
12   A. P. Ershov Informatics Conference
Program Semantics, Specification and Verification: 

Theory and Applications

July 1–2, 2019
Novosibirsk, Akademgorodok, Russia

th

Abstracts





A.P. Ershov Institute of Informatics Systems SB RAS 

Ministry of Science and Higher Education of the Russian Federation 

Novosibirsk State University 

 

 

 

 

 

V. Zakharov, N. Shilov, I. Anureev (eds.) 

 

 

 

 

 

 

 

X Workshop PSSV 

 
Program Semantics, Specification and Verification:  

Theory and Applications 
 

July 1–2, 2019, Novosibirsk, Akademgorodok, Russia 

 

Abstracts 

 

Organizers 

 
A.P. Ershov Institute of Informatics Systems SB RAS 

Novosibirsk State University  

 

 

 

 

 

Sponsors 
 

RFBR 

Microsoft Research 

Novosibirsk State University 

STI International 

STI Innsbruck 

ARQA Technologies 

Sibers 

 

 

 

 

 

 

 

 

 

Novosibirsk 

2019  



II 

 

 

UDK 519.68 

 

 

 

 

X Workshop PSSV: Abstracts / Edited by V. Zakharov, N. Shilov, I. Anureev. — Novosibirsk: A.P. Ershov Institute 

of Informatics Systems, 2019. — 50 p. 

 

ISBN 978-5-4437-0918-5 

 

This volume comprises the papers chosen for presentation at the X Workshop PSSV to be held in Novosibirsk, 

Akademgorodok, Russia, on July 1–2, 2019. The main goal of the workshop is to give an overview of research 

directions in computer science. 

В сборнике представлены аннотации пленарных, регулярных и коротких докладов, а также полные тексты 

стендовых докладов, включенных в программу X-го международного научно-исследовательского семинара 

«Программные семантики, спецификации и верификация», проводимого 1–2 июля 2019 г. в Новосибирском 

Академгородке. Тематика семинара охватывает следующие области: формализация программных семантик и 

спецификации программ, построение формальных моделей программ, применение логики для спецификации и 

верификации программ, автоматическое доказательство теорем, методы проверки моделей для программ, 

статический анализ программ, разработка формальных подходов к тестированию и валидации программ, 

средства для анализа и верификации программ. Полные тексты пленарных, регулярных и коротких докладов 

опубликованы в журнале “Системная Информатика” (Том 14, https://system-informatics.ru/issue/237). 

The proceedings include invited, regular and short talks and extended abstracts of poster talks presented at the 10
th

 

International Workshop “Program Semantics, Specifications and Verification (PSSV-2019)” held in Novosibirsk 

Akademgorodok, Russia, on July 1–2, 2019. The Workshop covers such topics as formalisms for program semantics 

and specifications, logics for formal specification and verification, deductive program verification, automatic theorem 

proving, model checking of programs and systems, static analysis of programs, formal approach to testing and 

validation, program analysis and verification tools. Full texts of the invited, regular and short workshop talks are 

published in the journal “System Informatics” (Vol. 14, https://system-informatics.ru/issue/237). 
 

 

UDK 519.68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 © A.P. Ershov Institute of Informatics Systems SB RAS, 2019 

ISBN 978-5-4437-0918-5 © Novosibirsk State University, 2019  



III 

 

 

 

 

 

 

 

 

Steering Committee  

Valery Nepomniaschy  

Institute of Informatics Systems, Novosibirsk, Russia 

Valery Sokolov 

Yaroslavl State University, Russia 

 

Program Committee Chairs 

Nikolay Shilov 
Innopolis University, Russia 

Vladimir Zakharov 

Moscow State University, Russia  
 

Keynote Speakers 

Alexei Lisitsa 
Department of Computer Science, University of Liverpool, UK 

Sergey P. Shary 
Novosibirsk State University & Institute of Computational Technologies, Russia 

Bin Fang 

Huawei, China 

 

  



IV 

 

Program Committee Members 

 

Natasha Alechina, University of Nottingham, UK 

Alexander Bolotov, University of Westminster, UK 

Vladimir Itsykson, St. Petersburg State Polytech University, Russia 

Igor Konnov, INRIA Nancy & LORIA, France 

Victor Kuliamin, Institute for System Programming, Moscow, Russia 

Alexei Lisitsa, University of Liverpool, UK 

Irina Lomazova, Higher School of Economics, Moscow, Russia 

Manuel Mazzara, Innopolis University, Russia  

Valery Nepomniaschy, Institute of Informatics Systems, Novosibirsk, Russia 

Valery Sokolov, Yaroslavl State University, Russia 

Nina Yevtushenko, Tomsk State University & Institute for System Programming, Moscow, Russia 

 

  



V 

 

 

 

Additional Reviewers 

 

Mikhail Belyaev 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



VI 

 

Author’ Index   

 

Adamovich, Alexei I.   11  

Adamovich, Igor A.   1 

Anureev, Igor S.    20, 23 

 

Baar, Thomas   21  

Boulanger, Frédéric  37 

 

Fang, Bin    22  

Fedorov, Vladimir   27 

 

Garanina, Natalia O.  23  

 

Hernandez, Armando  37  

 

Klimov, Andrei V.   11  

Kondratyev, Dmitry A.  24  

 

Lisitsa, Alexei   25 

  

Promsky, Alexei V.  24  

 

Schulte, Horst                21  

Shary, Sergey P.                26 

Staroletov, Sergey M.         27 

 

Taha, Safouan   37  

Todorov, Vassil   37  

Tvardovskii, Aleksandr S.  38 

 

Yevtushenko, Nina V.  38  

 

Zyubin, Vladimir E.  23  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



VII 

 

 

 

Preface 
 

The volume contains the papers selected for presentation at the X International Workshop on Program 

Semantics, Specification and Verification: Theory and Applications (PSSV-2019). The Workshop 

took place on July 1–2, 2019, in Novosibirsk, Akademgorodok, Russia. PSSV Workshops were 

successfully held in Kazan (2010, 2015), St. Petersburg (2011, 2016), Nizhny Novgorod (2012), 

Ekaterinburg (2013), Moscow (2014, 2017) and Yaroslavl (2018). In 2010–14 and 2016 PSSV 

Workshops were affiliated with the International Symposium “Computer Science in Russia” (CSR); in 

2015, 2017 and 2019 it was affiliated with the A.P. Ershov Informatics Conference (the PSI 

Conference Series). The topics of the Workshop include formal models of programs and systems, 

methods of formal semantics of programming languages, formal specification languages, methods of 

deductive program verification, model checking method, static analysis of programs, formal 

approaches to testing and validation, program testing, analysis and verification tools. In 2018 the 

Workshop was dedicated to the memory of B.A. Trakhtenbrot (1921–2016), M.I. Dekhtyar (1946–

2018), and M.K. Valiev (1942–2018). Thirteen research papers have been submitted to the PSSV-

2019. Program Committee accepted 3 papers as regular ones, 3 as short presentations, and 3 more 

papers — for the poster session. Abstracts of 3 invited talks are also included in this collection of 

abstracts. 

 

The Program Committee work was done using the EasyChair conference management system. 

 

June 2019 Vladimir Zakharov 

Nikolay Shilov 

Igor Anureev 



VIII 

 

Table of Contents 

 

The JaSpe Specializer: An Interactive Approach to Metacomputation .............................................................................. 1 

Igor A. Adamovich 

Building Cyclic Data in a Functional-Like Language Extended with Monotonic Objects ............................................... 11 

Alexei I. Adamovich, Andrei V. Klimov  

Operational Semantics of Reflex  ..................................................................................................................................... 20 

Igor S. Anureev 

Safety Analysis of Longitunal Motion Controllers during Climb Flight .......................................................................... 21 

Thomas Baar, Horst Schulte 

Formal Modelling and Verification for Heap-Manipulating Programs ............................................................................ 22 

Bin Fang 

Constructing Verification-Oriented Domain-Specific Process Ontologies....................................................................... 23 

Natalia O. Garanina, Igor S. Anureev, Vladimir E. Zyubin 

Towards Automated Error Localization in C Programs with Loops ................................................................................ 24 

Dmitry A. Kondratyev, Alexei V. Promsky 

Proving Safety by Disproving: Finite Countermodel Finding for the Infinite-State and Parameterized Verification ...... 25 

Alexei Lisitsa 

Quantifier Solutions to Interval Systems of Linear Algebraic Equations ......................................................................... 26 

Sergey P. Shary 

An Application of Test-Driven Development Methodology into the Process of Hardware Creation (a View from  

a Software Perspective) .................................................................................................................................................... 27 

Sergey M. Staroletov, Vladimir Fedorov 

Proving Properties of Discrete-Valued Functions using Deductive Proof: Application to the Square Root  ................... 37 

Vassil Todorov, Safouan Taha, Frédéric Boulanger, Armando Hernandez 

On Parallel Composition of Finite State Machines with Timed Guards ........................................................................... 38 

Aleksandr S. Tvardovskii, Nina V. Yevtushenko 

 



Poster   1 

The JaSpe Specializer:                                                             

An Interactive Approach to Metacomputation 

Igor A. Adamovich (Ailamazyan Program Systems Institute Russian Academy of 

Sciences, Yaroslavl region, Russia, i.a.adamovich@gmail.com) 

The article presents the results of research that belongs to a scientific field usually called 

metacomputation, which includes program specialization as well as other deep program analysis 

and transformation techniques. This study develops such kind of specialization as partial 

evaluation in application to the widely used object-oriented Java language in the popular Eclipse 

development environment. The article also presents an approach to organizing an interactive 

human-computer dialogue between a programmer and a specialization subsystem.  

The main difficulty of putting metacomputation into practice is that it does not specify a 

single automatic mode for optimizing programs but contains too many possibilities, which the 

computer cannot do the right choice of. This is true for supercompilation, partial evaluation, 

partial deduction and other metacomputation methods. A well-developed interactive system is 

required. In such a system the computer will guarantee the equivalence of program 

transformations and the human will provide information on how to choose transformations 

among the acceptable degrees of freedom.  

Based on the above considerations the interactive specializer referred to as JaSpe has been 

designed. It uses the partial evaluation method. JaSpe is embedded in the Eclipse development 

environment and specializes object-oriented Java programs. 

This paper describes the approach to interactive specialization implemented in JaSpe. An 

example of specialization of a program with objects and optimization of objects in the heap is 

given. 

The JaSpe specializer is not yet complete. This is a work-in-progress report showing the 

current state of development of methods and implementation. 

1. Introduction 

Specialization [4] is a program optimization method based on the use of predefined information 

about the values of a part of variables. Let a two-argument program  be given and let the 

value of first argument  is equal to . The result of the  program specialization with respect 



2   Poster 

to the known argument  is a new program  of one argument, which has the following 

property:  for each .  

The main difficulty of putting program specialization as well as metacomputation methods in 

general (supercompilation, partial evaluation, partial deduction, and other methods) into practice is 

that it does not specify a single automatic mode for optimizing programs. Methods of 

metacomputation contain too many possibilities, so that the computer cannot choose of them by 

means of reasonably complicated algorithmic methods. A well-developed interactive system is 

required. In such a system the computer will guarantee the equivalence of program transformations 

and the human will provide to the system some information on how to choose specific 

transformations from the acceptable variants. 

According to these considerations, the goal was put forward to implement an interactive 

specializer of Java language.  

Interactive specialization is the user work cycle of program optimization using a specializer. The 

cycle lasts until the user is satisfied (the program has been optimized reasonably well). The cycle 

consists of the following stages: 

1. Writing a program. 

2. Applying the specializer to the program. 

3. Studying the residual program, comparing with the source program and obtaining various 

inside information about specialization process. 

4. Changing the program. 

5. Changing the specialization task (options of specializer). 

6. Repeating from step 2. 

To successfully fulfill this task, interactive support from the specializer is required. The more 

interactive the specializer is, the higher is level of the interactivity of the whole cycle.  

Therefore, to solve the problem of introducing metacomputation into practice by the approach 

described above, it is required to develop and implement the features of interaction between a 

specializer and a human using graphical user interface (GUI). 

This paper manifests the need of human-computer interaction in program specialization process 

by case study of implementation of the partial evaluator JaSpe for the object-oriented language 

Java. The specializer is embedded in the familiar Eclipse integrated development environment 

(IDE) [3]. The specializer presented in this paper is an extension of the specializer presented in [1]. 

The main areas of extension are polyvariant BTA and optimization of programs parts that 

manipulate objects.  



Poster   3 

In Section 2 the basic notions of partial evaluation are introduced, and high-level description of 

used algorithm is given. In Section 3 basic interactive features of presented specializer are specified. 

In Section 4 case of specialization is discussed. Section 5 contains a survey of related works in 

comparison with our specializer. In Section 6 we conclude. 

The reported study was funded by RFBR according to the research project № 18-37-00454. 

2. Partial Evaluation in JaSpe 

Partial evaluation is one of program specialization techniques. Specialization by the method of 

partial evaluation [4] separates program constructs into static (depending on known data) and 

dynamic (depending on unknown data). Operations depending on static data are executed and 

operations depending on dynamic data are transferred to the resulting (residual) program. The 

residual program depends only on unknown (at the specialization phase) data. 

The first stage of partial evaluation is a kind of static analysis called binding time analysis (BT-

analysis, BTA). At this stage, separation of operations and data into static and dynamic is 

performed. The second stage is responsible for the execution of the static part of the program and 

the transferring of the dynamic part to a separate program. This stage is called residual program 

generation (RPG). 

Terminological remark. The term static conflicts with the static modifier in Java, and the 

term dynamic can be confused with a runtime notion. Therefore, we avoid using these words in 

relation to partial evaluation and use the symbols S and D, for example, S-annotation, D-annotation, 

S-code, D-code, S-part and D-part of a program. 

The outline of the partial evaluation method with monovariant BTA used in the previous version 

of JaSpe is given in paper [1]. This paper presents the main points and their extension to polyvariant 

BTA. Definitions of polyvariance and its types can be read in [6]. The polyvariant BTA algorithm 

part working with variables and operations of primitive types is similar to the previous version, the 

only difference is that there are no conflicts caused by different annotation of the same variables 

and method invocations at different points in the program. Another part of BTA algorithm that 

works with objects is new compared to previous version. Annotation of an object is composed of 

annotation of object itself (we call it object top annotation) and annotations of this object fields. An 

object with D object top annotation always has D-annotations of all of its fields. Annotations of 

objects is monovariant — each object has one composed annotation after BTA for entire program. 

Thus, BTA algorithm works as follows. First, all constants are annotated with S. Then recursively: 

subexpressions containing only S-parts become S; annotation of object creation expression results 

of creation of an S-object with S-fields; local variable declarations and assignments with S right-



4   Poster 

hand sides become S; a conflict on several assignments to a field of an object with different 

annotations turns it to D; for each method invocation new version of the method body annotation is 

created; an if statement with the S conditional expression is annotated with S regardless of the 

annotation of its branches (this means that if-else will disappear while one of the branches will be 

residualized); other control statements are analyzed and annotated similarly. When this recursive 

procedure is finished, the remaining parts of code are annotated with D. 

It should be noted that described BTA algorithm does not always terminate. For example, the 

analyzed program can loop infinitely creating new objects, while each new object can refer to the 

object created at the next iteration. Thus, a potential infinite chain of objects is created, each of 

which needs to be annotated. In this case, the annotation of the first object in the chain includes 

annotation of all subsequent ones. This problem has different solutions. First of all, it can be solved 

my methods described in [6]. Second solution is that analysis could be terminated by a user if it is 

executed too long. Such termination can be supported by JaSpe by IDE interface. 

Another limitation of the described method is common for partial evaluation: the partial 

evaluator does not optimize a program when there is a lack of S-values in code. 

3. Interactive features of JaSpe 

First of all, it should be mentioned that JaSpe developers expect that the main users of the 

specializer will be ordinary Java-programmers who want to optimize their programs. However, the 

specializer does not always cope with the task automatically, without user interaction, often the 

program needs to be slightly rewritten in order to be better optimized. Highlighting of the binding 

time analysis results was implemented to make it clear how to rewrite the program. The latter 

correlates with the definition of interactive specialization given in chapter 1 of this paper. 

In the JaSpe specializer the code that has been analyzed by BTA is automatically marked using 

the highlighting of the S- and D-parts of the code. This allows the user-programmer to better 

understand how the process of specialization proceeded and the reasons for the specific residual 

program generation.  

In principle, the process of marking the code can occur on the fly synchronously with the code 

modifications made by the user or after the user presses the special “button”. Currently, the second 

option is implemented in the JaSpe specializer. The implementation of synchronous highlighting 

requires a lot of effort and most likely will not be considered at the research stage, but at the stage 

of preparing a specializer for mass usage.  



Poster   5 

In order to create a specialization task for the JaSpe specializer, the user must mark the methods 

that are the entry points of the specialization with the @Specialize Java annotation. The 

specialization procedure begins with such entry points.  

The result of a specialization is a modified version of the source program and is called the 

residual program. After receiving the residual program, it is needed to place it somewhere and 

preferably so that the appropriate executable code can be easily obtained. The study proposes two 

solutions to this problem. The first solution is to save the modified files in the same project where 

the source files are, but in a different directory and in another Java package (package). This solution 

is simpler to implement, but it is less flexible. An alternative solution proposed in this study is to 

create a new Eclipse project where modified files are saved in packages with the original names. 

4. Example of specialization by JaSpe 

In this section, we consider an example of a specialization of a function consProcessing 

that applies the Cons operation three times to an integer list passed to this function as an argument. 

Then the function traverses the result and sums all the numbers stored in the result list. The source 

code with highlighting of the result of the binding time analysis is presented in Figure 1. Figure 2 

shows the Cons class and Figure 3 shows the part of the residual program corresponding to the 

source function consProcessing. 

When JaSpe highlights code on screen the colors are a good solution but in case of black and 

white paper we use other opportunities of tunable interface of JaSpe. Underscored text on Figure 1 

corresponds to the S-parts of the code, text in black boxes corresponds to D-parts and gray 

background highlighting corresponds to mixed parts. JaSpe is a polyvariant specializer: some parts 

of code can have several BT-annotations. For example, the while loop on the Figure 1 at the first 

and second iterations has two BT-annotations containing only S-code. These annotations 

correspond to the objects created and stored in variables c2 and c1. At the 4th and subsequent 

iterations the while loop has a fully D-annotation corresponding to the BT-annotation of the 

argCons argument. In more detail, definitions of polyvariance and its types can be read in [6]. 

In accordance with the classification given in Yuri Klimov's PhD thesis [6], the JaSpe specializer 

is polyvariant in variables, operations, methods and classes. 

Highlighting the BT-annotation of the program is the most important part of the interface of the 

specializer, which helps the programmer to better understand why his program was optimized in 

this specific way and not otherwise.  



6   Poster 

      

Figure 1. Source function with highlighting                 Figure 2. Cons class 

Figure 3 shows the part of the residual program obtained from the source function 

consProcessing presented in Figure 1. It should be noted that the source code corresponding to 

the S-code (underscored text) is almost completely absent. Also, the first three iterations of the 

while loop have been executed during specialization. An important feature of the residual code is 

that the first three objects of the cons variable, which were annotated as S, are completely absent 

in the runtime heap. That is, in addition to increasing the speed of the program, the memory 

consumption has been decreased. 

It should be mentioned that discussing example could model stack machine based on list, that, 

for instance, interprets an AST. Some of the nodes could be known (nodes that corresponds to S-

objects referenced by c0, c1, c2) and some nodes could be unknows (D-objects referenced by 

argCons). 

 

Figure 3. Result of specialization 



Poster   7 

Table 1. Acceleration by specialization 

Size of argCons, number of 

items 

Acceleration, times 

0 32 

1 10 

2 8 

10 2.21 

100 1.08 

For completeness, Table 1 shows the acceleration that were acquired as result of specialization 

depending on the size of the argCons argument. From the presented values it is clear that the 

specializer is able to give a very noticeable acceleration. The acceleration source is the reduction of 

time for memory allocation of three objects that are added to Cons. The allocation time for a 

constant number of objects is constant, therefore, with an increase in the number of objects in the 

cons, the fraction of saved time decreases, and hence the acceleration. 

5. Related work 

The partial evaluation method was invented more than 30 years ago. At the first period, it was 

developed mainly for functional languages. Book [4] summarizes this wave of research. 

Then there was the development of the method of partial evaluation in the application to 

imperative languages. This development resulted in the creation of several specializers, the most 

developed of which is the Tempo specializer [2, 11]. 

An important innovation of Tempo from the interactivity point of view were code coloring in 

accordance with the result of BT-analysis. However, in Tempo the coloring was produced to a 

separate html-file, not in the editor included in the IDE as in JaSpe. 

The rest of Tempo interface is similar to other specializers in the sense that it uses command line 

and configuration files to compose a specialization task.    

For object-oriented languages, two important specializers have been developed. The first is 

JSpec, a Java language specializer developed by Ulrik Pagh Schultz in France [12, 13]. This 

specializer contains significant limitations, in particular, it works only with immutable objects. 

However, the creator proposed several interesting principles of interaction with user. 

In Schultz’s publications on the specialization of the Java language, it was proposed to create a 

task of specialization using the so-called “classes of specialization”. The approach used in the JaSpe 

specializer differs from the Schultz approach, being no less expressive, but simpler to understand, 

use and implement. 



8   Poster 

Also, in Schulz’s works it was proposed to compose the code obtained as a result of 

specialization into the so-called “aspects”. Aspects according to Schulz contain specialized versions 

of the methods and are “woven” with the source program using the pass of the special program 

called weaver. Another approach to deployment of  residual code proposed in our paper (creating a 

new project for the residual code) has no limitations compared to the Schultz variant. But our 

approach allows the user to better compare the residual code with the source one (since JaSpe 

preserves the structure of the program). 

Another important specializer is the CILPE specializer, developed by Yu. A. Klimov in 2009 at 

Keldysh Institute of Applied Mathematics of RAS [5-10]. This specializer most deeply develops the 

theory of partial evaluation for object-oriented languages and applies it to the object-oriented 

Common Intermediate Language, the Microsoft .NET Framework bytecode. This specializer 

supports almost all the basic constructs of object-oriented languages, like C # or Java. From the 

interface point of view, the CILPE specializer basically used the command line to interact with the 

user. The idea of specifying the entry points of the specialization using Java annotations was 

borrowed by JaSpe from the specializer CILPE. 

Among the recent advances in the field of partial evaluation, the GraalVM toolkit [14, 15] should 

be mentioned. It is developed in Oracle Labs and includes a partial evaluator. However, this partial 

evaluator does not stand out in the interactivity direction, but nevertheless it is an important 

achievement in the practical application of metacomputation. 

6. Conclusion 

This paper argues the need for an interactive approach to metacomputation for the widespread 

use of these methods of deep program transformation. The non-formal definition of interactive 

specialization is presented – this is the cycle of optimization of a program. A solution is proposed in 

the form of a the JaSpe specializer implemented in the Eclipse IDE. Short high-level description of 

a partial evaluation method implemented in JaSpe is given. The features of interaction between a 

specializer and a human using graphical user interface implemented in the JaSpe specializer are 

presented.  

We illustrate the work of the JaSpe by applying the specializer to an example program written in 

the object-oriented Java language. The program obtained as a result of specialization works much 

faster than the original one. 

We see the following directions for further development of the specializer:  

•  to implement support for all Java 8 constructs;  



Poster   9 

•  to implement additional interactive tools for composing a specialization task and controlling 

the process of binding-time analysis and residual program generation; 

•  to implement tools to visualize the correspondence between source and residual code; 

•  to demonstrate that a well-developed specializer can convert well-structured high-level 

human-oriented code, which cannot be automatically parallelized, into code that can be parallelized 

by existing methods and tools. 

Availability. Examples and the previous version of JaSpe with monovariant BTA and without 

optimizations of objects are available at ftp://ftp.botik.ru/rented/iaadamovich/Specializer/. 

References 

1. Adamovich I.A., Klimov And, V. An Interactive Specializer Based on Partial Evaluation for a Java 

Subset // The Proceedings of ISP RAS. 2018. vol. 30. № 4. pp. 29-44. 

2. Consel C., Lawall J.L., and Meur A.-F.L. A tour of Tempo: a program specializer for the C language // 

Sci. Comput. Program. 2004. Vol. 52. № 1-3. pp. 341–370. 

3. Eclipse Foundation // Eclipse Integrated Development Environment (IDE), URL: 

https://www.eclipse.org (last accessed 9.06.2019).  

4. Jones N.D., Gomard C.K., and Sestoft P. Partial Evaluation and Automatic Program Generation // 

Prentice-Hall. 1993. 415 p.  

5. Klimov Yu.A. [SOOL: an object-oriented stack-based language for specification and implementation 

of program specialization techniques], 2008. 32 p. (Preprinty` IPM im. M.V. Keldy`sha [Keldysh 

Institute Preprints]; № 44). 

6. Klimov Yu.A. [Specialization of programs in object-oriented languages by partial evaluation]: Ph.D. 

thesis. Moscow: Keldysh Institute of Applied Mathematics of RAS, 2009. 183 p.  

7. Klimov Yu.A. [Specializer CILPE: binding time analysis], 2009. 28 p. (Preprinty` IPM im. M.V. 

Keldy`sha [Keldysh Institute Preprints]; № 7). 

8. Klimov Yu.A. [Specializer CILPE: examples of object-oriented program specialization], 2008. 28 p. 

(Preprinty` IPM im. M.V. Keldy`sha [Keldysh Institute Preprints]; № 30). 

9. Klimov Yu.A.: [Specializer CILPE: partial evaluation for object-oriented languages]. // Programmny`e 

sistemy`: teoriia i prilozheniia [Program Systems: Theory and Applications]. 2010. № 3(3). pp. 13–36.  

10. Klimov Yu.A. [Specializer CILPE: residual program generation], 2009. 26 p. (Preprinty` IPM im. 

M.V. Keldy`sha [Keldysh Institute Preprints]; № 8). 

11. Renaud M. Program Specialization // Wiley-ISTE. 2012. 554 p.  

12. Schultz U.P., Lawall J.L. and Consel C. Automatic program specialization for Java // ACM Trans. 

Program. Lang. Syst. 2003. vol. 25. № 4. pp. 452–499. 

13. Schultz U.P. Object-Oriented Software Engineering Using Partial Evaluation: PhD thesis. Rennes: 

University of Rennes I, 2000. 215 p. 



10   Poster 

14. Würthinger T., Wimmer C., Humer C., Wöß A., Stadler L., Seaton C., Duboscq G., Simon D., and 

Grimmer M.: Practical partial evaluation for high-performance dynamic language runtimes // 

SIGPLAN Not. 2017. vol. 52. № 6. pp. 662–676.  

15. Würthinger T., Wimmer C., Wöß A., Stadler L., Duboscq G., Humer C., Richards G., Simon D., and 

Wolczko M. One VM to rule them all // Proceedings of the 2013 ACM International Symposium on 

New Ideas, New Paradigms, and Reflections on Programming & Software, Onward! ACM. 2013. pp. 

187– 204. 

 



Poster  11 

Building Cyclic Data in a Functional-Like Language 

Extended with Monotonic Objects 

Alexei I. Adamovich (Ailamazyan Program Systems Institute of RAS, 

lexa@adam.botik.ru), 

Andrei V. Klimov (Keldysh Institute of Applied Mathematics of RAS, 

andrei@klimov.net) 

We discuss an approach to deterministic parallel programming based on a two-level 

programming language. It comprises a higher-level functional-like subset for application 

programmers and a lower-level object-oriented Java-like language for experts in parallel 

programming, who develop libraries of classes. The experts guarantee determinism for the 

higher-level language user. We refer to these classes and objects as monotonic and give their 

definition as preserving two properties of the higher-level programs: determinism and 

idempotency. In this case study, we address the problem of representing cyclic data structures, 

which is unsolvable in purely functional languages, easy in object-oriented languages, and 

solvable but tricky with monotonic objects. As an introductory example, a simple monotonic 

class is given—a variable of a primitive type. Then we show that an analogous class declaration 

for a variable of a reference type is non-monotonic and reveal that building cyclic data 

structures in this setting is nontrivial. Finally, we present examples that demonstrate some of the 

subtleties of designing monotonic classes. This paper describes a work-in-progress towards a 

theory and a software system for deterministic parallel programming. It also poses new 

problems for program verification to assist in proving that class declarations are monotonic and, 

therefore, parallel programs developed in the proposed system are proved deterministic. 

1. Introduction and Related Work 

Parallel/concurrent programming and debugging are complicated because parallel/concurrent 

programs are nondeterministic in the general case. To simplify programming, various specific 

model of parallelism and concurrency have been, and are continuously being, invented. Some of 

them focus on the determinism of the results of computation, where all runs result with equivalent 

final states despite of interleaving and different ordering of operators from different 

parallel/concurrent threads. 



12  Poster  

Please refer to our recent paper [5] for a survey of an extensive field of research on deterministic 

parallel/concurrent programming. Let us list below just some of these works which are the most 

interesting for our study. 

The most restricted models are those based on pure functional programming, where side effects 

are absent, threads are independent of each other, and hence the results are always the same. Not 

surprisingly, active research on deterministic parallelism is carried out in the community of the 

purely functional language Haskell [10]. Our work is in fact a transfer of the ideas of the functional 

paradigm to object-oriented languages, while retaining some important properties in a more general 

form. 

In the object-oriented setting, the work on Deterministic Parallel Java (DPJ) [6,7,11] extends the 

Java language and the compiler by adding certain features that guarantee determinism using an 

analysis that checks that parallel threads interfere only in a disciplined way, which does not violate 

determinism. 

The most interesting from our point of view are results by Lindsey Kuper et al. [12,13,14,15] 

where she suggests that variables shared between threads should change monotonically in some 

partially ordered set (more precisely, a semilattice) and operations on them are defined in such a 

way that the result of computation is deterministic. In our work, we use this idea in a more general 

object-oriented setting. 

The rest of the paper is organized as follows. In Section 2 we introduce the idea of a two-level 

programming language and system. In Section 3 the notion of a monotonic class and object is 

defined. In Section 4 an introductory example of a monotonic class is given. Sections 2–4 are based 

on our previous work [4,8,9]. In Section 5 we present novel material: using some examples we 

discuss problems and solutions on how to build cycle data structures using monotonic objects, 

thereby overcoming the limitations of purely functional programming, while preserving the 

determinism of parallel computation. 

2. A Two-Level Programming Language and System 

In order to meet controversial requirements of program determinism for application 

programmers and diversity of deterministic parallel computation models, we suggest the use of (and 

develop) a two-level programming language and system: 

 The higher-level language is like a functional subset of Java with simple means to initiate 

new threads on function calls and method invocations (often called “futures”, “promises”1). 

                                                 

1 https://en.wikipedia.org/wiki/Futures_and_promises 



Poster  13 

Threads create objects of classes declared at the lower level and communicate only through 

operations on them. Any syntactically correct program here is deterministic by construction. 

This higher-level language is intended for use by the application developers. 

 The lower-level language is full Java, or any other similar object-oriented language, which 

comprises a complete set of means for concurrent programming of generally 

nondeterministic programs. In this language, experts in parallel and concurrent programming 

declare lower-level classes in such a way that their use in the higher-level language 

guarantees determinism and preserves other valuable properties discussed below. We refer to 

these classes and their objects as monotonic. 

Notice a subtlety of this definition: the declarations of monotonic classes belong to the lower 

level, while their monotonicity is defined through the properties of programs in the higher-level 

language, rather than the properties of the classes per se like pre- and post-conditions of their 

methods, object invariants, etc. 

The development of this language and system is based on (and continues) our previous research 

into parallel programming systems [1,2,3,4]. 

3. The Notion of a Monotonic Class and Object 

To formally articulate what determinism means we need the notion of equivalence of 

computations. We use the Leibniz notion of contextual equivalence. 

Definition 1 (equivalence of values). Two values are (contextually) equivalent if they are 

indistinguishable programmatically in the higher-level language, that is: 

 the values are of the same type, and 

 in the case of a primitive type: the values are equal, and 

 in the case of a reference type: any function or method with a primitive result type, when 

applied to these values, returns equal results, or neither terminate. □ 

Definition 2 (equivalence of computations). Two executions of copies of an expression (with 

the copies of arguments) are (contextually) equivalent, if 

 they both terminate and return equivalent values, or 

 they both throw exceptions (which may be different), or 

 neither terminate. □ 

Definition 3 (monotonic). A declaration of a class and the objects of the class are called 

monotonic if any program in the higher-level language using the operation of object creation and 

methods on the objects of this class, satisfies the following properties: 



14  Poster  

 Determinism of computation (or confluence), that is, the results obtained in different order of 

a parallel/concurrent computation are equivalent. 

 Idempotency, that is, a repeated computation of a copy of an expression is equivalent to the 

original computation, and the difference between the side effects of the two runs is not 

observable programmatically in the higher-level language. 

These properties must be satisfied simultaneously for all monotonic classes when they are used 

together in any program in the higher-level (functional-like) language. □ 

One may wonder about motivation behind the idempotency property.  It may seem that 

idempotency is implied by determinism. However, in the definition of determinism, to compare the 

results of different computation order, repeated runs are performed starting from the same initial 

state, while in the definition of idempotency, the next run uses the final state of the previous one. 

 
 public class IntVar { 
 
   boolean defined = false; 
   int value; 
 
   public synchronized int get() 
   { 
     if (!defined) wait(); 
     return value; 
   } 
 
   public synchronized void set(int x) 
   { 
     if (!defined) { 
       value = x; 
       defined = true; 
       notifyAll(); 
     } 
     else if (value != x) 
       throw new RuntimeException(); 
   } 
 } 

 
 public class ObjectVar { 
 
   boolean defined = false; 
   Object value; 
 
   public synchronized Object get() 
   { 
     if (!defined) wait(); 
     return value; 
   } 
 
   public synchronized void set(Object x) 
   { 
     if (!defined) { 
       value = x; 
       defined = true; 
       notifyAll(); 
     } 
     else if (value != x) 
       throw new RuntimeException(); 
   } 
 } 

Fig. 1. Monotonic class IntVar with one field 

of the primitive type int. 

Fig. 2. Non-monotonic class ObjectVar with one 

field of the reference type Object. 

4. A Simple Monotonic Class Example 

Parallel threads communicate by means of side effects on variables of various types. Our goal is 

to construct monotonic versions of classes representing such variables. 

Consider the case where a variable is of primitive type int. The monotonic class IntVar shown 

in Fig. 1 declares 2 methods set and get with the following semantics: 

 set(x) stores the value x, if an unequal value has not been stored already; otherwise throws 

an exception; 



Poster  15 

 get() returns the value stored by set(), or waits until set has been invoked, and then 

completes. 

Thus, each IntVar object monotonically changes from the undefined state to the state defined 

with some integer and then possibly to raising an exception, which may be read as the 

“overdefined” state. We argue that such behavior satisfies the definition of monotonic objects. This 

is explained in more detail in our earlier paper [9]. 

5. Building Cyclic Data Structures 

Notice that it is principally impossible to build a cyclic data structure without using mutable 

data. That is why purely functional languages allow us to efficiently manipulate only trees. This 

prohibits development of high-performance software that manipulates graphs, which imperative and 

object-oriented languages allow. In order to efficiently manipulate graphs, where cyclic relations 

between vertices and edges are denoted by references, one needs to mutate the representation. Our 

goal is to allow mutable data and preserve the main properties of functional languages, which we 

capture in the notion of monotonic objects. 

Let us study various examples of declarations of mutating operations on objects and see which of 

them are monotonic and which are not. 

Example 1: non-monotonic. Let us change in Fig. 1 the value field from the primitive to 

reference type. Figure 2 shows the code of the class ObjectVar, which coincides with the 

monotonic class IntVar, except for the type Object instead of int. However, this makes the class 

non-monotonic. The cause of this is the lack of referential transparency of the new operator as it 

generates a new reference to a new object on each evaluation, which fundamentally differs from the 

world of functional programming. Consider the following code fragment: 

ObjectVar a = new ObjectVar(); 

a.set(new ObjectVar());    // first evaluation of an expression 

a.set(new ObjectVar());    // second evaluation of the same expression 

return a.get(); 

The notion of monotonicity requires that reevaluation of an expression returns an equivalent 

result and is idempotent with respect to side effects (that is, nothing changes). However, in the 

second invocation of the method set, the condition (value != x) in its body evaluates to true and 

the exception RuntimeException is thrown. 

Example 2: non-monotonic. A natural idea to avoid this unpleasant exception is to replace the 

comparison of references with the comparison of the objects’ contents by the method equal: 

 if (!value.equal(x)) throw new RuntimeException(); 



16  Poster  

The method equal should perform deep comparison, paying no attention to the equality of 

references, except for the sake of optimization, which is invisible from the outside, and in order to 

avoid looping when traversing cyclic data. 

Nevertheless, the class ObjectVar, thus defined, is still non-monotonic, because the result of 

a.get() depends on the order of evaluation of the two new expressions. We imply that the 

statements a.set(new ObjectVar()) can be computed in parallel, hence the result can be either 

the reference to the object created by the first new sub-expression, or by the second one. This 

difference is programmatically visible. 

Example 3: monotonic. To fix this, we must avoid returning from monotonic objects (by 

methods like get) the references passed in arguments of any of its methods (like set). This can be 

done in two ways. First, a clone of the stored object can be created in set, the reference to which is 

then returned by all invocations of get. Second, a new clone of the stored object can be generated 

on each invocation of get. The first version seems more efficient (in terms of the memory for extra 

objects generated in the second version). However, either of these versions could be useful, 

depending on the application. A library of monotonic classes should contain both versions, with 

different names. 

However, this does not complete the definition of the monotonic ObjectVar semantics. The 

objects in the argument of the set method could be undefined, or partially defined. The latter case 

may occur when the object has many fields, and some of them are already defined, while others are 

not. Thus, a kind of unification of the objects from the arguments of several invocations of set is 

required, the result of the unification being stored in the ObjectVar object. Now, if properly 

formalized and coded, the class ObjectVar becomes monotonic. 

Nevertheless, some degrees of freedom preserving monotonicity remain. Should the unified 

objects be changed as well? Should the information about the unified objects flow in one direction 

from the set arguments to the stored object only, or could it flow in the opposite direction as well? 

The answer is that both versions are monotonic, and their usefulness depends on the application. 

Example 4: building a cycle. Now we can build a cycle of length 1 from an object of the class 

ObjectVar with the first version of the monotonic class semantics discussed in Example 3: 

ObjectVar a = new ObjectVar(); 

a.set(a);    // a cycle is built 

b = a.get(); 

c = b.get(); // c != b 

d = c.get(); // d != b && d!= c 



Poster  17 

Notice that to preserve monotonicity according to the above semantics, different references are 

returned in variable a, b, and c. Thus, we met a problem that, although the cycle was built, it can 

never be recognized programmatically, while traversing the object structure. For some applications 

this may be appropriate, for example, when a graph is the representation of a finite automata, which 

is used only in its interpreter. But if, for example, we wanted to print the automata representation, 

we would not be able to write a terminating code. 

Example 5: a cyclic graph with a finite number of references to vertices. Although we don’t 

know how to represent and traverse graphs having access to the unique references to edges in the 

world of monotonic objects as easily as we do in object-oriented languages, there are particular 

solutions to this problem. Consider two of them. 

Example 5a: Imagine a factory method that simultaneously creates a given number of objects 

and returns an immutable vector of the references to them. Its signature may be like this: 

Vector<ObjectVar> createObjectVars(int n); 

Then let us modify the class ObjectVar in such a way that its objects “know brothers”, that is, 

each object has access to this vector, and the get method returns only references to the “brothers” 

and to the object itself. Classes with such semantics allow us to build an efficient representation of 

an arbitrary finite graph. We argue that such class declarations are monotonic. 

Example 5b: Let us return to the monotonic class declaration in Examples 3 and 4 and use it for 

further modification. Let us prohibit returning reference values from monotonic objects until the 

whole of the deep structure accessible from the given object is fully defined (and hence, is finite). 

Then let us minimize the graph representation by means of the well-known algorithm of 

minimization of a finite automaton. We argue that the unique references to the objects of the 

minimal representation can now be returned by the methods like get, preserving monotonicity. 

There are a finite number of references to the accessible objects and while traversing the graph 

structure, we can programmatically catch the cycles. 

More parallelism by suspending the equality checks and exceptions. One more subtlety that 

can limit parallelism is that the method equal (in the if statement of Example 2) cannot return 

true until the compared objects become fully defined. Such blocking of the computation is highly 

undesirable. Fortunately, there is an escape. The definition of monotonicity does not distinguish 

various exceptions raised in different program points. All exceptions are equivalent as the result of 

computation. This gives us а possibility to suspend execution of such equal predicates along with 

the surrounding if statements and immediately return from the set method. If, in the end, when the 

compared objects become defined, equal returns true, the suspended statement completes with no 



18  Poster  

effect. If a difference is found and equal returns false, the exception is raised from the suspended 

statement and propagated as the resulting exception of the whole computation. This behavior is 

monotonic according to our definition. 

6. Acknowledgement 

We express our gratitude to our English teacher, Philippa Jephson, who helped us edit this paper, 

fix a lot of errors and turn it into a much more readable form. The remaining glitches are ours. 

7. Conclusion 

The notion of a monotonic class and a monotonic object was presented. It was defined so that the 

use of monotonic objects in a program in a functional-like language with maximal parallelism 

preserves the main properties of functional languages: determinism of computation results 

(confluence) and possibility of repeated computations with the same result and side effect 

(idempotency). We use the term monotonic with the idea that a monotonic object changes in a 

certain (semi)lattice that can be derived from its class declaration. 

Unlike functional languages, building cyclic data structures is possible with the use of monotonic 

classes, although their semantics and code are nontrivial and tricky, and impose certain overheads 

compared to common object-oriented programming. Further development of the methods of their 

efficient implementation is required taking into consideration special cases and using 

metacomputation methods like program specialization. Currently, we are prototyping an 

implementation of a language with monotonic classes. 

The demonstrated examples show that it is not at all obvious whether a class declaration is 

monotonic or not. Designing such a class is like finding a nontrivial solution to an “equation” that is 

the property of monotonicity. Formal means (theory and software tools) are highly desirable in 

helping us prove monotonicity. This is an interesting program verification topic for future work. 

References 

1. Abramov S.M., Adamovich A.I., Kovalenko M.R. T-System—An Environment Supporting Automatic 

Dynamic Parallelization of Programs: An Example of the Implementation of an Image Rendering 

Algorithm Based on the Ray Tracing Method // Programmirovaniye, 25:2. 1999. P. 100–107. (In 

Russian). 

2. Adamovich A.I. Fibers as the Basis for the Implementation of the Notion of the T-Process for the JVM 

Platform // Program Systems: Theory and Applications, 6:4 (27). 2015. P. 177–195. URL: 

http://psta.psiras.ru/read/psta2015_4_177-195.pdf. (In Russian). 



Poster  19 

3. Adamovich A.I. The Ajl Programming Language: The Automatic Dynamic Parallelization for the 

JVM Platform // Program Systems: Theory and Applications, 7:4 (31). 2016. P. 83–117. URL: 

http://psta.psiras.ru/read/psta2015_4_177-195.pdf. (In Russian). 

4. Adamovich A.I., Klimov And.V. On Experience of Using the Metaprogramming Development 

Environment Eclipse/TMF for Construction of Domain-Specific Languages // Nauchnyy servis v seti 

Internet, Trudy XVIII Vserossiyskoy nauchnoy konferentsii (September 19–24, 2016, Novorossiysk, 

Russia). Moscow: Keldysh Institute of Appl. Math. of RAS: 2016. P. 3–8. URL: 

http://keldysh.ru/abrau/2016/45.pdf. (In Russian). 

5. Adamovich A.I., Klimov And.V. How to Create Deterministic by Construction Parallel Programs? 

Problem Statement and Survey of Related Works // Program Systems: Theory and Applications, 

8:4(35). 2017. P. 221–244. URL: http://psta.psiras.ru/read/psta2017_4_221-244.pdf. (In Russian). 

6. Bocchino R.L. (Jr.), Adve V.S., Adve S.V., Snir M. Parallel Programming Must Be Deterministic by 

Default // Fifth USENIX Conference on Hot Topics in Parallelism, HotPar’09. Berkeley, CA, USA: 

USENIX Association, 2009. P. 4–4. 

7. Bocchino R.L. (Jr.), Adve V.S., Dig D., Adve S.V., Heumann S., Komuravelli R., Overbey J., 

Simmons P., Sung H., Vakilian M. A Type and Effect System for Deterministic Parallel Java // 

SIGPLAN Not., 44:10. 2009. P. 97–116. 

8. Klimov And.V. Dynamic Specialization in Extended Functional Language with Monotone Objects // 

SIGPLAN Not., 26:9. 1991. P. 199–210. 

9. Klimov And.V. Deterministic Parallel Computations with Monotonic Objects // Nauchnyy servis v seti 

Internet: mnogoyadernyy komp’yuternyy mir. 15 let RFFI, Trudy Vserossiyskoy nauchnoy 

konferentsii (24–29 sentyabrya 2007 g., g. Novorossiysk). Moscow: Izd-vo Moskovskogo universiteta, 

2007. P. 212–217, URL:  https://pat.keldysh.ru/~anklimov/papers/2007-Klimov--Deterministic_ 

Parallel_Computation_with_Monotonic_Objects.pdf. (In Russian). 

10. Marlow S. Parallel and Concurrent Programming in Haskell. CA, USA: O’Reilly, 2013. 

11. Kawaguchi M., Rondon P., Bakst A., Jhala R. Deterministic Parallelism via Liquid Effects // ACM 

SIGPLAN Not., 47:6. 2012. P. 45–54. 

12. Kuper L. Lattice-Based Data Structures for Deterministic Parallel and Distributed Programming, 

Ph.D. Thesis. 2015. URL: https://users.soe.ucsc.edu/~lkuper/papers/lindsey-kuper-dissertation.pdf. 

13. Kuper L., Todd A., Tobin-Hochstadt S., Newton R.R. Taming the Parallel Effect Zoo: Extensible 

Deterministic Parallelism with LVish // ACM SIGPLAN Not., 49:6. 2014. P. 2–14. 

14. Kuper L., Turon A., Krishnaswami N.R., Newton R.R. Freeze after Writing: Quasi-Deterministic 

Parallel Programming with LVars // ACM SIGPLAN Not., 49:1. 2014. P. 257–270. 

15. Kuper L., Newton R.R. LVars: Lattice-Based Data Structures for Deterministic Parallelism // 2nd 

ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC’13. New York, NY, 

USA: ACM, 2013. P. 71–84. 



20 Regular paper

Operational Semantics of Reflex

Igor S. Anureev (A.P. Ershov Institute of Informatics Systems, Institute of

Automation and Electrometry, anureev@iis.nsk.su)

Reflex is a process-oriented language that provides design of easy-to-maintain control

software. The language has been successfully used in several safety-critical cyber-physical

systems, e. g. control software for a silicon single crystal growth furnace. Now, the main

goal of the Reflex language project is development a support for computer aided software

engineering targeted to safety-critical application. This paper presents formal operational

semantics of the Reflex language as a base for applying formal methods to verification of

Reflex programs.

This work has been supported by the Russian Foundation for Basic Research (grants

17-07-01600 and 17-01-00789).



Short paper 21

Safety Analysis of Longitunal
Motion Controllers during Climb Flight

Thomas Baar (Hochschule für Technik und Wirtschaft (HTW) Berlin,

Department of Engineering I)

Horst Schulte (Hochschule für Technik und Wirtschaft (HTW) Berlin,

Department of Engineering I)

During the climb flight of big passenger planes, the pilot directly adjusts the pitch

elevator and the plane reacts on this by changing its pitch angle. However, if the pitch

angle becomes too large, the plane is in danger of an airflow disruption on the wings, which

can cause the plane to crash. In order to prevent this, modern planes take advantage of

control software to limit the pitch angle. However, if the software is poorly designed and if

system designers have forgotten that sensors might yield wrong data, the software might

cause the pitch angle to become negative, so that the plane loses height and can - eventually

- crash.

In this paper, we investigate on a model for a Boeing passenger plane how the control

software could look like. Based on our model described in Matlab/Simulink R©, it is easy

to see based on simulation that the plane loses height when the sensor for the pitch angle

provides wrong data. For the opposite case of a correctly functioning sensor, our simulation

does not indicate any problems. This simulation, however, is not a guarantee that the

control is indeed safe. For this reason, we translated the Matlab/Simulink R©-model of

the controler into a hybrid program in order to make this system amenable to formal

verification using the theorem prover KeYmaera.



22 Invited talk

Formal Modelling and Verification
for Heap-manipulating Programs

Bin Fang (Huawei, fangbin1990@me.com)

First, we demonstrate how to obtain formal specifications of sequential dynamic memory

algorithms using a refinement-based approach. We define a hierarchy of models ranked by

the refinement relation that capture a large variety of techniques and policies employed

by memory allocation algorithms. This hierarchy forms an algorithm theory for memory

allocators using list and it could be extended with other policies. The formal specifications

are written in Event-B annotation and the refinements have been proved using the Rodin

platform. Also we investigate applications of the formal specifications obtained, such as

model-based testing, code generation and verification on code level.

Second, we define a technique for inferring precise invariants of heap-manipulating pro-

grams based abstract interpretation which is a framework used in static analysis. The

abstract domain is constructed step-by-step by combining shape and numeric abstrac-

tions. The abstract elements are presented by our fragment of Separation Logic which can

tack the complex construal and numerical properties on the structure of memory and on

its size and content. To obtain compact elements of this abstract domain, we propose a

composition operator to link hierarchical abstractions of the shape. It increases the read-

ability and modularity of the specification as well as the modularity of the static analysis

method.



Short paper 23

Constructing Verification-Oriented
Domain-Specific Process Ontologies

Natalia O. Garanina (A.P. Ershov Institute of Informatics Systems, Institute of

Automation and Electrometry, garanina@iis.nsk.su)

Igor S. Anureev (A.P. Ershov Institute of Informatics Systems, Institute of

Automation and Electrometry, anureev@iis.nsk.su)

Vladimir E. Zyubin (Institute of Automation and Electrometry, Novosibirsk

State University, zyubin@iae.nsk.su)

User-friendly formal specification and verification of concurrent systems from various

subject domains are active research topics due to their practical significance. In this pa-

per, we present the method for development of verification-oriented domain-specific process

ontologies which are used to describe concurrent systems of subject domains. One of advan-

tages of such ontologies is their formal semantics which makes possible formal verification

of described systems. Our method is based on the verification-oriented process ontology.

For constructing a domain-specific process ontology, our method uses techniques of se-

mantic markup and pattern matching to associate domain-specific concepts with classes of

the process ontology. We give detailed ontological specifications of these techniques. Our

method is illustrated by the example of developing a domain-specific ontology for typical

elements of automatic control systems.

The research has been supported by Russian Foundation for Basic Research (grants 17-

07-01600 and 19-07-00762).



24 Regular paper

Towards automated error localization
in C programs with loops

Dmitry A. Kondratyev (A.P. Ershov Institute of Informatics Systems SB RAS,

apple-66@mail.ru)

Alexei V. Promsky (A.P. Ershov Institute of Informatics Systems SB RAS,

promsky@iis.nsk.su)

The most recent trends in the C-light verification system are MetaVCG, semantic labels

appropriate for verification condition (VC) explanation and symbolic method of definite it-

erations. MetaVCG takes a C-light program together with some Hoare’s logic and produces

on-the-fly a VC generator (VCG), which in turn processes the input program. Hoare’s logic

for definite iterations is a good choice if we try to get rid of loop invariants. Finally, if

a theorem prover was unable to validate some VCs we could follow two ways. Obviously,

we could revise/enrich specifications or/and underlying proof theory to prove the truth

of VCs. Or, perhaps, we could concentrate upon establishment of falsity, which meant

there were errors in annotated program. This is where semantic labels play crucial role

providing some natural language comments about wrong VC as well as a back-trace to

the error location. The newly developed ACL2 heuristics to prove VC falsity is the main

theme of this paper.

This research is partially supported by RFBR grant 17-01-00789.



Invited talk 25

Proving safety by disproving: finite countermodel finding
for the infinite-state and parameterized verification

Alexei Lisitsa (Department of Computer Science, University of Liverpool,

a.lisitsa@liverpool.ac.uk)

Traditional model checking has been very successful in the verification of finite state

systems. In many cases, though the finite state abstraction is not enough, as we might

need to verify the algorithm or protocol for essentially unbounded computation/execution,

e. g. to ensure that a protocol is correct for any number of participants, or for any size of

a data structure. In such cases, we are facing infinite state, or parameterized systems, the

verification of which in general is an undecidable problem.

In this talk, we introduce and overview conceptually simple but powerful and efficient

method for automated safety verification of infinite-state and parameterized system. The

method utilises modelling of reachability between the states of a system as derivability in

the classical first-order (FO) logic. With such modelling to establish the safety of a system,

that is non-reachability of unsafe states, it is sufficient to show that a particular first-order

formula is not provable. In this FCM method, the latter task is delegated to the available

automated finite model finding procedures.

In the talk we present theoretical foundations, show the relative completeness of the

method and illustrate it by numerous applications for infinite-state and parameterized

verification tasks selected from the areas of

• mutual exclusion protocols;

• cache coherence protocols, which ensure that multiple caches in multi-core systems

have consistent copies of the fragments of the main memory;

• recreational mathematics, including the first fully automated solution of so-called

MU-puzzle, taken from the famous book Goedel, Escher, Bach: An Eternal Golden

Braid book by D. Hofstadter.



26 Invited talk

Quantifier solutions to interval systems
of linear algebraic equations

Sergey P. Shary (Novosibirsk State University and Institute of Computational

Technologies of Siberian Branch of Russian Academy of Sciences, Novosibirsk,

shary@ict.nsc.ru)

The talk is devoted to interval systems of linear algebraic equations, a classical object,

which is quite simple, but serves as a basis for a large number of mathematical models of the

real world. Solutions and sets of solutions for such systems can be defined in a wide variety

of ways, since the interval uncertainty, by its very nature, has a dual character, which is

associated with the use of different logical quantifiers, either existence or universality. In

this way, we obtain definitions of the so-called quantifier solutions of interval equations,

having a clear meaning and can be interpreted as solutions of games or decision-making

processes under conflict and uncertainty.

We consider various numerical methods for estimating sets of quantifier solutions for

interval systems of linear algebraic equations. They are based on the use of the Kaucher

complete interval arithmetic, where improper (reverse) intervals are allowed and basic

arithmetic operations are algebraic and order completions of those for the usual real inter-

vals.



Poster 27

An Application of Test-Driven Development

Methodology into the Process of Hardware Creation
(a View from a Software Perspective)

Sergey M. Staroletov (Polzunov Altai State Technical University,

serg_soft@mail.ru)

Vladimir Fedorov (Polzunov Altai State Technical University,

vladimir.fodorow@gmail.com)

The TDD (Test-Driven Development) methodology was created by Kent Beck, which

proposed firstly to write a test then to make a trivial implementation of a module to

satisfy this test. FPGA (Field-Programmable Gate Array) is a reprogrammable matrix of

logical elements to solve different hardware tasks (signal processing, calculations, external

devices driving). The aim of the research is an application of Test-Driven Development

methodology which was originally created for producing software from the scratch, to the

FPGA devices programming, from the software engineering point of view. In the work we

make a short review of the methodology, describe briefly Verilog language for the FPGAs,

propose recommendations how to follow this methodology while develop software for specify

a hardware behavior on the basis on a demo functionality to control an audio device with

WM8731 chip to play waveform files from an SD card.

1. Introduction

The Test-Driven Development (TDD / developing based on test creation / red-green refac-

toring) is one of the novel techniques of software engineering in the sphere of program testing.

It was originally proposed by Kent Beck [1], who is well known as one of the major methodology

specialist in the software engineering world.

Although the approach has been initially introduced in 2003, but till today there is not a big

amount of software companies that use it in the real software production. However, questions

of the applicability of this methodology are periodically posted in the major software testing

conferences.

From our point of view, the industrial applicability of TDD is still having some issues

primarily because of the following:



28 Poster

• The developers are not accustomed to start new implementations from initial tests.

• There are no good examples of complex software projects that have been completed

entirely according to this methodology.

• Customers and managers mistakenly believe (in our opinion) that the test creation during

the whole process of the software creation (and especially before it) increases the cost of

the project.

The TDD itself is a process of preliminary creation of a next unit test and then a code to

pass the test and this leads either to write a new code in the form of a class or a method

(developing a new functionality), or to refactor existing code (clarification of a functionality,

developing a new case of existing functionality). In the first, a test should fail (red) and

therefore a developer should write functionality to pass the test (green), so another name of

TDD is "red-green refactoring", that corresponds to the xUnit test results stripe in IDE, and

incites code to be created.

In any case, TDD at its each step implies a minimal functionality, which only can pass a

previously written test (for example, we have a test 2 + 2 for the addition method with the

expected value of 4, that leads a minimum code for such a method that just returns 4 without

actually writing the logic of the addition). It encourages the writing of stubs and eliminates

developers from lengthy reflections on complex implementations. Each process step must be

fixed as a commit to a version control system. Some arguments for this methodology were

presented in [2]:

• it is an opportunity to demonstrate a working (according to current tests) product at any

stage of the development (customers will be satisfied);

• it implies the maximum of the code coverage;

• the project at any time is a series of small changes that are easy to track (project managers

are happy).

The additional time used to write tests potentially reduces the time for the further correction

of errors that could have been detected if the functionality had been written without tests. Also,

we get a code and tests as the result that can be used at every next step as a regressive control

of the correctness of the old functionality when making new changes.

In the article [3], Intel architect Ron Wilson wondered if this methodology also applies to

the FPGA hardware design. According to the comments to the article, hardware developers

did not reach a common opinion on this issue.



Poster 29

2. Background

2.1. FPGA

FPGA (field-programmable gate array) is a device (a special processor) that contains developer-

reconfigurable blocks with inputs and outputs, and their configuration code is written in a

special language for describing integrated circuit hardware [4] (HDL, hardware description lan-

guage).

In this paper, we consider the code in Verilog HDL, as one of the most popular languages

today for developing programs for FPGAs. Among others, one of the ways of the applicability of

unit testing and TDD is studying the capabilities of new libraries, protocols, new programming

languages through tests for them, so our work is a research of applying known methodologies

to unknown languages with a completely different order of execution and meaning of the tests.

The advantage of using FPGAs in working with external equipment to the microcontrollers

(such as, for example, Arduino or STM32 and especially to devices with an operating system

like Raspberry Pi) is that the processor here does not run some compiled machine code, and

its logic is programmed especially to solve a given task; the logic is programmed as a reaction

at changes of the clock edge or as a reaction at changes of input signals, so there is no need

to use waiting cycles, interrupts, and so on, which makes it easy and efficient to implement

communication protocols with external components. Therefore, novel outgoing SoC systems

(System on Сhip), such as Raspberry Pi4, are planned to be equipped with an additional FPGA

processor, which will be responsible for programmed interaction with interconnected external

hardware, while the rest will work with internal equipment, OS, user, etc.

2.2. Verilog

The Verilog language (the grammar of the language is available in [5]) is a high-level C- and

Pascal-like language at the level of operations, conditions, and cycles, which is then synthesized

into logical elements of the FPGA. Verilog program describes modules connected by inputs and

outputs, and one can declare memory registers in the form of bitwise data and their arrays,

connections, and control structures. The programs are written according to the event-oriented

pattern, usually at a positive or negative front of a change of frequency clock or some other

signal. For example, the code



30 Poster

always@ ( posedge clock_50M)

begin

dacclk_a<=dacc lk ;

end

is performed at a frequency of 50 MHz or 50,000,000 times per second and changes the state

of an output signal, and also for this change (from 1 to 0 or from 0 to 1) in another place of

code can be also defined a hook or this signal can be out to an external pin.

3. Some notable differences of device testing

The testing process of the code running on a device is quite different from the testing used

in software engineering. We identified the following main differences:

1. The time parameter is added to the test, that is, the tests should check not just the corre-

spondence of the output value according to a given input, but the correspondence of the

output signals over time according to specified input signals (temporal correspondence).

2. A rather long synthesis time, project deployment, a large number of signals, a short

device response time lead to the fact that static testing methods (simulation) become

very important during the development.

3. The complexity of determining a current state of the working code on the device. Often,

the so-called “printf injection” method [2] cannot be directly used here to print the current

state, but it is still possible by flashing LEDs, outputting to an LCD screen, etc. (as the

work with these components is turn and tested).

4. Dynamic testing is carried out by connecting external logic analyzers, recording the nec-

essary signals and working with them on a computer to establish the correctness of work.

4. Hardware demo

As a part of this study, we are developing a hardware music player for music in the form

of WAV files from an SD card with the possibility of making hardware mixes during the play-

back. The hardware consists of a demo board with a Cyclone IV EP4CE22E22 processor [6], a

WM8731 [7] audio processor, and an SD card slot (Figure 1).

The development is based on the source code of the samples supplied with the equipment

in the Intel Quartus Prime Lite Edition environment (free edition).



Poster 31

Fig. 1. Hardware solution scheme

5. A TDD Case Study

In this section, we propose a method for developing the demo system using the Test-Driven

Developing approach. In this case, at each step, we will implement the minimum working

functionality that corresponds to the tests for it.

1. Create a project for the target hardware (Cyclone IV EP4CE22E22). Create a git-

repository and commit (in general, we propose to make commits at all steps after writ-

ing/changing a test and a code).

2. Define the external interface. According to our hardware scheme, we need to interact with

the SD card, audio processor, as well as LED indicators on the board, clocking and buttons

status. It is possible by knowing the input and output signals - they are defined in the



32 Poster

documentation (datasheets) and we have already established their connection according

to our solution plan (Figure 1). Here it is necessary to act according to the MDD (Model-

Driven Development) approach and define these signals (Figure 2) in a graphical editor,

then generate a test (Test Bench) containing a link to the main program block with these

signals and the code of this block (in this case, in Verilog language, using its "#" delay

operator).

Fig. 2. We have designed the input and output signals of the solution

This step is similar to the description of interfaces and classes in order to pass the first

test of the existence of a class in order to create this class in the OOP programming

languages according to the TDD.

3. Next, it’s time to implement the functionality. We implement the test of the existence of

a block (component) to work with an SD card, therefore, we need to create such a block

and describe its inputs and outputs (a subset of our signals).

4. According to the documentation, the SD card needs its own clocking. Therefore, we write

a test that for a given clocking (clk_50m) signal, the SD_clk signal will be different.

Using the component development model, we integrate an IP module (IP or Intellectual

Property, similar to the components) of pll for frequency division and integrate it into

the solution (Figure 3). In this case, the specified test will pass.

Here one can proceed to the creation of tests and some implementation of work with an

audio processor, or continue working with an SD card, this depends on the goals of the



Poster 33

Fig. 3. Added a frequency divider for the SD

team, the division of tasks between different people, etc. We will continue to work with

the SD.

5. Next, we need to write a test for the functionality of initializing and reading data from the

SD card. For the validation, we can use an output resulting signal, which in the trivial

implementation is set to 1. And even output it to the LED in order to dynamically

observe the work of the implementation. But how to continue this process in order to

proceed from the real testing goals?

6. So, we need some kind of information about logical signals associated with the SD based

on time. To do this, either we can manually determine the signals by drawing them on a

timing diagram, or use a logic analyzer and record the real signals for a while from a real

device that works correctly. Figure 4 shows a recorded example of SD card signal logic.

Fig. 4. SD signals on a logic analyzer

In this case, an analyzer allows us to export the signal values to a .CSV file, and it is then



34 Poster

possible to generate a test by following the following pattern: do a signal value setting

according to an information from the analyzer, waiting for some time (delta to a next

signal value) and setting the next signal value from the dataset, and continue it to all the

signals in the dataset (according to the columns in a recorded .CSV file).

7. After generating or editing such a test, an implementation code is generated that simply

repeats the test. Next, more tests are created / recorded and the functionality is gradually

refined so that all tests should pass.

8. In the previous step, it is not necessary that the functionality was fully implemented and

if at least one test passes (and it will pass, as the functionality initially meets the tests),

then we can move on to other blocks (components of the system). This is consistent

with TDD in programming, when after passing tests one can move on to implementing

other methods, classes, or even create a build to show it to customers (only show the

functionality according to current tests!).

9. Acting in this way, we implement the functionality as connected blocks for the entire

solution (Figure 5), each one is validated at every moment by the tests.

Fig. 5. The final block diagram of the solution (RTL viewer tool).

10. For this demo task, initial wave file data loading and playing can be implemented by

reading raw data from a given byte in the file system, then we can implement a support

for the normal file reading by adapting a C-code of work, for example, with FAT32, by

rewriting it to Verilog, based on the file location tests in specified data areas. We can

implement further the monitor of the volume of music on the LEDs, switching between

files by pressing keys on the board and so on, based on tests and trivial implementations.



Poster 35

6. Suggestions for the implementation of this process

In the Intel Quartus environment (we mean the free Lite version) there are not all the neces-

sary solutions for the implementation of the described process. Firstly, there is no integration

with Git version control system, although there are some version control capabilities, but they

are implemented in its own way and do not correspond to modern solutions about project

management.

Secondly, the generation of diagrams is possible only based on the code or the creation of a

module in the form of diagrams that is incompatible with the previous one. It is necessary to

create a graphical editor of blocks with input and output signals with the generation of code

and tests for them with the TDD process support.

Thirdly, there are no visual methods for creating tests in time and processing data from

the logic analyzer. Therefore, it is necessary to create own solution integrated with Quartus

Prime. Interaction with it can be organized using scripts in the Tcl language (Quartus supports

launching such scripts and provides automation tools for working with the project), then cre-

ating a client-server solution (remote automation control) that will allow the implementation

of the described TDD development approach integrated with the mainstream FPGA tool.

7. Conclusion

Finally, we can state that the TDD process can be applicable in the sphere of hardware code

creation. The main different here is the tests with temporal organization. Such process can be

done with using an MDD way to organize input and output signals in different blocs levels. The

source of test signals can be either a graphical signal editor and recorded data from a logical

analizer. The process requires writing a plugin to existing FPGA synthesis tools. As the tests

are temporal, formal methods of verification are applicable here and LTL predicates can be

used to describe requirements for FPGA system behavior. In [8] we introduce a step-by-step

demo of current implementation of the process by implementing a simple hardware counter.



36 Poster

References

1. Beck, Kent. Test-driven development: by example. Addison-Wesley Professional, 2003.

2. Staroletov, Sergey. Basics of Software Testing and Verification [in Russian]. Lanbook, Saint Peters-

burg. 2018. ISBN 978-5-8114-3041-3.

3. Test-Driven Hardware Development: True or False? Available from:

https://systemdesign.intel.com/test-driven-hardware-development-true-or-false/

4. Harris, David, and Sarah Harris. Digital design and computer architecture. Morgan Kaufmann,

2010.

5. Verilog 2001 grammar. Available from: https://github.com/antlr/grammars-

v4/blob/master/verilog/Verilog2001.g4

6. Cyclone IV Device Handbook. Intel, Altera. Available from:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-

iv/cyclone4-handbook.pdf

7. Wolfson WM8731 / WM8731L Portable Internet Audio CODEC with Headphone Driver. Available

from: https://statics.cirrus.com/pubs/proDatasheet/WM8731_v4.9.pdf

8. Fedorov, Vladimir. Test Driven Hardware Development on System Verilog v1. Available from:

https://www.youtube.com/watch?v=AsitQp2G3FI



Regular paper 37

Proving properties of Discrete-Valued Functions using
Deductive Proof: Application to the Square Root

Vassil Todorov (Groupe PSA, France, vassil.todorov@lri.fr)

Safouan Taha (LRI, CentraleSupélec, Université Paris-Saclay, France,

safouan.taha@lri.fr)

Frédéric Boulanger (LRI, CentraleSupélec, Université Paris-Saclay, France,

frederic.boulanger@lri.fr)

Armando Hernandez (Groupe PSA, France, armando.hernandez1@mpsa.com)

For many years, automotive embedded systems have been validated only by testing. In

the near future, Advanced Driver Assistance Systems (ADAS) will take a greater part in the

car’s software design and development. Furthermore, their increasing critical level may lead

authorities to require a certification for those systems. We think that bringing formal proof

in their development can help establishing safety properties and get an efficient certification

process. Other industries (e.g. aerospace, railway, nuclear) that produce critical systems

requiring certification also took the path of formal verification techniques. One of these

techniques is deductive proof. It can give a higher level of confidence in proving critical

safety properties and even avoid unit testing.

In this paper, we chose a production use case: a function calculating a square root

by linear interpolation. We use deductive proof to prove its correctness and show the

limitations we encountered with the off-the-shelf tools. We propose approaches to overcome

some limitations of these tools and succeed with the proof. These approaches can be applied

to similar problems, which are frequent in automotive embedded software.



38    Poster 

On parallel composition of                                                 

Finite State Machines with timed guards 

Aleksandr S. Tvardovskii (Tomsk State University, tvardal@mail.ru), 

Nina V. Yevtushenko (Ivannikov Institute for System Programming of the RAS, 

nyevtush@gmail.com) 

Finite State Machines (FSMs) are widely used for analysis and synthesis of digital 

components of control systems. In order to take into account time aspects, timed FSMs are 

considered. In this paper, we address the problem of deriving a parallel composition of FSMs 

with timed guards and output delays (output timeouts). When the parallel composition is 

considered, component FSMs work in the dialog mode and the composition produces an 

external output when interaction between components is terminated. In this work, we formally 

introduce the parallel composition operator for FSMs with timed guards (TFSM) and show that 

unlike classical FSMs, a "slow environment" and the absence of live-locks are not enough for 

describing the behavior of a composition of deterministic TFSMs by a deterministic FSM with a 

single clock. Although the set of deterministic FSMs with timed guards is not closed under the 

parallel composition operator, some classes of deterministic TFSMs are still closed under this 

operator.  

This work is partly supported by RFBR project № 19-07-00327/19. 



 

Научное издание 

 

 

 

 

 

 

 

 

 

X Workshop PSSV 
 

Program Semantics, Specification and Verification: 

Theory and Applications 
 

July 1–2, 2019, Novosibirsk, Akademgorodok, Russia 

 

 

Abstracts 

 

 

 

 

 

 

 

 

Издается в авторской редакции 

 

 

 

 

 

 

 

 

 

Дизайн обложки Т.М. Бульонковой 

Ответственный за выпуск И. С. Ануреев 

Подготовка к печати Г. Р. Семенихиной, 

Т. А. Марковой, С. В. Исаковой, Е. В. Неклюдовой 

 

 

 

 

 

 

 

 

Подписано в печать 20.06.2019 г.  

Формат 60х84 1/8. Уч.-изд. л. 6. Усл. печ. л. 5,6. 

Тираж 50 экз.  Заказ № 156. 

Издательско-полиграфический центр НГУ 

630090, г. Новосибирск, ул. Пирогова, 2 

 

 





Sponsored by:

Organized by:

A. P. Ershov Institute of Informatics Systems


	Ершов
	Страница 1
	Страница 2

	Ершов
	Страница 1
	Страница 2


