kripke semantics (i.e.
model-based validity) and axiomatic system (i.e. a calculus itself) for µ-Calculus
and proved soundness of the axiomatic system. The first sound and complete
axiomatization for µC was built 10 years later by I. Walukiewicz [14]; I. Walukie-
wicz proved completeness of the original axiomatization next 7 years later in [15].

µ-Calculus was proved to be decidable with exponential upper bound 15
years after the original paper [8] independently by N.V. Shilov in [11] and by
E.A. Emerson and C.J. Jutla [3]. E.A. Emerson and C.J. Jutla proved expo-
nential upper bound by reduction of the satisfiability problem to the emptiness
problem for Büchi automata; furthermore they also proved EXP − Time com-
pleteness of the satisfiability problem. In contrast, N.V. Shilov suggested linear
time translation of µC-formulas to non-deterministic Yanov8 schemata [9, 11]
such that reduces validity problem to a so-called generalized halting problem
for schemata; it had been shown earlier by V.A. Nepomniaschij and N.V. Shilov
[9, 11] that the generalized halting problem is decidable for Yanov schemata in
exponential time.

2 Special classes of models and formulas

Definition 6. µC-formulas φ and ψ are said to be equivalent in a class of models
M if M(φ) = M(ψ) for every model M in this class. In particular, when M is
the class of all models then the formulas are said equivalent. If a class M consists
of a single model M then formulas are said to be equivalent in this model M .

Definition 7. µC-formula is said to be normal if all instances of negation are
at literal level (i.e. ¬ may appear only in front of propositional variables in the
formula).

According to the following very standard statement each µC-formula may be
transformed in linear time into an equivalent normal formula.

Proposition 1. For any propositional variable x and program variable a, for
any µC-formulas φ and ψ the equivalences in the table 1 are valid.

Definition 8. An instance of a propositional variable in a formula is said to be
guarded if it occurs in the range of any modality [. . .] or 〈. . .〉. A propositional
variable is said to be guarded in a formula if all its instances are guarded in the
formula. µC-formula is said to be guarded if all its bound variables are guarded.

8 Alternative spelling: Ianov.

¬(¬φ) is equivalent to φ

¬(φ ∧ ψ) is equivalent to (¬φ) ∨ (¬ψ) ¬(φ ∨ ψ) is equivalent to (¬φ) ∧ (¬ψ)

¬(〈a〉ψ) is equivalent to [a](¬ψ) ¬([a]ψ) is equivalent to 〈a〉(¬ψ)

¬(µx.ψ) is equivalent to νx.(¬ψ¬x/x) ¬(νx.ψ) is equivalent to µx.(¬ψ¬x/x)
Table 1. Normalization equivalences

One can read in papers [14, 15] that every µC-formula can be converted into
equivalent guarded one in polynomial time. But recently it was proved that
“known guarded transformations can cause an exponential blowup in formula
size, contrary to existing claims of polynomial behavior” [1].

Proposition 2. Every µC-formula is equivalent to some guarded µC-formula
that may be constructed from the input formula in exponential time and space.

Proof. First, if a formula φ has no instances of a propositional variable x then
µx.φ and νx.φ are both equivalent to φ.

Next, let x be a propositional variable and φ be a formula without negative
instances of x; let us classify instances of x in φ as follows:

– guarded instances or instances in the scope of any alien fix-point construct9;
– unguarded instances that are out of scope of any alien fix-point construct;

let us refer instances of the first type by xfp and instances of the second type
by xos; then following equivalences hold:

– µx.φ is equivalent to µx.φfalse/xos
, i.e. the same formula where all unguarded

instances of x are replaced by false;
– νx.φ is equivalent to νx.φtrue/xos

, i.e. the same formula where all unguarded
instances of x are replaced by true.

Using these equivalences one can eliminate all unguarded bound instances of
variables that are out of scope of any alien fix-point construct.

Finally, for any propositional variables x and y, any µC-formulas φ(x, y)
and ψ(x, y) without negative and bound instances of x and y, for any fix-point
constructs π, ρ ∈ {µ, ν}, any fresh10 propositional variable z and t, the following
formulas are equivalent:

– πx.φ(x, ρy.ψ(x, y)),
– πx.φ(x, ρy.ψ(πz.φ(z, ρt.ψ(z, t)), y)),
– πx.φ(x, ρy.ψ(πz.φ(z, y), y)).

Observe, that if formula ψ(x, y) has no unguarded instances of y, then the for-
mula πx.φ(x, ρy.ψ(πz.ψ(z, y), y)) has no unguarded instances of neither x, nor
y, nor z in the scope of an alien fix-point construct ρy or πz. �

9 i.e. a construct that bounds another variable
10 i.e. that are not in use neither in φ nor in ψ

Definition 9. A model M = (D,R,E) is said to be strict if every program
variable a ∈ Act is interpreted as a total function R(a) : D → D. A variant of µ-
Calculus (with same syntax as µC) based on (i.e. that uses) strict interpretations
only, is called strict µ-Calculus (µ-Strict or µS).

Let us remark that propositions 1 and 2 are true for µ-Strict. But strict µ-
Calculus also has some specifics: for every program variable a ∈ Act and any
µS-formula φ the following µS-formulas [a]φ and 〈a〉φ are equivalent due to
interpretation of program variables by total functions. This observation implies
the following corollary.

Corollary 2. Every µS-formula is equivalent to some normal guarded box-free11

µS-formula that may be constructed from the input formula in exponential time
and space.

Definition 10. Formulas (in different languages maybe) are said to be equally
valid if they all are simultaneously valid (according to their semantics) or all
simultaneously are not valid. Similarly, formulas are said to be equally satisfieble
if they all are simultaneously satisfieble (according to their semantics in different
models maybe) or all simultaneously are not satisfieble.

Let us introduce (classical propositional) implication → and equivalence ↔
in the standard manner as macros legal to use in non-normal formulas: for
any formulas φ and ψ let φ → ψ stays for (¬φ) ∨ ψ, and φ ↔ ψ stays for
(φ→ ψ) ∧ (ψ → φ).

Next let us introduce few more macros inspirited by Propositional Dynamic
Logic (PDL)[5]: for any program variables a and b, any formulas φ and ψ let

– [(a;φ?)∗; b]ψ stays for νx.([b]ψ ∧ [a](φ→ x)),
– 〈(a;φ?)∗; b〉ψ stays for µx.(〈b〉ψ ∨ 〈a〉(φ ∧ x)).

It is possible to say that ‘;’ is sequential composition of programs, ‘*’ is non-
deterministic iteration of a program, and ‘?’ is a test construct that converts a
‘property’ to a guard. Thus formula [(a;φ?)∗; b]ψ suggests to iterate a any (non-
deterministic) number of times (while φ holds after each iteration), then apply
b and check that at the end ψ is always true; in contrast, formula 〈(a;φ?)∗; b〉ψ
suggests to iterate a some (non-deterministic) number of times (with care about
φ after each iteration), then apply b and eventually ψ should be true.

The following proposition has been proved in [11].

Proposition 3. Let φ be a µC-formula. For every program variable a ∈ Act
that occurs in φ, let fa, ga and pa be fresh (disjoint) program variables and
propositional variable (individual for each a). Let µS-formula ψ be result of re-
placement in φ of all instances of each program variable a ∈ Act by an instance
of expression (fa; pa?)∗; ga; then µC-formula φ is equally valid/satisfieble with
µS-formula ψ. It implies that every µC-formula is equally valid/satisfieble with
some µS-formula that may be constructed from the input formula in linear time.

11 i.e. a formula without instances of modality [. . .]

Fig. 1. Simulation of a countable µC-model by µS-model

Proof. Firstly let us remark that φ is valid iff it is valid in all tree-based countable
models. Here a tree-based countable model is any model (D,R,E) whereD as the
set of nodes and {R(a) : a ∈ Act occurs in φ} as the set of edges form a directed
tree. One can think about a tree-based model for φ as a labeled directed tree
where nodes are states, edges are graphs of interpreted program variables that
occur in φ; edges of this tree are marked by corresponding program variables and
nodes are marked by propositional variables occurring in φ that are evaluated
as valid in these nodes. A tree-based model that “emulates” a given model for φ
can be constructed as follows: for each state glue together all its successor states
that are indistinguishable by any formula of µC, and then unfold this reduced
model into an infinite tree (starting from any desired state). Let us remark that
gluing indistinguishable states and coping by unfolding don’t change validity of
any formula in states and their copies. Remark also that after gluing together all
indistinguishable states the reduced model is (not more than) countable; hence
unfolded tree-based model is also countable.

Next, we can transform a countable tree-based model for φ into a countable
tree-based µS-model for µS-formula ψ, by “simulating” interpretation of each
program variable a ∈ Act (that occurs in φ) as specified below and illustrated
on Fig. 1: for each state s

– let us introduce a countable set of auxiliary states,

– let fa enumerates all the auxiliary states in some order,

– let pa be valid as many times on auxiliary states as is the number of a-
successors of s,

– let ga returns a corresponding a-successor of s for each of auxiliary states.

In the resulting µS-model the validity of the formula ψ in the states of the
original µC-model coincides with the validity of φ in the original µC-model. �

The following statement is a corollary from Knaster-Tarski fix-point theorem.

Corollary 3. For any propositional variable x ∈ V ar, any µS-formula φ that
has no negative or bound instances of x, for any strict model M the following
holds:

– M(µx.φ) =
⋃
n≥0M(φnfalse/x),

– M(νx.φ) =
⋂
n≥0M(φntrue/x).

Proof. Both equalities are very similar, so let us prove the first one only by
simultaneous induction by number of fix-point constructs in φ; since proof of
the induction basis and the induction step are very similar, let us just sketch the
induction basis, i.e. to prove that M(µx.φ) =

⋃
n≥0M(φnfalse/x) for a fix-point-

free formula φ.
Firstly, subsumption

⋃
n≥0M(φnfalse/x) ⊆ M(µx.φ) is valid in each model

according to Corollary 1. Next, let us assume (in contrary)
⋃
n≥0M(φnfalse/x) 6=

M(µx.φ). Then let us denote
⋃
n≥0M(φnfalse/x) by S. Due to the assumption,

MS/x(φ) 6= S. Hence there exists a state s ∈ DM such that s ∈ (MS/x(φ) \ S).
Since φ is fix-point-free and M is strict, then there exists a finite set Sfin ⊆ S
such that s ∈MSfin/x(φ). It implies that s ∈

⋃
n≥0M(φnfalse/x) due to finiteness

of Sfin. — Contradiction. Hence MS/x(φ) = S. �

Definition 11. A model (D,R,E) is called Herbrand model [9] (or free model
in Russian tradition [4, 7]) if the domain D is the set Act∗ of all finite words
constructed from program variables (including the empty word θ) and interpre-
tation R is defined as follows: R(a)(w) = wa for any program variable a ∈ Act
and any word w ∈ Act∗.

If to analyze the proof of proposition 3 above then it is possible to prove the
following statement.

Proposition 4. µS-formula is valid/satisfiable iff it is valid/satisfiable in ev-
ery/some Herbrand model.

3 Non-deterministic Yanov Schemata

Yanov schemata [6, 4, 10] is one of classical program models that enjoys decidabil-
ity of many algorithmic problems like (functional) equivalence, emptiness and
totality (halting) [4, 7]. The term Yanov scheme was introduced by Andrey P.
Ershov; he also developed graphical flowchart notation and complete graphical
axiomatization for the equivalence problem [4, 10].

Non-deterministic Yanove schemata were introduced in [9] and then were
used in [11]. Let us repeat below basic syntax and semantics definitions for non-
deterministic Yanov schemata.

Definition 12. Let us use natural numbers (including 0) as labels12. Assign-
ment (or labeled assignment operator) is any expression of the form “l : f goto
L” where l is a label, f is a program variable, and L is a finite set (the empty
set maybe) of labels13. Choice (or labeled choice operator) is any expression of
the form “l : if p then L+ else L−” where l is a label, p is a propositional vari-
able, L+ and L− are finite sets of labels (each may be empty). Non-deterministic
Yanov scheme is a finite set of labeled operators.

According to the definition above, a label may mark several operators in
a non-deterministic Yanov scheme. Definition of syntax of the classical Yanov
schemata results from the above definition by imposing the following additional
constraints:

– a label may mark a single operator in a scheme;
– all sets L, L+ and L− in operators are singletons.

Let us reserve term Yanov scheme (or simply scheme) for non-deterministic
Yanov scheme, but use term standard Yanov scheme when we discuss the classical
case.

Semantics of Yanov schemata is defined in strict models. Speaking informally,
run of a scheme in a model may start from any state but the first operator to
fire must be marked by label 0 (zero); then run consists of firings of operators
according to control flow that is defined by labels; run halts when control is
passed to any label that does not mark any operator within the scheme14.

Definition 13. Let S be an arbitrary fixed Yanov scheme and M = (D,R,E)
be any fixed strict model. Configuration is any pair of the form (l, s) where l is
a label (that occurs in S) and s is a state (of the model). Firing of an operator
is a pair of configurations (l, s)(l′, s′) as defined below:

– firing of an assignment operator “l : f goto L” (that occurs in S) is a pair
of configurations (l, s)(l′, s′) where s′ = R(f)(s) and l′ ∈ L;

– firing of a choice operator “l : if p then L+ else L−” (that occurs in S) is

a pair of configurations (l, s)(l′, s′) where s′ = s and l′ ∈
{
L+ if s ∈ E(p)
L− otherwise.

A run is any sequence of configurations (l0, s0) . . . (lk, sk)(lk+1, sk+1) . . . such
that each neighbor pair (lk, sk)(lk+1, sk+1) within this sequence is a firing of
some operator (of S of course). A complete run starts with a configuration with
label 0 and is either infinite or ends with a configuration with a final label (in
S).

Let us recall some facts and concept about the standard Yanov schemata.
Every standard Yanov scheme in any strict model for any initial state has a

12 Let us assume that notation for number representation is fixed.
13 Let us use the standard representation for finite sets: ∅ for the empty set and

elements enumerated in a pair of curly parenthesis ‘{’ and ‘}’.
14 These labels are called final labels of the scheme.

single complete run that starts in this state. A standard Yanov scheme is said
to be total, if it hasn’t any infinite complete run in any strict model. The halting
(totality) problem for standard Yanov schemata is to decide for an input scheme
whether it is total or not. It is well-known that the problem is decidable, and a
scheme is total iff in every Herbrand model starting in configuration15 (0, θ) the
scheme always halts16 [7].

Definition 14. Let Fin ⊆ V ar be a finite set of propositional variables. Let us
say that a Herbrand model M = (D,R,E) fits Fin, if for every propositional
variable p ∈ Fin its evaluation E(p) is a finite set. A scheme S is said to be
total with respect to Fin, if in every Herbrand model that fits Fin, scheme S has
a finite complete run starting in configuration (0, θ).

Definition 15. Generalized halting (totality) problem for non-deterministic Ya-
nov schemata is to decide for an input scheme S and input finite set of proposi-
tional variables Fin whether S is total with respect to Fin.

Generalized halting problem has been proven to be decidable [9, 11] with
upper bound exp(nA + nC) where nA and nC are numbers of assignments and
choices in the input scheme. Below we will present a new decision procedure for
the problem in a sub-class of guarded schemata inspirited by a decision procedure
for a special class of automata [12].

Definition 16. Yanov scheme is said to be guarded if any non-empty path on
flow-chart of the scheme that starts in a choice operator with some propositional
variable as the condition, and ends in a choice operator17 with the same condi-
tion, has an instance of an assignment operator.

It is well-known that functional equivalence is decidable for the standard
Yanov schemata [4, 7]. This equivalence may be expanded onto non-deterministic
Yanove schemata by considering input-output relations augmented by looping,
and can been proven to be decidable since every scheme can be effectively trans-
formed to appropriate equivalent canonical guarded scheme [9]. These equiva-
lence and transformation were very helpful for proving decidability of Propo-
sitional Dynamic Logic [9] but aren’t so helpful in study of decidability of µ-
Calculus.

Nevertheless we are interested in guarded non-deterministic schemata since
such schemata may be converted to models for µ-Calculus.

Definition 17. Let S be a guarded scheme. For each propositional variable p
that occurs in S, let +p and −p be a pair of new (fresh) program variables. Let
MS be the following model (DS , RS , ES).

– DS is union of the following three sets:

15 Recall that θ is the empty word.
16 i.e. it has a finite complete run
17 maybe the same operator where the path starts

• {(l, f) : l is a label, f is a program variable such that S has an assign-
ment “l : f goto . . .” };

• {(l,+p), (l,−p) : l is a label, p is a propositional variable such that S
has a choice “l : if p then . . . else . . .”};

• {(l, stop) : l is a final label in S}.
– RS interprets old and new program variables as follows:
• for each program variable f that occurs in S, RS(f) = {((l, f), (k,m)) :

(l, f), (k,m) ∈ DS and S has an assignment “l : f goto L”, where k ∈
L};

• for each propositional variable p in S, RS(+p) = {((l, p), (k,m)) :
(l, f), (k,m) ∈ DS and S has a choice “l : if p then L+ else . . .”,
where k ∈ L+};

• for each propositional variable p in S, RS(−p) = {((l, p), (k,m)) :
(l, f), (k,m) ∈ DS and S has a choice “l : if p then . . . else L−”,
where k ∈ L−}.

– For each propositional variable p in S, ES(p) = {(l,+p) : (l,+p) ∈ DS}.
Any state of DS in the form (0, . . .) is called initial.

Definition 18. Let Fun ⊆ Act be a finite set of program variables, φ be µC-
formula, M = (D,R,E) be a model, and s ∈ D be a state. An infinite sequence
of states s0, s1, . . . ⊆ D is generated by Fun from s in M , if s0 = s and for all
k ≥ 0 there is a program variable a ∈ Fun that (sk, sk+1) ∈ R(a). Let us say
that

– formula φ is inevitable for Fun in M from s, if every infinite sequence of
states s0, s1, . . . ⊆ D generated by Fun from s in M has a state sj |=M φ;

– program variables Fun are fair for (or with respect to) φ in M from s, if
every infinite sequence of states s0, s1, . . . ⊆ D generated by Fun from s in
M has an infinite subsequence t0, t1, . . . that tj |=M φ for all j ≥ 0.

Proposition 5. Let S be a guarded scheme, Fin be a set of propositional vari-
ables, MS be model constructed from S as specified in the definition 17, and Fun
be the set of all program variables that correspond to propositional variables in
Fin according to this definition. Then the following clauses are equivalent:

– S is total with respect to Fin;
– Fun is fair with respect to

∨
p∈Fin p in MS from every initial state.

Proof. A path l0, . . . lk, . . . in a flowchart is said to be valid if there exists a strict
model M and sequence of states s0, . . . sk, . . . (with same length as the path)
such that (l0, s0) . . . (lk, sk) . . . is a run in this model. A scheme is said to be free
[7, 11] if any path on its flowchart is a valid. It is easy to see that every guarded
scheme is free. Due to this freedom of S and finiteness of Fin we have: S isn’t
total with respect to Fin ⇔ there exists an infinite path in MS where formula∨
p∈Fin p is valid an infinitely often. �

Definition 19. Let Fun ⊆ Act be a finite set of program variables, and φ be
any µC-formula. Let us introduce two more macros:

– let18 AF (Fun, φ) stays for µy.(φ ∨
∧
a∈Fun[a]y),

18 AF means Always in Future is a modality from Computation Tree Logic CTL [2].

– and fair(Fun, φ) stays for νx.AF (Fun, φ ∧ x).

Proposition 6. For every model M = (D,R,E), for every state s ∈ D, ev-
ery finite set of program variables Fun, and every µC-formula φ the following
equivalences hold:

– s |=M AF (Fun, φ) ⇔ φ is inevitable for Fun in M from s;
– s |=M fair(Fun, φ) ⇔ Fun is fair for φ in M from s.

Proof. The first equivalence is trivial and well-know from Computational Tree
Logic [2]. To prove the second equivalence, let us pickup an arbitrary infinite
sequence of states s0, s1, . . . ⊆ D generated by Fun from s in M such that s0 |=M

fair(Fun, φ); according to the first equivalence, the sequence has a state t0 |=M

φ ∧ AF (Fun, fair(Fun, φ)), i.e. t0 |=M φ and t0 |=M AF (Fun, fair(Fun, φ));
it implies that the sequence has another state t1 (somewhere after t0) where
t1 |=M φ ∧ AF (Fun, fair(Fun, φ)); due the same argument we can find states
t2, t3 and so on. �

The following proposition is a corollary from propositions 5 and 6.

Proposition 7. Let S be a guarded scheme, Fin be a set of propositional vari-
ables, MS be model constructed from S as specified in the definition 17, and Fun
be the set of all program variables that correspond to propositional variables in
Fin according to this definition. Then S is total with respect to Fin if and only
if (0,m) |=MS

fair(Fun,
∨
p∈Fin p) for all m such that (0,m) is a state in DS.

Definition 20. Global model checking [2] for a program logic (a variant of µ-
Calculus in particular) in a class of models for this logic is an algorithmic prob-
lem to compute (to construct) the set M(φ) for input model M (in this class)
and input formula φ (of this logic).

Proposition 8. Generalized halting problem for guarded non-deterministic Ya-
nov schemata is decidable in quadratic time O(nA + nC)2 where nA and nC are
numbers of assignments and choices in the input scheme.

Proof. The upper bound O(|φ|×|M |alt(φ)) for model checking µC in finite models
is well-known [2]; here

– |φ| is the total number of Boolean connectives and modalities in the input
formula,

– alt(φ) is the maximal number of alternations of nesting µ/ν-constructs in
the formula,

– |M | is the overall size of the input model (i.e. the total number of states and
edges).

Let S be a guarded scheme, Fin be a set of propositional variables, MS be
model constructed from S as specified in the definition 17. According to proposi-
tion 7, we have to model check formula fair(Fun,

∨
p∈Fin p) in the finite model

MS . It suffices to remark that |fair(Fun,
∨
p∈Fin p)| is some fixed constant,

alt(fair(Fun,
∨
p∈Fin p)) = 1 and |MS | = O(nA + nC)2. �

4 Main Results

4.1 Translation Algorithm

Let us define below a recursive algorithm F2S (Formulas To Schemata) to
translate normal guarded µS-formulas into guarded non-deterministic Yanov
schemata. We would like to use in the definition the following standard control-
flow constructs:

– S′;S′′ for sequential composition of two schemata,
– if q then S′ else S′′ for deterministic choice in two schemata,
– S′ ∪ S′′ for non-deterministic choice in two schemata;

all these control-flow constructs are easy to define formally in terms of non-
deterministic Yanov schemata. Let us also use some macro-notations:

– stop for all final labels of a scheme under consideration (i.e. labels that occur
in the scheme but don’t mark any operator),

– loop for a fixed scheme that always loops (e.g., {0 : if p then {0} else {0}}).

Algorithm F2S:

– For any propositional variable
• F2S(p) = {0 : if p then stop else loop};
• F2S(¬p) = {0 : if p then loop else stop};

– F2S(φ ∧ ψ) = if q then F2S(φ) else F2S(ψ), where q is a new (fresh)
propositional variable;

– F2S(φ ∨ ψ) = F2S(φ) ∪ F2S(psi);
– for any program variable

F2S([a]φ) = F2S(〈a〉φ) = {0 : a goto stop};F2S(φ).
– F2S(µx.φ) results from F2S(φ) by replacement instead of every choice oper-

ator (with condition x) “if x then stop else loop” the unconditional operator
“goto {0}”.

– F2S(νx.φ) results from F2S(φ) by replacement instead of every choice op-
erator (with condition x) “if x then stop else loop” the choice operator
“if x then {0} else stop”.

Proposition 9. Algorithm F2S translates normal guarded µS-formulas into
guarded non-deterministic Yanov schemata in linear time.

Definition 21. Let M = (D,R,E) and M ′ = (D′, R′, E′) be two models with
same domain (i.e. D = D′) and interpretation of program variables (i.e. R =
R′), let Fin be a set of propositional variables; we say that M ′ is a modification
of M on Fin, if valuations E and E′ differs on variable in Fin only (i.e. E(p) =
E′(p) for every p 6∈ Fin).

Proposition 10. Let M be any Herbrand model, φ be a normal guarded formula
of the strict µ-Calculus, Gfp (Greatest fix points) be the set of all propositional
variables that are bound by ν in this formula, and Cnj be the set of all new

propositional variables q that are introduce for conjunctions in an exercise of
F2S(φ). Then µS-formula φ is valid in M if and only if the non-deterministic
Yanov scheme F2S(φ) halts in every M ′ that fits Gfp and is a modification of
M on Gfp ∪ Cnj.

Proof. Induction on formula structure. Induction base is the case when a formula
is a literal (i.e. a propositional variable or its negation); in this case proof is trivial
due to explicit definition of F2S in these cases.

Induction step in case of disjunction ∨ and modalities [. . .] or 〈. . .〉 is straight-
forward due to simplicity of definition of F2S in these cases.

Let us consider conjunction. Since F2S(φ ∧ ψ) = if q then F2S(φ) else
F2S(ψ), where q is a variable in Cnj, and since q has instances neither in
F2S(φ) nor in F2S(ψ), then we can interpret this variable arbitrary and (by
this) test both F2S(φ) and F2S(ψ) for halting.

Let us discuss an idea that is behind the induction step in case of µp.φ. Ac-
cording to Corollary 3, M(µx.φ) =

⋃
n≥0M(φnfalse/x). Recall that F2S(µx.φ)

results from F2S(φ) by substitution of unconditional “goto {0}” instead of
“if x then stop else loop”, i.e. F2S(µx.φ) is equivalent to F2S(

∨
n≥0 φ

n
false/x).

Finally, an idea behind induction step for νp.φ follows. Again, according to
Corollary 3, M(νx.φ) =

⋂
n≥0M(φntrue/x). Since F2S(νx.φ) results from F2S(φ)

by substitution of “if x then {0} else stop” instead of “if x then stop else loop”
(where x ∈ Gfp) then F2S(νx.φ) is equivalent to F2S(

∧
n≥0 φ

n
true/x) because x

can be true only finite number of times. �

4.2 Results and Conclusion

Main Theorem follows from propositions 1-4 and 8-10.

Theorem 1. The propositional µ-Calculus is decidable with exponential upper
bound (on formula size).

Since it is known that µ-Calculus is EXP −Time complete [3], propositions
1-4 and 8-10 imply the following corollary.

Corollary 4.
Any algorithm that transforms µ-Calculus formulas into equivalent guarded for-
mulas, must be exponential in fix-point nesting depth of the input formula.

Concluding Remarks. To the best of our knowledge, the lower bound from
corollary 4 is a very new result [1]. Study of implications from this result (for par-
ity games [15] for instance) may be a topic for further research. Another possible
research topic may be complete axiomatization of the propositional µ-Calculus
in a manner similar to the complete axiomatization for the Propositional Linear
Temporal Logic in [12]. Research on a new approach to axiomatization may be
interesting since completeness proof in [14, 15] uses reduction to guarded frag-
ment.

References

1. Bruse F., Friedmann O., Lange M. Guarded Transformation for the Modal
mu-Calculus. arXiv:1305.0648v2, 2013 (available at http://arxiv.org/abs/1305.

0648).
2. Clarke E.M., Grumberg O., Peled D. Moedel Checking, MIT Press, 1999.
3. Emerson E.A. and Jutla C.J. The Complexity of Tree Automata and Logics of

Programs. SIAM J. Comput., v. 29 (1999), 132-158.
4. Ershov A.P. Origins of programming: Discourses on metnodology, New York,

Springer Verlag, 1990.
5. Harel D., Kozen D., Tiuryn J. Dynamic Logic, MIT Press, 2000.
6. Ianov Yu. I. The logical schemes of algorithms. In Problems of Cybernetics, v. I,

A. A. Lyapunov, R Goodman, and A D. Booth (Eds), Pergamon Press, New York,
1960, 82-140.

7. Kotov V.E., Sabelfeld V.K. Theory of Program Schemata. Moscow, Nauka Publesh-
ers, 1991. (In Russian.)

8. Kozen D. Results on the Propositional Mu-Calculus. Theoretical Computer Science,
v.27, 1983, p.333-354.

9. Nepomniaschy V.A., Shilov N.V. Non-deterministic program schemata and their
relation to dynamic logic. Internat. Conf. on Math. Logic and its Applications.
Plenum Press, 1987, 137-147. (Revised version: Cybernetics, v.24(3) (1988), 285-
293.)

10. Podlovchenko R.I. A.A. Lyapunov and A.P. Ershov in the Theory of Program
Schemes and the Development of Its Logic Concepts. Perspectives of System Infor-
matics, 4th International Andrei Ershov Memorial Conference, PSI 2001. Lecture
Notes in Computer Science, v.2244, 2001, p.8-23.

11. Shilov N.V. Program Schemata vs. Automata for Decidability of Program Logics.
Theor. Comput. Sci., v.175 (1997), 15-27.

12. Shilov N.V. An approach to design of automata-based axiomatization for proposi-
tional program and temporal logics (by example of linear temporal logic). In: Logic,
Computation, Hierarchies. Series: Ontos Mathematical Logic, v.4 Ontos-Verlag/De
Gruyter, Germany, 2014, p.297-324.

13. Tarski A. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, v.5, 1955, p.285-309.

14. Walukiewicz I. A Complete Deductive System for the mu-Calculus. Proceedings of
IEEE LICS’93, 1993, p.136-147.

15. Walukiewicz I. Completeness of Kozen’s axiomatisation of the propositional Mu-
calculus. Information and Computation, v.157, 2000, p.142-182.

