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Abstract

We study the model checking problem for fixpoint logics
in well-structured multiaction transition systems. P.A. Ab-
dulla et al. (1996) and Finkel & Schnoebelen (2001) ex-
amined the decidability problem for liveness (reachability)
and progress (eventuality) properties in well-structured sin-
gle action transition systems. Our main result is as follows:
the model checking problem is decidable for disjunctive for-
mulae of the propositionalµ-Calculus of D. Kozen (1983) in
well-structured transition systems where propositional vari-
ables are interpreted by upward cones. We also discuss the
model checking problem for the intuitionistic modal logic of
Fisher Servi (1984) extended by least fixpoint.

1. Well-Preordered Transition Systems

Let D be a set. An equivalence is a reflexive, transitive
and symmetric binary relation on D. A partial order is a re-
flexive, transitive, and antisymmetric binary relation on D.
A preorder (synonym: quasi-order) is a reflexive and transi-
tive binary relation on D. A well-preorder (synonym: well-
quasi-order) is a preorder � where every infinite sequence
d0, ... di, ... of elements ofD contains a pair of elements dm

and dn so that m < n and dm � dn.
Let (D,�) be a well-preordered set (i.e. a setD provided

with a well-preorder�). An ideal (synonym: cone) is an up-
ward closed subset of D, i.e. a set I ⊆ D such that for all
d′, d′′ ∈ D, if d′ � d′′ and d′ ∈ I then d′′ ∈ I . Every d ∈ D

generates the upward cone (↑ d) ≡ {e ∈ D : d � e}. For
every set S ⊆ D and every element d ∈ S, d is a mini-
mal element of S iff for every element s ∈ S either d � s

or d and s are non-comparable. For every subset S ⊆ D,
the set of its minimal elements is min(S). For every sub-
set S ⊆ D, a basis of S is a subset B ⊆ S such that for
every s ∈ S there exists an element b ∈ B such that b � s.

Let us present some algebraic properties of well-pre-
orders that are easy to prove [1, 4]. Let us fix for simplicity
a well-preordered set (D,�). First, (D,�) is well-founded,
i.e. infinite strictly decreasing sequences of elements of D
are impossible; moreover, every infinite sequence in (D,�)
contains an infinite non-decreasing subsequence. Next, ev-
ery subset S ⊆ D provided with the preorder � also forms
another well-preordered set (S,�). Third, every S ⊆ D

has a finite basis that consist of the set of the minimal ele-
ments min(S); in particular, every ideal I has a finite ba-
sis min(I), and I = ∪d∈min(I)(↑ d). Finally, every non-
decreasing sequence of ideals I0 ⊆ ... ⊆ Ii ⊆ ... eventu-
ally stabilizes, i.e. there is some k ≥ 0 such that Im = In
for all m,n ≥ k.

Let Act be a fixed finite alphabet of action symbols.
A transition system (synonym: Kripke frame) is a tuple
(D,R), where the domainD is a non-empty set of elements
that are called states, and the interpretationR is a total map-
ping R : Act → 2D×D. A run (in the frame) is a maxi-
mal sequence of states s1...sisi+1... such that for all adja-
cent states within the sequence (si, si+1) ∈ R(a) for some
a ∈ Act.

A well-preordered transition system (WPTS) is a triple
(D,�, R) such that (D,�) is a well-preordered set and
(D,R) is a Kripke frame. We are most interested in well-
preordered transition systems with decidable and compat-
ible well-preorders and interpretations. The decidability
condition for the well-preorder is straightforward: � ⊆
D × D is decidable. The decidability condition for inter-
pretations of action symbols and compatibility conditions
for well-preorders and interpretations of action symbols are
discussed below.

Let (D,�, R) be a WPTS and a ∈ Act be an action sym-
bol. We consider the following decidable condition for the
interpretationR(a) of the action symbol a ∈ Act: the func-

tion λ s ∈ D . min{t : t
R(a)
−→ s} is computable. We refer to

this condition as tractable past.
Again, let (D,�, R) be a WPTS and a ∈ Act be an ac-
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Table 1. (Future) Fisher Servi conditions

tion symbol. There are 2 options for strong future compati-
bility of the well-preorder � and the interpretation R(a) of
the action symbol a ∈ Act. They are represented in the ta-
ble 1 in logic, diagram, and algebraic notation (rows 1, 2,
and 3 respectively). The terminology used in these tables is
explained in the following three paragraphs.

The adjectives ”upward” and ”downward” have been in-
troduced by [4]; they have explicit mnemonics. The adjec-
tive ”strong” has also been introduced by [4]; it refers to
a single step of action R(a) that interprets the correspond-
ing action symbol a. In accordance with [4], one can de-
fine the transitive, the reflexive and ”plain” compatibility by
using the transitive closure

(

R(a)
)+

, the reflexive closure
(

= ∪ R(a)
)

and the reflexive-transitive closure
(

R(a)
)∗

instead of the single step R(a). The adjective ”future” is
about states after an action, i.e. future states, while states
before an action are past states.

The Fisher Servi conditions are due to intuitionistic
modal logic FS suggested by G. Fisher Servi [5] (see also
[8] and [3]). Semantics of FS is defined in partially or-
dered transition systems (D,�, R), where � is a partial or-
der which is upward and downward compatible with R.

Let M be a WPTS. We say that M has tractable past, iff
it enjoys this property for every action symbol a ∈ Act. Let
us fix a particular compatibility property from the table 1;
we say that M has this property, iff it enjoys it for every ac-
tion symbol a ∈ Act.

An upward compatible well-preordered transition sys-
tem with tractable past and decidable preorder is said to be
a well-structured transition system (WSTS). Extensive case
study and some generic examples of single action1 WSTS
can be found in the foundational papers [1, 4].

We would like to point out that there are close relations
between compatibility and (bi)simulation [7, 10]. Let (D,�
, R) be a WPTS. One can see that

• future upward compatibility states that the well-pre-

1 i.e. when |Act| = 1

order � is a simulation relation on the states of the
transition system (D,R);

• future downward compatibility states that the inverse
�− of the well-preorder � is a simulation relation on
the states of the transition system (D,R).

These observations lead to the following proposition.

Proposition 1
Every transition system (D,R) provided with any bisimu-
lation ' on the states in D forms a Fisher Servi compat-
ible WPTS (D,', R). In particular, (D,R) provided with
equality forms a Fisher Servi compatible WPTS (D,=, R).

2. Propositional µ-Calculus

The µ-Calculus of D.Kozen (µC) [6] is a very power-
ful propositional program logic with fixpoints. It is widely
used for specification and verification of properties of fi-
nite state systems. (Please refer to [9] for the elementary in-
troduction to µC. The comprehensive definition of µC can
be found, for example, in a recent textbook [2].) Some au-
thors denote the µ-Calculus with the single action symbol
by L�♦µν since in the single action settings it becomes a
propositional modal logic with two modalities (� and ♦)
extended by fixpoints (µ and ν). If to assume standard du-
ality between modalities � and ♦ and between fixpoints µ
and ν then L�♦µν becomes µK – the basic propositional
modal logic K extended by fixpoints.

The syntax of µC consists of formulae. Let Prp be an al-
phabet of propositional variables which is disjoint with the
alphabet of action symbols Act fixed above. A context-free
definition of µC formulae is as follows:

φ ::= p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) |
([a]φ) | (〈a〉φ) | (ν p. φ) | (µ p. φ)

where metavariables φ, p, and a range over formulae,
propositional variables and action symbols. The only con-
text constraint is the following: no instances of bound (by
µ or ν) propositional variables are in the range of odd num-
ber of negations.

The semantics of µC is defined in labeled transition
systems (synonym: Kripke models). A model is a triple
(D,R, V ), where (D,R) is a Kripke frame, and the val-
uation V is another total mapping V : Prp → 2D. In every
model M = (D,R, V ), for every formula φ, the seman-
tics M(φ) is a subset of the domainD that is defined by in-
duction on the formula structure:

• M(p) = V (p), M(¬ψ) = D \M(ψ),
M(ψ′ ∧ ψ′′) = M(ψ′) ∩M(ψ′′),
M(ψ′ ∨ ψ′′) = M(ψ′) ∪M(ψ′′),

• M([a]ψ) = { s : t ∈M(ψ)
for every t such that (s, t) ∈ R(a) },



M(〈a〉ψ) = { s : t ∈M(ψ)
for some t such that (s, t) ∈ R(a) },

• M(νp.ψ) = the greatest fixpoint of the mapping

λS ⊆ D .

(

MS/p(ψ)

)

,

M(µp.ψ) = the least fixpoint of the mapping

λS ⊆ D .

(

MS/p(ψ)

)

,

where metavariables ψ, ψ′, ψ′′, p, and a range over formu-
lae, propositional variables and action symbols, and MS/p

denotes the model that agrees with M everywhere but p:
VS/p(p) = S.

A propositional variable is said to be a propositional con-
stant in a formula iff it is free in the formula. A formula
is said to be in the normal form iff negation is applied to
propositional constants in the formula only. A formula is
said to be positive iff it is negation-free. Due to the stan-
dard De Morgan laws and the following equivalences

(¬(〈a〉φ)) ↔ ([a](¬φ))
(¬([a]φ)) ↔ (〈a〉(¬φ))

(¬(µp.φ)) ↔ (νp.(¬(φ
(¬p)
p ))

(¬(νp.φ)) ↔ (µp.(¬(φ
(¬p)
p ))

every formula of µC is equivalent to some formula in the
normal form that can be constructed in polynomial time.
(Here and throughout the paper XY

Z stays for substitution
of Y instead of all instances of Z into X .)

We are especially interested in the fragment of the µ-
Calculus that comprises the disjunctive formulae, i.e. for-
mulae without negations ¬, conjunctions ∧, and ”infinite
conjunctions” [ ] and ν. A context-free definition of these
formulae is the following:

φ ::= p | (φ ∨ φ) | (〈a〉φ) | (µ p. φ),

where metavariables φ, p, and a range over formulae,
propositional variables and action symbols. We can re-
mark that liveness and progress properties are easy to
present in this fragment: EFp ↔ µq.(p ∨ 〈next〉q) and
AFp ↔ µq.(p ∨ [next]q), where next is the single im-
plicit action symbol of CTL.

Another logic that we use in our studies is the Fisher
Servi intuitionistic modal logic FS [5, 8, 3]. The syntax of
FS consists of formulae that are constructed from propo-
sitional variables Prp in accordance with the following
context-free definition:

φ ::= p | (¬φ) | (φ → φ) | (φ ∧ φ) | (φ ∨ φ)
| (�φ) | (♦φ)

where metavariables φ and p range over formulae and
propositional variables. FS semantics is defined in intuition-
istic Kripke models. A model of this kind is a quadruple
(D,�, R, V ), where the domain D is a nonempty set of

states, � is a partial order on D, the interpretation R inter-
prets the single implicit action symbol (say next) by a bi-
nary relation R(next) ⊆ D × D in an upward and down-
ward compatible manner with �, and the valuation V is a
total mapping V : Prp → {I ⊆ D : I is a cone in (D,�
)}.

In every modelM = (D,�, R, V ), for every formula φ,
the semantics M(φ) is a subset of the domain D that is de-
fined by induction on the formula structure:

• M(p) = V (p), M(¬ψ) = {s : (↑ s) ∩M(ψ) = ∅},
M(ψ′ → ψ′′) = {s : (↑ s) ∩M(ψ′) ⊆M(ψ′′)},
M(ψ′ ∧ ψ′′) = M(ψ′) ∩M(ψ′′),
M(ψ′ ∨ ψ′′) = M(ψ′) ∪M(ψ′′),

• M(�ψ) = { s : (↑ t) ⊆M(ψ)
for every t such that (s, t) ∈ R(next) },

M(♦ψ) = { s : t ∈M(ψ)
for some t such that (s, t) ∈ R(next) }.

where metavariables ψ, ψ′, ψ′′, and p range over formu-
lae and propositional variables, respectively. (Sic! In con-
trast to classical modal logics, there is no standard duality
between � and ♦ in intuitionistic modal logic.)

Please refer to papers [5, 8, 3]. for finite model property,
axiomatization, and decidability issues of FS, but let us de-
fine a variant µFS of FS with multiactions and fixpoints
as follows. The syntax of µFS coincides with the syntax
of µC. The semantics of µFS is defined in models that are
partially ordered Fisher Servi compatible labeled transition
systems. A model of this kind is a quadruple (D,�, R, V ),
where the domainD is a nonempty set of states, � is a par-
tial order on D, the interpretation R is a total mapping R :
Act → 2D×D that interprets every action symbol a ∈ Act

by a binary relationR(a) ⊆ D×D in an upward and down-
ward compatible manner with �, and the valuation V is a
total mapping V : Prp→ {I ⊆ D : I is a cone in (D,�)}
(i.e., it interprets every propositional variable p ∈ Prp by
some ideal in (D,�)).

In every modelM = (D,�, R, V ), for every formula φ,
the semantics M Int(φ) is a subset of the domain D that is
defined by induction on the formula structure:

• M Int(p) = V (p),
M Int(¬ψ) = {s : (↑ s) ∩M Int(ψ) = ∅},
M Int(ψ′ → ψ′′) =

= {s : (↑ s) ∩M Int(ψ′) ⊆M Int(ψ′′)},
M Int(ψ′ ∧ ψ′′) = M Int(ψ′) ∩M Int(ψ′′),
M Int(ψ′ ∨ ψ′′) = M Int(ψ′) ∪M Int(ψ′′),

• M Int([a]ψ) = { s : (↑ t) ⊆M Int(ψ)
for every t such that (s, t) ∈ R(a) },

M Int(〈a〉ψ) = { s : t ∈ M Int(ψ)
for some t such that (s, t) ∈ R(a) },



• M Int(νp.ψ) = the greatest fixpoint of the mapping

λS ⊆ D .

(

M Int
S/p(ψ)

)

,

M Int(µp.ψ) = the least fixpoint of the mapping

λS ⊆ D .

(

M Int
S/p(ψ)

)

,

where metavariables ψ, ψ′, ψ′′, p, and a range over formu-
lae, propositional variables and action symbols, and M Int

S/p

denotes the model that agrees with M Int everywhere but p:
VS/p(p) = S.

The following proposition is standard for intuitionistic
logic.

Proposition 2 For every µFS model M , for every formula
φ of µFS, the intuitionistic semantics M Int(φ) is an up-
ward cone.

We are especially interested in the fragment of µFS that
comprises the disjunctive formulae, i.e. formulae without
negations ¬, implications →, conjunctions ∧, and ”infinite
conjunctions” [ ] and ν, i.e. they coincide with the dis-
junctive formulae of µC. It is easy to observe that clauses
responsible for semantics of the disjunctive formulae in
µC and in µFS also coincide. It leads to the following
proposition.

Proposition 3
For every µFS model M , for every disjunctive µFS for-
mula φ, the intuitionistic semanticsM Int(φ) coincides with
the classical semantics M(φ).

3. The Main Result and Conclusion

A well-structured labeled transition system is a quadru-
ple (D,�, R, V ), where (D,R, V ) is a labeled transition
system, and (D,�, R) is a well-structured transition sys-
tem. An ideal-based model is a well-structured labeled tran-
sition system (D,�, R, V ), where V : Prp → {I ⊆ D :
I is a cone in (D,�)}, i.e. it interprets every propositional
variable p ∈ Prp by some ideal in (D,�). In particular, ev-
ery µFS model is an ideal-based model that is also down-
ward compatible.

Proposition 4 For every positive formula φ of the µC with-
out conjunctions ∧, boxes [ ], and greatest fixpoints ν, for
every ideal-based model M , the semantics M(φ) is an
ideal. Moreover, if valuations of all propositional constants
in φ are defined by their finite bases, then some finite ba-
sis for M(φ) is computable.

Let M be a class of models, Φ be a class of formulae.
The model checking problem for M and Φ is to decide the
following set

{

(φ,M, s) : φ ∈ Φ, M ∈ M and s ∈ M(φ)
}

.

The following theorem is a corollary from propositions 3
and 4.

Theorem 1 The model checking problem is decidable for
the ideal-based models and the disjunctive formulae of the
propositional µ-Calculus. It is also decidable for the dis-
junctive formulae of the intuitionistic modal logic with least
fixpoints µFS in the models with tractable past.
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