Design and implementation a
software for water purification [=
== with using automata approach
~ and specification based analysis §..

.
e
—
.

F Sergey Staroletov (Polzunov Altai State Technical University)

s Eighth Workshop .~
Program Semantics, Specification and Verification: V i
Theory and Applications —

(PSSV 2017, June 26, 2017)

Y g S 2
FUR — Bt
—

VIS

B @

Purpose of the work

e Our university received an order for the research work to
design and development software under the UN grant for
developing countries in the field of energy conservation.

« A customer is developing a hardware plant providing
preparation of distilled water of the given temperature and
testing the energy consumption and water consumption of

various connected devices (for example, washing machines
and dishwashers).

pumping)

 Normalize to a given temperature
(circulating, heating, cooling)

F

-

¢ n
Js

e EEEEEERETe ek T

|

.

——
i

—

- q r—.— —_—

Related Work

Supervisory control and data acquisition
(SCADA) concept. We build the own
system because:

Customizable SCADA systems: very big price

e -

— S

Lack of support for existing devices

-—
—

Need to implement a software either to run the |
process, to make graphs and reports and
good Ul for non-engineers

. .
e e |

e ——

Need to license the hardware and software

e S e = - e = —— i T
— ,_w, — -l-:ﬂ'%-%'

R S~

e S R T

| < <pperates>>

| <<control>>

! < <Operate> =
<<control>> i

|
Lo
i

< <0peérate>>

< <operate> >

i
i I
[

1
|

< <check> >

ke == ==== ccchecks>>

Statement of the work

« All water preparation and equipment testing should
be performed without user intervention by the
automatic operations in the hardware stand and the
operator’s job is only to select the mode, to set
parameters and then run the process

Novelty consists primarily in mandatory to implement
algorithms for water purification in this plant and
control of hardware devices

These algorithms must be primarily reliable because
water is supplied under high pressure, is heating .
using amperage of tens of amperes, and all possible ft

exceptional operations must be processed
=R W

e

g emraate il

The reason

— Design the software

=" « Implement the software
— + Get some troubles

g * Create a method for creating suchlike high-
. quality systems with minimum of troubles

—

A fragment of customer's
specification

{Active before filling the large / storage tank)

Algorithm: Distillate cycla.

Yes / parameters COK:
Step 0@ Start preparation ... 1) Accumulation distillate in the tank
Step 1: The water pressure is checked at the input 2) Executing step 3 again

{chack senzor No ...) ... Yo / the parameters are not normal:

- The amperage exceeds the set maxipum:
Step 2: Filling the distiller 1) The heating of the distiller is switched off;
The level semscr in the distiller is monitored for 2) The tramsition to 3.1.
{time of opening the valwe) after cpening valve N... - The amperage with the fill sensor turned on is balow
Yaz / parameters OK: the set minimum:
1) Valwe ... iz closed; 1) The heating of the distiller iz switched off;
2) Transition to step 3. 2) The traneitiom to 3.2.

Yo / the par ars are oot mormal: - The amperage with the filling sensor awitched off is below the

t minimum:
1) Message (Filling of filling of the distiller); seb e

i ; i Go to step 1.
2) The automatic mode is awitched off.

- The temperature is higher than the given maximum:
i) The heating of the distiller is switched off;
Step 3: Diavillation o
2) The tramsition to 3.3.
1) The heating of the distiller is activated (Button ...);

2) Parameters are monitored: Step 3.1: Draining of salted water ...
- amperage;

temperatures of the distiller;

filling senscr;

the sensor for filling the atorage tank.

Automata approach
So we need the automata approach here

We see steps like the states, transitions,
actions and guard conditions

The process of algorithm design is to draw

state machine diagrams from the spec

The process of developing — just write the
code to follow the steps after device layer will
be done

The automatons can also be analyzed and
verified

= o P = = = —— - Bl L oE
by ,_'!""_"."I"_"F-ﬂ-a — %-.,_&q

o

e S R T

[valve for distiller opened |

[accumulated a predetermined amount of distillate]
[stop valve]

[water in started]

[turm on water]

[sensor of distiller lever on]

[sensor of distiller lever off
laqua <= distiller min threshold]

[sensor of distiller level on
laqua = distiller maximum
threshold]

[sensor of distiller level on
laqua < distiller minimum
theshaold]

[else
T distiller = distiller maximum
temp treshold]

Normalization process

[l

[absiT collector - T tank) < 0.1]

[absiT collector - T tank) <= 0.1

&& Abs(T collector - T desired) <= 0.5)]

[abs(T collectar - T tank) <= 0.1 &&
(T collector - T desired) == 0.5)]

[same as in the Cooling transition]

stop main pump

]
stop heating

[we are in the mixing state
maore than Time mix max threshold]

[we are in the cooling fheating state
more than Time max thresold]

stop coolingfheating [abs(T collector - T tank) <= 0.1 &&

abs(T collector - T desired) <= 0.5)
continuosly
for amount of a given time {about 30 seconds)]

Requirements

Actions to start/stop devices do not affect the current process of obtaining
information

Check pumping: if we got some level of water in the small tank all the water
must be pumped to the storage tank

Distillate preparing cycle will be completed, or an error message will be
displayed

Distillate normalization cycle will be completed, or an error message will be
issued

Will not fill water above the edge of distiller / tanks

Pumps do not work without water

You cannot start a heater / distiller if the level of water in the tank is small
In each mode, water flows are redirected correctly

Some devices can be turned on/off after some time after the control impact
and the system must work correctly

p—

S
- A

— « + An additional thread for watching to the =
devices state, control and stop the process |

=

" « Additional sensors

e PID controllers

* Preliminary verification of the processes
given by its automatons

Verification

. - e The automaton model in Promela is
' received from the spec

» LTLs for reachability of each state

E (state == <state>)
 LTLs to check additional properties

l.e. G (state == WaitingTcollectorTtankTdesired) ->
(Tcollector == Ttank)

e Simulation to show to the customer how
the water treatment algorlthms are work

e T

L

Verification

water.pml
Spin Version 6.4.2 -- 8 October 2014 :: iSpin Version 1.1.3 -- 27 September 2014
Edit/Viaw Simulate / Replay Verification Swarm Run <Help> Save Sesslon Restore Sesslon <Quit>
Safety | Storage Mode | Search Mode
safety O exhaustive © depth-first search

+ invalid endstates (deadlock) "~ | + minimized automata (slow) + partial order reduction

+ assertion violations | + collapse compression | + bounded context switching

| + xrfxs assertions) hash-compact () bitstate/supertrace with bound: 0
Advanced

Liveness Never Claims | + iterative search for short trail Parameer

non-progress cycles) do not use a never claim or It property ~ breadth-first search
© acceptance cycles © use claim + partial order reduction
| enforce weak fairness constraint claim name {opt): check_temp report unreachable code

Aun Save Aesult in: pan.out

0 atomic steps
hash conflicts: 729 (resolved)

1
2
3
4

miype = {StartMainPump, WaitingTeollectorTtank, WaitingTeollectorTtankTde Stats on memory usage (in Megabyil i (Teollector!=Ttank) -=

sired, MeedHeating, StartHeating, Heating, TemperatureContral, Mixing, Cocling, Temp 26.142 equivalent memory usage {

eratureCchroIQ, WaitValeForChiller, NeedCooling, OK, stopAllButMainPump, Addition 21.186 actual memory usage for . . .
alMixing): state-vector as stored = 21 if ::main PumpStarted -> Toollector = Toollector + 1, fi
128.000 memory used for hash tabj

mtype state = StartMainPump; 0. mamaory used for DFS stad .
149.628 total actual memory usags - [Tmllﬂ[:tnr!:Ttank]l =
byte Teallector=10; {
byte Ttank=20; i e i B - -1 fi
bool mainPumpStared=faise; unreached in proctype runProc if ::mainPumpStarted -= Teollector = Toollector - 1 fi
water.pml:58, state 51, "8 }
active proctype unProc() { (1 of 51 states) o (Teollector!=Ttank) -=
int buf; unreached in claim check_temp
printfi" process started”); spin_mvr.tmp:B, state 10, '[

do (1 of 10 states) if ::mainPumpStarted -=Ttank= Ttank + 1; fi
H

o
printfi"next step™); pan: elapsed time 0.24 seconds -
if MNo emrors found -- did you werify all ¢ - [Tmllﬂ[:tnr!:Ttank]l =

state==StartMainPump - { .[

if ::rmainPumpStarted -= Ttank= Ttank - 1fi

—_——— -
—
- a

2. It is hard to ask any specification from the customers

. 3. The specification of control algorithms was given from the
customer only after the overall internal architecture
- implementation because he is not sure about the functionality of

the hardware so it was difficult to estimate the effort and the
software cost before starting the project.

4. The specification of control algorithms was changed several
times after testing and verification the functionality because of
lacks in the specification.

|

E 5. Current implementation of system is a user-space application
that has not very good response time (~0.5s lack). Is is better to
build the control algorithms as modules for a real-time OS.

T

o

T

Some my suggestions to improve the
process of developing suchlike control

systems based on specification analysis

Specification

Model for verifier
Automaton diagrams

if {currentSubState2 == SubstateStateMormalize.Start)) . . X . X .
I mtype = {StartMainPump, WaitingToollectorTtank, WaitingToollector TtankTdesired, NeedHeating, StatHeating, Heating, Tempe

stateStr = "3anyck HOPMANW3IALWWA, YacTOTHUK" ureControl, Mixing, Cooling, TemperatureConrol2, WaitValveForChiller, NeedCooling, OK, stopAllButMainPump , AdditionalMicing;

f/nycka JacToTHUKE mtype state = StartMainPump;

if (!0
Y ; byte Teollector=10;

byte Ttank=20;
currentSubState? = SubstateStateNormalize.WaitFor2T; bool mainPumpStaned=false;
active proctype runProcl) {
int buf;
printf{" process stared™);
do

= Temn B bake)");

BE

printf{"next step™):

if

:state==5tartMainP ump -= {

if (Math.Abs(t_kollector — t_bakl == 8.1) erintf("StarthMainPump”);
{

aeenbiesesieresians mainPumpStarted = true;
state = WaitingToollectorTtank;

cstate==WaitingTcollectorTtank == {
printf"WaitingTeollector Ttank™);
if :: (Teollector==Ttank) -=
{

BDD
* We don't have exactly final specification

» Specification is growing, and the
developing processes is continued at the
same time

g » Behavior driven developing is an industrial
= approach” for software developing based
on scenarios written on Gherkin language

|

*M.Wynne, A.Hellesoy, S.Tooke. The Cucumber Book, Second Edition.
Behaviour-Driven Development for Testers and Developers.

e - — e —

LS

,;[,__

/

A

=
=

—

A BDD

1. Specification of a feature

Feature: Software Calculator

Feature: Addition

process

In order to avoid using + = / =

JIn order to avoid using + -/ *

As a math idiot

[want to create a software calculator

Scenario:
Given [have my software calculator
When [have entered 10 as first operand
And I have entered 20 as second operand
And I press 'Add’
Then The result should be 30

3. Generate step definition cod

public class MyStepdefs {
8Given("AI have my software calculator$")
public void iHaveMySoftwareCalculator() throws Throwable {
// Write code here that turns the phrase above into concrete actions
H

@When("AT have entered (\\d+) as first operand$")

public void iHaveEnteredAsFirstOperand(int number) throws Throwable {
// Write code here that turns the phrase above into concrete actions

3

BAnd("AT have entered (\wd+) as second operand$™)

public void iHaveEnteredAsSecondOperand(int number) throws Throwable {
throw new PendingException();

}

@And("AI press 'Add'$")

public void 1PressAdd() throws Throwable {
throw new PendingException();

3

@Then{"AThe result should be (\\d+)3")

public void theResultShouldBe(int expected) throws Throwable {
throw new PendingException();

1

As a math
I want to

4>

".'.IEe;nario:

T Then

idiot
create a software calculator

ven I have my software calculator
. Create step definition r

® Create all steps definition »

in OO language

first operand
second operand

already

3e

private Calculator calc;

@Given{"~I have ¥ Create enum ‘Calculator'

public void iHav § Create inner class 'Calculator' Thro
@ Create interface 'Calculator’

¥ Add Maven Dependency...

 Make 'protected'

4>

this.calc = n

@And("~I press ‘Add's")
public void iPressAdd{) throws Throwable {
this. result = calc.add{operandl, operandl);

% Create method ‘add’

@rhen("~The result shoul 5 Move ags,gnment to field declaration
public void theResultSho

Scenario: i e
Given I have my software calculator
When I have entered 5 as first operand
And I have entered 10 as second operand
And I press 'Multiply’
Then The result should be 58

- et m——

6.

2. Detect that that feature
hasn't been implemented

4.
Generate
a class

5.
Generate
a method
Write the
code

Creating
the next

feature

—

._. _ -

BDD addition
The BDD language now has no constructs for automaton
description

It is proposed to add constructs to the BDD for
describe the states and transitions and extend its
code-generation classes

After that the specification in BDD became a formal
specification like the specification shown here in the 8"
slide

So the customer (non-programmer) can create this by
hand

In BDD process, when the spec is added/changed it is
possible to generate the automaton code and a model for
verification =

S S e, -

d e

—'-

< = '_-'-“_

-
e
— i
e g
-
-
- —

“Russian Foundation for Basic
Research support

——ﬂﬁ

_—
—— —_ =
et
-—
—

G

» Grant "Methods for generation of formal
models and requirements from technical
documentation presented in a natural
language and their verification”

’ 0 Deep Verification

“—

C | @ deepverification.com

|_‘

Deep verification

Model software, requirement engineering in one place online

About

Does your company produce
high-risk/vital software? Are you
developing network protocols?
MNeed a tool 1o summMarize your
requirements and model the
bechaviour? Tired of academic
command-line solutions?

View details »

Start now »

Solution

Daon't test your critical software
on monkeys! Verify your software
to satisfy yvour requirements and
prove it to be 100% correct
Create an actor based simulator
of your software in one click

View details »

MDD based

We created a link from MDD to
verification process by generating
and checking the model of a
system as modified agent-based
finite automatons, provided ways
lo transform model for formal
verifier io check the properiies
MNow the aim of research is to
continue MDD process and

e T

|
f

A deep verification project

An Online portal for modeling and requirements engineering
of complex distributed software that will provide the links between a
customer, an engineer and verification tools

Informal
specification
Customer Software
engineer

LTLfDrmulas."’Lf |-Clr'||inE portal | (— System
“J\ }k variables

(AW VR

[Requirenments] Visual notation
WV

. —

——

—q

a
S
———
——
"
-
-

A deep verification project

A

[Customer]

/[LTL formulas L

Formal BDD style
specification

[

Informal
specification

Software
engineer

[Req Ui renments]

f\‘ ,..-rk variables

Online porta
Swst
| || =..,f- ystem]

[‘ufisual motation]

W
[Presets]

P‘-

: —
S— — i
S

Design and implementation a
software for water purification -

= with using automata approach | =
~-. and specification based analysis

— S

g Thanks! Q/A -

F Sergey Staroletov (Polzunov Altai State Technical University)

s Eighth Workshop .
Program Semantics, Specification and Verification: V s
Theory and Applications —

(PSSV 2017, June 26, 2017)

—— e ¥
.I-d--u . . TR gt Eo P

o R

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

