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Abstract

We consider the decomposability problem for elementary theories, i.e.
the problem of deciding whether a theory has a nontrivial representa-
tion as a union of two (or several) theories in disjoint signatures. For
finite universal Horn theories, we prove that the decomposability prob-
lem is Σ0

1–complete and, thus, undecidable. We also demonstrate that
the decomposability problem is decidable for finite theories in signatures
consisting only of monadic predicates and constants.

The interest in studying partitioning of theories is connected with the appli-
cations of component methods in automated theorem proving [1] and the devel-
opment of terminological systems [2, 3, 4, 5]. The study of the decomposability
property for elementary theories was initiated in [6], where a decomposability
criterion was formulated and it was proven that each elementary theory has
a unique decomposition into indecomposable components. These results were
then extended to a more general ∆–decomposability property of theories in a
broad class of logical calculi [7].

The natural question is whether the decomposability property can be decided
effectively. It turns out that for a number of finite signatures, the decompos-
ability problem is Σ0

1–complete and, thus, undecidable. This is true already for
finite universal Horn theories. However, if the signature consists only of monadic
predicates and constants then the decomposability problem is decidable. These
results are proven in this paper. All basic definitions of the article are rather
standard and can be found, for instance, in [8, 9, 10].

Let us start with some notation. The symbol ω stands commonly for the set
of all natural numbers and {0, 1}n denotes the set of all n—tuples consisting of
zeros and ones. Given a signature Σ, we denote the first-order language of Σ
by LΣ. If T is a set of first-order formulas then sig(T ) stands for the signature
of T . By a theory in signature Σ, we mean any arbitrary set of formulas in
signature Σ.

Let us recall the notion of a decomposable theory.
∗This work was carried out within the COMO project of DFG (GZ: 436 RUS 113/829/0-1)
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Definition 1 ([6]) Let S0, S1, and T be theories satisfying the following:

1. sig(S0) 6= ∅ 6= sig(S1);

2. sig(S0) ∩ sig(S1) = ∅, sig(S0) ∪ sig(S1) = sig(T );

3. T is equivalent to S0 ∪ S1.

Then we say that T is decomposable into theories S0 and S1. The pair 〈S0,S1〉
is called decomposition of T ; we use the notation T = S0 ] S1. The theories
S0 and S1 are called decomposition components and the signatures sig(S0) and
sig(S1) are called signature decomposition components of T . A theory is called
decomposable if it has at least one decomposition. A sentence ϕ is called decom-
posable if it axiomatizes a decomposable theory.

Let us note the following straightforward model–theoretic decomposability
criterion:

Proposition 1 Let a signature Σ be the union of non-empty disjoint signatures
Σ0 and Σ1. For i = 0, 1, let Ti be the set of all formulas in signature Σi entailed
by T . Then the following are equivalent:

1. T is decomposable into components in Σ0 and Σ1;

2. for each model M of signature Σ, we have M |= T iff for i = 0, 1, the
restriction of M to Σi is a model of Ti.

We consider only effective signatures in which to every symbol s there
is assigned the unique natural number i ∈ ω such that the set of all these
numbers is computably enumerable and the arity of s can be effectively com-
puted from i. If Σ is an effective signature, then it is possible to introduce
a Gödel numbering γ of all formulas in signature Σ such that the mappings
γ : {ϕ | ϕ is a formula in Σ} → ω and γ−1 are both computable. Having γ, one
can define a numbering of all finite sets of formulas. Let D be a numbering of
all finite subsets of ω defined as follows:

Dn = {a0 < a1 < . . . < ak−1} ⇔ n =
∑
i<k

2ai .

Then to a finite set of formulas {ϕi0 , . . . ϕij
} we assign some number n, if Dn =

{i0, . . . ij}. If n is the number for a finite set T of formulas then we call n the
index of T .

For a partial computable function f , by range (f) we denote the range of f .

Definition 2 The decomposability problem for finite sets of sentences in sig-
nature Σ is the set of indices of finite decomposable theories in signature Σ.

In other words, this is the problem to decide whether a given finite set of
sentences in signature Σ is decomposable.
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Finite universal Horn theories

A theory axiomatized by a finite set of quasi-identities is called finite universal
Horn theory. It is known that these axiomatizations correspond to the class of
logic programs [11]. For the theories of this kind, we will write axioms without
quantifiers assuming the universal quantification of all variables and use the
left-sided style of writing implications which is common to logic programming.

Theorem 1 There exists a finite signature Σ such that the decomposability
problem for finite universal Horn theories in Σ is Σ0

1–complete and, thus, unde-
cidable.

Proof. We demonstrate that there exists an algorithm which, given m ∈ ω and
the Gödel number of a primitive computable function f , computes the index of a
finite universal Horn theory Sm such that Sm is decomposable iff m ∈ range (f).

Let us fix a finite sequence f1, . . . , fk of functions, where fk ≡ f and for each
i ∈ {1, . . . , k} one of the following cases holds:

1. fi is either a projection function In
m(x1, . . . , xn) = xm, 1 6 m 6 n, the

zero function 0(x) = 0, or the successor function s(x) = x+ 1;

2. fi is a superposition of some elements in this sequence with numbers
smaller than i;

3. fi is obtained by primitive recursion from some elements in this sequence
with numbers smaller than i.

The sequence f1, . . . , fk can be viewed as a computation schema for f . For
each i ∈ {1, . . . , k} we fix one of the cases above for fi.

We now prove a modified version of the result on the representability of par-
tial computable functions by logic programs (Theorem 9.6 in [11]). In particular,
the extra argument s(0) appears in the proof to make the representing theory
indecomposable. We need a proof only for primitive computable functions.

Consider the finite universal Horn theory T defined as follows: the language
of T contains a unary operation symbol s, a constant symbol 0, and for each
i ∈ {1, . . . , k} a n + 2–ary predicate symbol Pi, where n is the number of
arguments of fi. For each i ∈ {1, . . . , k}, the theory T contains some axiom ϕi

of the following form:

Case 1: fi is In
m(x1, . . . , xn).

Then ϕi is the universal closure of Pi(x1, . . . , xn, xm, s(0)).
Case 2: fi is 0(x).
Then ϕi is the universal closure of Pi(x,0, s(0)).
Case 3: fi is s(x).
Then ϕi is the universal closure of Pi(x, s(x), s(0)).
Case 4: fi(x̄) = fj(fl1(x̄), . . . , flq (x̄)), where j, l1, . . . , lq < i.
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In this case ϕi is the universal closure of the formula

Pi(x̄, y, s(0))←
q∧

p=1

Plp(x̄, zp, s(0)) ∧ Pj(z1, . . . , zq, y, s(0))

Case 5: fi(x̄, y) is obtained by primitive recursion from fj(x̄) and fl(x̄, y, z),
j, l < i; namely, it is defined by the equalities fi(x̄, 0) = fj(x̄), fi(x̄, y + 1) =
fl(x̄, y, fi(x̄, y)).

In this case ϕi is the conjunction of the universal closure of

Pi(x̄,0, t, s(0))← Pj(x̄, t, s(0))

and the universal closure of

Pi(x̄, s(y), t, s(0))← Pl(x̄, y, u, t, s(0)) ∧ Pi(x̄, y, u, s(0)).

The definition of T is complete.

Lemma 1 For all natural numbers x1, . . . , xn, y, we have

T `Pk (sx1(0), . . . , sxn(0), sy(0), s(0))⇔ f(x1, . . . , xn) = y.

Proof of the lemma.
(⇐) follows easily from the definition of T .

(⇒) We define a model1 M, which will play an important role in the rest of
the proof of Theorem 1. Let the universe of M be the set of all natural numbers,
let 0 be the zero constant of M, and let s be the operation of M defined in the
natural way: s(m) = m+ 1. Moreover, if fi is m–ary then we put

M |= Pi(x1, . . . , xm, y, z)⇔ (fi(x1, . . . , xm) = y) ∧ (z = 1).

Clearly, M |= T .

Suppose that

T `Pk(sx1(0), . . . , sxn(0), sy(0), s(0)).

Then M |= T implies

M |= Pk(sx1(0), . . . , sxn(0), sy(0), s(0)),

i.e., M |= Pk(x1, . . . , xn, y, 1), which yields f(x1, . . . , xn) = y by the definition
of M. �

In what follows, we require the auxiliary definition and lemma that are
formulated below.

1In terms of universal algebra, M will be the free algebra of rank 0 in the quasivariety
defined by T .
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Let M be a set and π be an arbitrary permutation of M . Let Q ⊆Mk be a
predicate on M . Then Qπ = {〈π(a1), . . . , π(ak)〉 | 〈a1, . . . , ak〉 ∈ Q} is called the
predicate conjugate with Q by π. If F : Mk →M is an operation on M , then the
operation conjugate with F by π is defined as Fπ(π(a1), . . . , π(ak)) = π(b) ⇔
F (a1, . . . , ak) = b. The element conjugate with a ∈M by π is aπ = π(a).

The following property of decomposable theories is rather straightforward:

Lemma 2 Let T = S1 ] S2, where S1 and S2 are theories in signatures Σ1

and Σ2, respectively. Let M |= T and let π be an arbitrary permutation of
the universe of M. Consider the model Mπ obtained from M by replacing all
operations, predicates and constants corresponding to Σ1 with those conjugate
by π. Then Mπ |= T .

We proceed with the proof of Theorem 1. The important property of the
theory T is that it is indecomposable under some natural extensions:

Lemma 3 Suppose T ′ ⊇ T and T ′ is satisfied in some expansion M̄ of the
model M. Assume T ′ = T0]T1. Then either sig (T ) ⊆ sig (T0) or sig (T ) ⊆
sig (T1).

Proof of the lemma. We prove by induction on i ∈ {1, . . . , k} that the symbols
Pi, s, and 0 must be in the same signature component of the decomposition.

Assume this statement is true for all l < i, for some i 6 k. Prove it to be
true for i. Consider the several cases:

Case 1: fi is a function In
m(x1, . . . , xn) = xm.

Subcase 1.1: s,0 ∈ sig (Tu) and Pi ∈ sig (T1−u), u ∈ {0, 1}.
Take a permutation π of the universe of M̄ such that sπ(0π) 6= 1. Let

M̄π be the model obtained from M̄ by replacing with the conjugate ones all
operations, predicates and constants corresponding to the symbols of sig (Tu).
We have M̄ |= T ′, but clearly, M̄π 6|=∀x̄ Pi(x̄, xm, s(0)), while the latter sentence
belongs to T ⊆ T ′. This contradicts Lemma 2, and so this subcase is impossible.

Subcase 1.2: s, Pi ∈ sig (Tu) and 0 ∈ sig (T1−u), u ∈ {0, 1}.
Choose a permutation π of the universe of M̄ such that 0π 6= 0. An argument

similar to the one above shows that this subcase is impossible.
Subcase 1.3: 0, Pi ∈ sig (Tu) and s ∈ sig (T1−u), u ∈ {0, 1}.
It suffices to take a permutation π of the universe of M with the property

sπ(0) 6= 1 to show that this subcase is impossible either.
It follows from the subcases considered that in Case 1, all symbols 0, s, and

Pi must belong to the same signature component of the decomposition.

Case 2: fi is the function 0(x) = 0.
Subcase 2.1: 0 and Pi belong to different signature components.
Take a permutation π of the universe of M̄ such that 0π 6= 0. We have

M̄ |= T ′, but clearly M̄π 6|=∀xPi(x,0, s(0)), while the latter sentence belongs to
T ′. This contradicts Lemma 2; hence, this subcase is impossible.
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Subcase 2.2: 0, Pi ∈ sig (Tu) and s ∈ sig (T1−u), u ∈ {0, 1}.
Choose a permutation π such that sπ(0) 6= 1 and use the same trick as above

to demonstrate that this subcase is impossible either.
We conclude that in Case 2, all symbols 0, s, and Pi must belong to the

same signature component of the decomposition.

Case 3: fi is the function s(x) = x+ 1.
Subcase 3.1: s and Pi fall into different signature components.
Take a permutation π of the universe of M̄ such that sπ 6= s as operations.

By Lemma 2, we have M̄ |= T ′, but clearly M̄π 6|=∀xPi(x, s(x), s(0)), while the
latter sentence belongs to T ′. This contradicts Lemma 2; thus, this subcase is
impossible.

Subcase 3.2: s, Pi ∈ sig (Tu) and 0 ∈ sig (T1−u), u ∈ {0, 1}.
Take a permutation π of the universe of M̄ such that 0π 6= 0 and use the

same trick as above to show that this case is impossible either.

Case 4: fi is obtained by superposition or primitive recursion from some
functions with numbers smaller than i.

By the induction hypothesis, the symbols s, 0, and Pj , j < i are in the same
signature component of the decomposition. Suppose that Pi belongs to another
signature component, i.e., we have

s,0 ∈ sig (Tu) and Pi ∈ sig (T1−u), u ∈ {0, 1}.
Take a permutation π of the universe of M̄ such that π(1) 6= 1. Let M̄π

be the model obtained from M̄ by replacing with the conjugate ones all opera-
tions, predicates and constants corresponding to the symbols of sig (Tu). Take
arbitrary x1, . . . , xn ∈ ω. By Lemma 1, for y = fi(x1, . . . , xn) we have

T `Pi(sx1(0), . . . , sxn(0), sy(0), s(0)),

but at the same time

M̄π 6|= Pi(sx1(0), . . . , sxn(0), sy(0), s(0)).

This contradicts Lemma 2; hence, Pi must be in the same signature compo-
nent together with the symbols s, 0, and Pj for j < i. �

Now define the theory Sm as:

Sm = T ∪ {∀xy (Q(y)← Pk(x, sm(0), s(0)))},

where T is the theory constructed above, Pk is the predicate corresponding
to the function f , and Q is a new unary predicate. Note that the index of Sm

can be uniformly computed by m and the Gödel number for f .

Lemma 4 The theory Sm is decomposable iff m ∈ range (f).
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Proof of the lemma.
(⇐) By Lemma 1, m ∈ range (f) yields Sm = T

⊎
{∀y Q(y)}.

(⇒) Assume that m /∈ range (f) and Sm is decomposable: Sm = T0 ] T1.
Let M0 be the expansion of the model M with the empty predicate Q, i.e.,
M0 |= ∀y ¬Q(y). Then, clearly, M0 |= Sm. By Lemma 3, we may assume
without loss of generality that sig (T0) = {Q}. We have M0 |= T0; thus, T0 is
satisfied in any countable structure with the empty predicate Q.

Define M1 as the model obtained from M by extending the predicate Pk with
the tuple 〈0,m, 1〉 and adding the new predicate Q that is true on all elements.
We have M1 |= Sm; hence, M1 |= T1.

Consider the reduction M∗ of M1 in which Q is replaced with the empty
predicate. We have M∗ |= T0 and M∗ |= T1. Hence, from Sm = T0 ] T1 we see
that M∗ |= Sm. On the other hand, the conditions M∗ |= Pk(0, sm(0), s(0))
and M∗ |= ∀y ¬Q(y) imply

M∗ 6|= ∀xy(Q(y)← Pk(x, sm(0), s(0))),

i.e., M∗ 6|= Sm; the contradiction yields that the theory Sm is indecompos-
able. �

Take a primitive computable function f such that its range is a Σ0
1–complete

set (for a justification that f can be chosen as primitive computable, the reader
is referred to [12], Section 4.2, Proposition 4.4). By applying the construction
above, we obtain a family of theories F = {Sm | m ∈ ω} such that the range
of f 1-reduces to the set of decomposable theories from F . This completes the
proof of Theorem 1 and yields Σ0

1–completeness of the decomposability problem
for finite universal Horn theories. �

Theories in simple signatures

Let us call a signature simple, if it is finite and consists only of monadic predicate
symbols and constants.

Theorem 2 There exists an algorithm to decide for every simple signature Σ
and every sentence ϕ ∈ LΣ whether the theory {ϕ} is decomposable.

The theorem will be a consequence of the following

Proposition 2 1. There exists an effective procedure that, given simple sig-
natures σ and τ with τ ⊆ σ and a satisfiable sentence ϕ ∈ Lσ, outputs a
sentence ϕτ ∈ Lτ such that

(a) ϕ ` ϕτ ;
(b) for each ψ ∈ Lτ , we have ϕτ ` ψ, if ϕ ` ψ.

2. The theory of the class of all models of any arbitrary simple signature is de-
cidable. Moreover, the corresponding decision procedure can be effectively
constructed from a given simple signature.

7



Let us demonstrate that Theorem 2 indeed follows from Proposition 2. First,
by using decidability, we check whether the sentence ϕ is unsatisfiable. If yes,
then the theory {ϕ} is, clearly, decomposable when the signature contains more
than one symbol, and indecomposable otherwise. If ϕ is satisfiable, then it
suffices to prove that the theory {ϕ} is decomposable into components with
signatures σ0 and σ1 iff

{ϕ} = {ϕσ0} ] {ϕσ1}. (1)

Proof. Let {ϕ} be decomposable into components with signatures σ0 and
σ1. Then, by compactness, there exist sentences ϕ0 ∈ Lσ0 and ϕ1 ∈ Lσ1 such
that {ϕ} = {ϕ0} ] {ϕ1}. We have

ϕ ` ϕσ0 , ϕ ` ϕσ1 . (2)

On the other hand,
ϕσ0 ` ϕ0, ϕσ1 ` ϕ1. (3)

As ϕ0 ∧ ϕ1 ` ϕ, the conditions (2) and (3) give the required (1). The converse
is trivial. As the theory of all models of a simple signature is decidable, the
condition (1) can be checked effectively and so the statement of Theorem 2 is
proved. �

We now prove Proposition 2 and describe first some normal forms of sen-
tences in simple signatures. Let

σ =
〈
(Pi)i<l ; (ci)i<q

〉
; l, q < ω

be a simple signature. Let A be an arbitrary subset of constants from σ (not
necessarily all of them) and E be an arbitrary equivalence on A. We define a
sentence ηE stating this equivalence as

ηE =
∧

〈c,k〉∈E

(c = k) ∧
∧

c,k∈A,〈c,k〉/∈E

(c 6= k).

Given a monadic predicate P , we define P 0(x) = ¬P (x) and P 1(x) =
P (x). Given ε ∈ 2m and monadic predicates P0,. . . ,Pm−1, we put P ε(x) =∧

i<m P εi
i (x). For a set A of constants, the notation x /∈ A will abbreviate the

formula
∧

c∈A(x 6= c). The notations ∃>nx . . . and ∃=nx will abbreviate
the formulas stating that ‘there exist at least n elements such that . . . holds’
and ‘there exist exactly n elements such that holds’, respectively. If C is a
finite set of constants, then the expression C ⊆ P ε means that

∧
c∈C P

ε(c). Let
n ∈ ω, ε ∈ 2m, let C be a finite set of constants, and let E be an equivalence
on C. In what follows, we define the sentences describing the structure of the
partitionings of a model that are induced by P ε:

ϕ=n
ε,E,C = ∃=nx (P ε(x) ∧ x /∈ C ∧ ηE ∧ C ⊆ P ε) ,

ϕ>n
ε,E,C = ∃>nx (P ε(x) ∧ x /∈ C ∧ ηE ∧ C ⊆ P ε) .
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For a simple signature σ, we call formulas of the form
∧

ε∈2l Φε base, if Φε

is a sentence of the form ϕ=n
ε,Eε,Cε

or of the form ϕ>n
ε,Eε,Cε

and the sets Cε satisfy
Cε0 ∩Cε1 = ∅ for ε0 6= ε1, {ci | i < q} =

⋃
ε∈2l Cε, and for each ε ∈ 2l, Eε is an

equivalences on Cε.

The following lemma is rather straightforward:

Lemma 5 Let ϕ and ψ be base formulas. Then their conjunction is either
equivalent to a base formula or unsatisfiable.

Let us introduce some additional notation. Let ∆ be an arbitrary set of
sentences. The notation M(∆)N means that, for each ϕ ∈ ∆, the condition
M |= ϕ yields N |= ϕ. We need the following:

Proposition 3 ([13, Lemma 3.2.1]) Let ∆ be a disjunction-closed set of sen-
tences and let T be a consistent theory such that for all models M and N, if
M |= T and M(∆)N then N |= T . Then T is axiomatizable by sentences from
∆.

Corollary 1 Every consistent sentence in a simple signature is equivalent to a
disjunction of base formulas.

Proof. Take ∆ in Proposition 3 to be the set of all disjunction-closed base
formulas. Then for at most countable models M and N, the condition M(∆)N
yields M ∼= N. To complete the proof, it suffices to apply Proposition 3 and
then Lemma 5. �

We proceed with the proof of Proposition 2. We are able now to define
the formula ϕτ for τ ⊆ σ. By Corollary 1, we can assume that each satisfiable
formula is a disjunction of base formulas. Let us first define ϕτ for base formulas.
Without loss of generality we can assume that

τ =
〈
(Pi)i<l′ ; (ci)i<q′

〉
; l′ 6 l, q′ 6 q.

Let ϕ be a base formula in signature σ and

ϕ =
∧

ε∈2l

ϕλεnε

ε,Eε,Cε
, λε ∈ {=,>}, for all ε ∈ 2l.

Given ε ∈ 2l′ , we consider all tuples γ such that ε ⊆ γ ∈ 2l and for every
γ, we set mγ equal to the number of equivalence classes Eγ that do not contain
constants from C ′ = {ci | i < q′}. Define the sentence φε as:

∃λεmεx

P ε(x) ∧

x /∈ ⋃
ε⊆γ∈2l

Cγ ∩ C ′

 ∧ ηEε
∧

 ⋃
ε⊆γ∈2l

Cγ ∩ C ′ ⊆ P ε

 ,
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where

Eε =
⋃

ε⊆γ∈2l

Eγ ,

mε =
∑

ε⊆γ∈2l

(nγ +mγ),

λε =
{

> if at least one of λγ , ε ⊆ γ ∈ 2l equals 6
= otherwise.

Now set ϕτ equal to
∧

ε∈2l′ φε. If ϕ is a disjunction of base formulas θi, i ∈ I,
then we set ϕτ equal to

∨
i∈I θ

τ
i .

Lemma 6 1. ϕ ` ϕτ ;

2. every model of ϕτ can be expanded to a model of ϕ;

3. if ϕ ` ψ and ψ ∈ Lτ then ϕτ ` ψ.

Proof. The first two properties are rather straightforward. To prove the third
one, we assume that M |= ϕτ and demonstrate that M |= ψ. Let us expand
M to the model M′ |= ϕ; we have M′ |= ψ. By restricting this model to the
signature τ , we obtain M |= ψ; hence, ϕτ ` ψ. �

Note that we have described an effective procedure to compute ϕτ by a
disjunction of base formulas. Given a sentence ϕ in a simple signature, we
enumerate all possible consequences of ϕ and find a disjunction of base formulas
equivalent to ϕ. After that, the above mentioned procedure gives the sentence
ϕτ .

Finally, let us mention that the theory T of the class of all models of a
simple signature σ is computably enumerable and decidable due to the following.
There exists a computable sequence of theories (Ti)i<ω consisting of all complete
extensions of T . Indeed, to build a complete extension of T , it suffices to
formulate all equalities (and inequalities) between constants, their distribution
between the predicates P ε, and the number of elements (from 0 to ∞) different
from constants in each P ε. This can be easily formulated by base formulas and
gives countably categorical theories. It suffices to apply the following result by
Yu.L.Ershov:

Theorem 3 ([14]) A theory T is decidable iff it is computably enumerable and
there exists a computable sequence of complete theories (Ti)i<ω such that T =⋂

i<ω Ti.

Proposition 2 is proved.
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