
Software testing: Finite State
Machine based test derivation
strategies

Nina Yevtushenko

Institute for System Programming RAS, Russia

evtushenko@ispras.ru

*Some results have been presented in TAROT (Training And Research

On Testing) summer schools

Types of testing

- Conformance testing
- Security testing
- Performance testing
- …

In this lecture, we focus on tests for

checking functional requirements, i.e.,
on conformance testing

 2

Conformance testing

int f(int *a, int size_a)

{

int i, m;

i = 0;

m = a[0];

while(i < size_a)

{

if(m < a[i]) m = a[i];

i++;

}

return m;

}

The function returns the
maximal integer in the
array a where size_a is
the dimension of a

* A number of functional
faults are not detected
through static analysis

3

Code coverage

ITC'99 benchmarks (second release)

Mutant Coverage, MC

Statements/branches Coverage, HC

Benchmark MC (%) HC (%)

b01 75,35 100/100

b02 81,33 100/100

b03 68,92 73,21/76

b06 76,92 100/100

b07 1,8 93,93/94,73

b08 45,68 100/100

b09 2,29 100/100

b10 39,84 100/100

4

Conformance testing

int f(int *a, int size_a)

{

int i, m;

i = 0;

m = a[0];

while(i < size_a)

{

if(m < a[i]) m = a[i];

i++;

}

return m;

}

The function returns the
maximal integer in the array
a where size_a is the
dimension of a

* A number of functional
faults are not detected
through static analysis

Solution: to check the
behavior applying input
sequences

 5

Conformance testing

int f(int *a, int size_a)

{

int i, m;

i = 0;

m = a[0];

while(i < size_a)

{

if(m < a[i]) m = a[i];

i++;

}

return m;

}

The function returns the
maximal integer in the
array a where size_a is
the dimension of a

How to check that the

function is correctly
implemented?

How many arrays should be

checked?

Is it enough to check all the

arrays of dimension 3?
6

Solution: to use formal
models

int f(int *a, int size_a)

{

int i, m;

i = 0;

m = a[0];

while(i < size_a)

{

if(m < a[i]) m = a[i];

i++;

}

return m;

}

EFSM

7

Model based testing

Extract

 A Formal Specification Spec (requirements) of the System

 Formally describe a set of faulty implementations

 Derive a finite set of finite input sequences (Test Suite) such that after
applying them to IUT Imp we can guarantee that Imp conforms to
Spec

 Conforms has many definitions depending on the Formal
Specification and should be formally defined

 8

Spec Imp

I

O

I

O

Conformance Testing

9

Spec

Test Derivation

Test Cases (Test Suite)

Expected = Observed

Apply to

Expected Output Observed Output

Pass

Yes No

Conformance Relation

IUT (Imp)

FAIL

10

FAULT MODEL in Conformance
Testing

< Spec, , FD >

Formal

Specification

Conformance

relation

Fault Domain

All Faulty Implementations

(explicitly or implicitly

described)

Questions

Two questions arise

1. How are the specification and an
implementation formally described?

2. What does this mean «an
implementation conforms to its
specification»?

Spec and Imp are described using the same formal model

(usually a system with finite number of states and/or transitions)

11

12

Testing with guaranteed Fault
Coverage

< Spec, , FD >

Formal

Specification

Conformance

relation

Fault Domain

A complete test suite w.r.t. <Spec, , FD> has to detect

each Imp FD such that Imp does not conform (i.e., not

equivalent, not reduction, etc.) to Spec

All Faulty Implementations

(explicitly or implicitly

described)
Guaranteed Fault Coverage:

FSM-based conformance
testing

1. Spec and Imp are Finite State
Machines (FSMs)

2. Imp conforms to Spec iff Spec and
Imp have the same behavior

Spec Imp

I

O

I

O

\ \

13

Finite State Machines
(FSMs)

Initialized FSM

FSM

…

i1...ik o1 ...ok

s1
sn

1 2

i/o2

i/o1,o3

i/o1

(s, i, o, s’) is a transition from state s

under input i to state s’

FSM traces are I/O sequences at the initial state

S is a finite set of states with the

initial state s1

I is a finite non-empty set of inputs

O is a finite non-empty set of outputs

 hS is a transition (behavior) relation

1

14

Password Authentification
protocol (PAP)

RAR+ - «good» login

RAR- - «bad» login

SAA - Ack

SAN - Nack

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

15

FSMs can be

 Complete

There is a transition for EACH input at EACH state

 Partial

There is no transition for SOME input at SOME state

 Deterministic

There is a single transition for an input at EACH state

 Non-deterministic

There are several transitions for for SOME input at SOME state

 Initialized FSMs have the designated initial state

Reliable reset is usually assumed

! We start with initialized deterministic complete FSMs

16

Complete deterministic
FSMs

Initialized deterministic complete FSM is a 5-tuple (S, I, O, S, S, s1)

FSM

…

I O

s1
sn

(s, i, o, s) is a transition from state s under input i to state s

with the output o if A(s, i) = s’ and A(s, i) = o

s is the initial state of the transition

s is the final state of the transition

o is the output of the transition

! At each state for each input sequence there is a single output sequence

S is a finite set of states with the

initial state s1

I is a finite non-empty set of inputs

O is a finite non-empty set of outputs

transition function S(s, i)

output function S(s, i)

17

Faults when deriving tests based
on a complete deterministic FSM

In fact, a fault is an FSM s.t. its behavior is different from that of
Spec

If faults do not increase the number of states then in Spec we can
consider

 Output faults

If the transition output is different from that of Spec

 Transition faults

If the transition destination state is different from that of Spec

 Mixed faults

When both output and transition faults are possible

* For non-deterministic partial FSMs, there exist more fault types

18

Equivalence relation

FSMs Imp and Spec are
equivalent if their
output replies to each
input sequence coincide

Caution: Number of input
sequences is infinite,
while we can apply only
finite number of input
sequences when testing
the conformance

Equivalent FSMs have the
same set of traces, i.e.,
the same behavior

Spec

…

I O

s1
sn

Imp

…

I O

t1
tm

19

FSM-based conformance
testing

1. Spec and Imp are Finite State Machines

2. Imp conforms to Spec iff Spec and Imp are
equivalent, i.e., have the same behavior

Spec Imp

I

O

I

O

\ \

! The main problem: how to check the equality for infinite number of input

sequences when applying finite number of sequences
20

Test Suite

A test case is a finite input
sequence of the specification
FSM Spec

A test suite is a finite set of test
cases

We assume that each
implementation FSM Imp has
a reliable reset r that takes
the Imp from each state to
the initial state

Each test case in the test suite
is headed by r, i.e., is applied
to Imp at the initial state

Specification and
implementation FSMs

Spec

…

I O

s1
sn

Imp

…

I O

t1
tm

21

Complete test suite

Fault model < Spec, , FD > where Spec is a
deterministic initialized complete FSM

Fault domain FD is the set of FSMs that describe all
possible faults when implementing the specification

FD = {Imp1, …, Impn, …}

A test suite TS is complete w.r.t. FM if TS detects each
FSM Imp FD that is not equivalent to Spec

! If the fault domain contains each FSM over
alphabets I and O and Spec is complete and
deterministic then there is no complete test
suite w.r.t. such fault domain

 22

Example

Inverter

FSM Spec with a single state

Complete tests

- Complete test when Imp has a
single state

{01} or {10}

- Complete test when Imp has at
most two states

{01, 10, 00, 11}

! Nothing can be deleted

Conclusion: a complete test
significantly depends on the
number of states of Imp

23

0/1

1/1

0/1

1/0

FSM Imp with two states

0/1

1/0

Straightforward approach

Straightforward test derivation approach

- Extract the specification Spec

- Insert a number of faults (get a finite set of mutants)

- Distinguish each mutant from Spec (if possible)

- Problems:

- To extract Spec

- Which faults to insert

- How to distinguish Spec and a mutant

- all the mutants have to be explicitly enumerated

For distinguishing two initialized FSMs a separating
(distinguishing) sequence can be used

24

Separating sequences

Spec and Imp are
separated
(distinguished) by
input sequence
if Spec and Imp
have different
output responses
to

Spec and Imp

Imp

…

I O

t1
tm

Spec

…

I O

s1
sn

25

Separating sequences (2)

Spec and Imp

Spec

Imp

s1 s2
y/0

x/1

s3
x/0

x/1
y/0 y/1

s1 s2
y/0

x/1

s3
x/0

x/1 y/0

y/1

Transition from state s3 under y

is wrongly implemented

A separating sequence is y y y y:

y/0 y/1 y/0 y/?

For deriving a separating sequence

the product of Spec and Imp

can be used

If Spec has n states and Imp has

m states then the product has

at most mn states

26

* Can be also used for partial and nondeterministic FSMs

When using the explicit
enumeration of mutants

Advantages

- Easy to implement

- Total length of the obtained test suite is close
to optimal

Disadvantage

- Cannot explicitly enumerate all the FSMs with
at most n states even for small n

 ! There exist fault models and test derivation methods which allow to

guarantee the fault coverage without explicit mutant enumeration

27

Test suite derivation using
only the specification FSM

Transition tour is a set of sequences which
traverse each transition of Spec

Proposition. If only output faults can occur in
Imp or states of Imp can be observed then a
transition tour is a complete test suite

Spec

s1 s2
y/0

x/1

s3
x/0

x/1 y/0

y/1

y x y x x y

28

Experimental results / fault coverage
evaluation

29

ITC'99 benchmarks (second release)

Circuit \

Fault

Domain

SSF

coverage

SBF

coverage

HDF

coverage

Total

coverage

b01 100% 97.62% 70.73% 92.40%

b02 95.83% 86.96% 82.61% 90.43%

b06 98.94% 97.78% 75% 92.90%

One of FSMs for PAP

RAR+ - «good» login

RAR- - «bad» login

SAA - Ack

SAN – Nack

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

30

Deriving tests

Under assumption…

 We can ‘build’ an FSM that simulates a faulty

implementation

 There can be faults of two types:

- Transition faults

- Output faults

Let’s rely on a transition tour

 Idea: to traverse each FSM transition at least once

 Theory: transition tour is known to detect all output faults
31

Transition tour for PAP

Test suite:

RAR+

RAR-RAR-RAR-

Expected output

responses:

SAA

SAN SAN SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

32

Trying to detect a transfer
fault

Test suite:

RAR+

RAR-RAR-RAR-

Expected:

SAA

SAN SAN SAN

Observed:

SAA

SAN SAN SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN

try2

try3

RAR-/SAN

A transition fault cannot be detected by a transition tour!!!
33

How to test destination state
without observing

When states can be directly observed (white
box testing) a transition tour is sufficient

Just to execute EACH transition at EACH state

Question: what to do when a final state of a
transition cannot be observed?

Solution: to implicitly distinguish Imp states
based on I/O sequences

34

Separating
(distinguishing) sequences

As we do not directly
observe states of Imp,
we use separating
sequences to draw
some conclusions

States sj and sk of Spec
are separated by input
sequence if Spec has
different output
responses at sj and sk to

If Imp produces
different outputs to
 then Imp is at two
different states tj
and tk

… tj/1 … … tk/2 …

Imp

…

I O

t1
tn

35

How to detect transition faults if
states cannot be observed

x y yy

s1 1 0 01

s2 1 1 10

s3 0 0 00

s4 1 0 00

s
1

s
3

s
2

s
4

y/0

x/0x/1
y/0

x/1

x/1

y/0

y/1

s1

s2

y/0

y/1

y separates s1 and s2

36

Isomorphic FSMs

Two FSMs Spec and

Imp are isomorphic iff

1. There exists one-to-
one f T S between
states, f(t1) = s1

2. The same f is kept
between transitions

Imp(t, i) = Spec(f(t), i)

and

f(Imp(t, i)) = Spec(f(t), i)

Spec and Imp have the
same number of states

Spec

…

I O

s1
sn

Imp

…

I O

t1
tn

f : …………...

37

Reduced FSM

An FSM is reduced if each two states can be distinguished with some

input sequence (separating sequence)

Proposition If FSM Spec is reduced and
Imp has the same number of states,
then FSM Imp is equivalent to Spec iff
Imp is isomorphic to Spec

s1 s2

x/1

x/0, y/1

s3

z/1
y/0,

z/0

For each deterministic complete FSM there exists a reduced FSM

with the same Input/Output behavior

All Specs are reduced FSMs

38

How to check if an
implementation is isomorphic
to Spec

1. To assure that a given
implementation Imp
has n states

2. To assure that for
each transition of
Spec there exists a
corresponding
transition in the FSM
Imp

Checking states and
transitions of Imp

Spec

…

I O

s1
sn

Imp

…

I O

t1
tn

f : …………...

39

W-method

1. For each two states sj and sk of the
specification FSM Spec derive a separating
sequence jk. Gather all the sequences into
a set W that is called a distinguishability set

2. For each state sj of the FSM Spec derive an
input sequence that takes the FSM Spec to
state sj from the initial state. Gather all the
sequences into a set CS that is called a
state cover set

40

W-method (2)

3. Concatenate each sequence of the state
cover set V with the distinguishability set W:
TS1 = V.W

Proposition If an implementation FSM Imp
passes TS1 then

- Imp has exactly n states

- V is a state cover set of the implelmentation

- there exists one-to-one mapping f: T S

 s. t. f(t) = s t W s

 41

W-method (3)

4. Concatenate each sequence of the state
cover set V with the set iW for each input i:
TS2 = V.I.W

Proposition If an implementation FSM Imp
that passed TS1, passes also TS2 then one-to-
one mapping f satisfies the property:

Imp(t, i) = Spec(f(t), i) & f(Imp(t, i)) =
Spec(f(t), i)

i.e. FSM Imp is isomorphic, and thus, is
equivalent to Spec

42

W-method (4)

Test suite returned by W-method

All the sequences that are prefixes of other

sequences can be deleted from a complete test suite

without loss of its completeness

… State cover set V

W

W

i/o

i/o

W

W

43

W-method (5)

When a state cover V is prefix closed,
while the distinguishability set W is
suffix closed the set

V.I.W

is a complete test suite for the case when
faults do not increase number of states
of the specification

44

Let’s make the model
complete first

Define the undefined

transitions…

- Whenever the access is

prohibited, the reply is

SAN,

- Whenever, the access is

given, the reply is SAA

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR-/SAN

RAR+/SAA

RAR+/SAA

RAR-/SAN

RAR+/SAN

RAR-/SAN

RAR+/SAA

45

Distinguishing sequences for
state pairs in the running
example

(Ack, open) : RAR- RAR- RAR- RAR+

(Ack, try2) : RAR- RAR- RAR+

(Ack, try3) : RAR- RAR+

(Ack, close) : RAR+

(open, try2) : RAR- RAR- RAR+

(open, try3) : RAR- RAR+

(open, close) : RAR+

(try2, try3) : RAR- RAR+

(try2, close) : RAR+

(try3, close) : RAR+
46

Deriving a test suite by W-
method

Idea : to reach each state and then to distinguish this state from any other

Initial state Ack: RAR- RAR- RAR- RAR- RAR+

 …

 RAR+

 state Open: RAR+ RAR- RAR- RAR- RAR- RAR+

 …

 RAR+ RAR+

 state try2: RAR+ RAR- RAR- RAR- RAR- RAR+

 RAR+ RAR- RAR- RAR+

 RAR+ RAR- RAR+

 RAR+ RAR+ …
47

Detecting a transfer fault

Test sequence RAR+ RAR- RAR+

Spec response : SAA SAN SAA

Imp response : SAA SAN SAN

RAR-/SAN

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR+/SAA

RAR+/SAA

RAR-/SAN

RAR+/SAN

RAR-/SAN

RAR+/SAA

close

open

Ack

RAR+/SAA

RAR-/SAN

RAR-/SAN
try2

try3

RAR-/SAN

RAR+/SAA

RAR+/SAA

RAR-/SAN

RAR+/SAN

RAR-/SAN

RAR+/SAA

Spec Imp

48

Experimental results

State

num.

Input

num.

Output

num.

Trans.

num.

Average

length

30 6 6 180 2545

30 10 10 300 3393

50 6 6 300 5203

50 10 10 500 6773

100 10 10 1000 17204

49

W-test length evaluation

Theoretically

Length is O(kn2) where

k – number of transitions

n - number of states

Experiments show

Tests are much shorter but

STILL LONG ENOUGH
50

Studying W-method

Conclusions:

1. The set V.I is
presented in each
complete test suite

2. The length of a
complete test suite
significantly
depends how
states are
identified, i.e., on
the choice of state
identifiers

Core set

… State cover set V

W

i/o

i/o

W

51

Modifications of W-
method

1. DS-method (not
always exists)

2. UIO-method (a test
suite is not complete)

3. HSI-method

4. H-method

5. HSY-method

6. ...

Depending how a set
of separating
sequences is defined

! SPY method allows to check transitions after different sequences

of a state cover set

52

DS-method (experiments)

State

num.

Input

num.

Output

num.

Trans.

num.

Average

length

30 6 6 180 934

(2545)

30 10 10 300 1493

(3393)

50 6 6 300 1777

(5203)

50 10 10 500 2710

(6773)

100 10 10 1000 6602

(17204) 53

When DS exists (experimental
results)

State

num.

Input

num.

Output

num.

Trans.

num.

% of

exist.

50 4 4 200 0

80 6 6 480 0

80 8 8 640 1%

80 10 10 800 5%

54

HSI-method

State Identifiers
(SI)

Given state sj and any other
state sk of the specification
FSM Spec, derive a
separating sequence jk

Gather all the sequences into a
set SI that is called a state
identifier of state sj

HSI-method

! But SI have to be harmonized

…

W

W

i/o

i/o

W

W

W
SI W

SI

SI

SI SI

55

Experimental results

State

num.

Input

num.

Output

num.
Trans.

num.
HSI W

30 6 6 180 1649 2545

30 10 10 300 2243 3393

50 6 6 300 3261 5203

50 10 10 500 4375 6773

100 10 10 1000 10503 17204

56

H-method

Solution:

- to use different SI for the same
destination state

- If some SI are not harmonized then add
necessary separating sequences

Conclusion: State identifiers can be
derived on the fly

57

H-method (illustration)

HSI-method
H-method

 s1

s3 s2

s2 s4

x y

x y

x y

y

y

y

… …

…

s1

s3 s2

s2 s4

x y

x y

y

y

y

y

… …

…

L = 41 L = 25

58

Experimental results

State

num.

Input

num.

Output

num.
Trans.

num.
DS H

30 6 6 180 934 1105

30 10 10 300 1493 1568

50 6 6 300 1777 2142

50 10 10 500 2710 2852

100 10 10 1000 6602 6880

59

SPY-method (illustration)

HSI-method SPY-method

 s1

s3 s2

s2 s4

x y

x y

x y

y

y

y

… …

…

L = 41 L = 25

60 To use different input sequences to reach the same state when checking

Different transition at this state

s1

s3 s2

s2

x y

x y

…

…
x

FSM-based conformance testing

for partial FSMs

1. Spec can be partially specified;

Imp is a complete FSM

2. Imp conforms to Spec iff Imp is quasi-
equivalent to Spec

61

Quasi-equivalence relation

A complete FSM Imp is
quasi-equivalent to
Spec if their output
responses coincide
for each input
sequence that is
defined in the
Spec

A partial Spec and a
complete Imp

s1 s2

y/0
x/1

Spec

Imp

t1 t2
y/0

x/1

t3
x/0

x/1
y/0

y/1

62

W- (Wp-, UIOv-) methods
cannot be used

W- (Wp-, UIOv-) methods cannot be
generally used as not each partial FSM
has the distinguishability set W

s1 s2

x/1

x/0, y/1

s3

z/1
y/0,

z/0

Distinguishability set

not necessarily exists

63

Quasi-equivalence relation
(2)

It can happen that a
test suite is
complete when a FD
contains each FSM
with limited number
of states

The set of traces of Spec
has to be a subset of
that of Imp

Spec

…

I O

s1
sn

Imp

…

I O

t1
tm

64

W-based test suite
exhaustiveness

65

W-based tests are complete w.r.t. FM

<Spec, , m >

The same test suite detects much more faults but
there is no guarantee

Output and transition faults when
the number of Imp states does

not exceed m

Conclusions about W-
method

1. DS-method returns shortest test suites

But: less than 10% of specifications possess a DS

2. H- and SPY- methods return tests that are
comparable with those returned by DS-method

and can be applied to any reduced (partial or
complete) specification

3. All the methods can deal with the case when
Imp has more states than Spec

Test suites returned by all above methods are too
long

User defined faults can be considered

66

How to reduce the length of a
test suite

Solution: To check only some transitions of the
specification

Incremental testing or

testing user-driven faults

Experimental results are very promising
especially for the case when faults can
increase the number of states of the
specification 67

Experimental results
s i HSI

length

0-5%

suspi

5-10%

suspi

10-15%

suspi

15-20%

suspi

20 10 2992 93 337 490 785

20 20 5818 148 477 999 1513

30 10 5333 135 518 957 1450

35 10 6588 148 539 1013 1537

40 5 3737 89 345 636 887

68

Protocol implementations
were tested

 SCP

 Pop-3

 IRC

 TCP (also in context)

 FTP

 TFTP

 …

 69

Not considered

 Nondeterministic FSMs and corresponding
Fault Models

 EFSMs and corresponding FSM-like slices

 Timed FSMs and corresponding FSM slices

 Test derivation for FSM composition, testing
in context

 …

70

Publications (deterministic
FSMs)

1. Chow, T.S. Test design modeled by finite-state machines. IEEE
Transactions on Software Engineering, 4(3), pp. 178-187 (1978)

2. Lee D. and Yannakakis, M. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8), pp. 1090—
1123 (1996)

3. Lai, R. A survey of communication protocol testing. The Journal of
Systems and Software. 62. pp. 21-46 (2002)

4. M.Dorofeeva, K.El-Fakih, S.Maag, A.Cavalli, N.Yevtushenko. FSM-
based conformance testing methods: A survey annotated with
experimental evaluation. Information and Software Technology, 52,
(12), pp. 1286-1297 (2010)

5. A. Simao, A. Petrenko, N. Yevtushenko. On reducing test length for
FSMs with extra states. Softw. Test., Verif., Reliab., 22 (6), pp. 434-
454 (2012)

71

Some publications
(nondeterministic FSMs)

1. Hierons, R. M.: Adaptive testing of a deterministic implementation
against a nondeterministic finite state machine. The Computer
Journal, 41(5), pp. 349–355 (1998)

2. Petrenko, A., Yevtushenko, N.: Conformance Tests as Checking
Experiments for Partial Nondeterministic FSM. In Proceedings of the
5th International Workshop on Formal Approaches to Testing of
Software, LNCS vol. 3997, pp. 118—133 (2005)

3. Shabaldina, N., El-Fakih, K., Yevtushenko, N:. Testing
Nondeterministic Finite State Machines with respect to the
Separability Relation. Lecture Notes in Computer Science vol. 4581,
pp. 305-318 (2007)

4. Adilson L. Bonifacio, Arnaldo V. Moura, Adenilso S. Simao.
Experimental comparison of approaches for checking completeness
of test suites from finite state machines. Information and Software
Technology, 92, pp. 95-104 (2017)

72

Some publications (Timed
FSMs)

1. Alur, R, and Dill. D. L.: A Theory of Timed automata. Theoretical
Computer Science, 126(2),183--235 (1994)

2. M. G. Merayo, M. Nunez, I. Rodriguez. Extending EFSMs to
Specify and Test Timed Systems with Action Durations and
Time-outs. IEEE Transactions on Computers, 57(6), 2008, pp.
835—844.

3. Springintveld, J., Vaandrager, F., D'Argenio, P.: Testing Timed
Automata. Theoretical Computer Science, 254(1-2), 225–257
(2001)

4. Khaled El-Fakih, Nina Yevtushenko, and Adenislo Simao: A
practical approach for testing timed deterministic finite state
machines with single clock. Science of Computer
Programming, 80 (1), pp. 343-355 (2014)

73

Thanks for your attention

