
The Complexity of AND-Decomposition of Boolean Formulas

a,bPavel Emelyanov, a,cDenis Ponomaryov

a)Institute of Informatics Systems and b)Novosibirsk State University, Novosibirsk, Russia
c)Institute of Artificial Intelligence, University of Ulm, Ulm, Germany

emelyanov@iis.nsk.su, ponom@iis.nsk.su

Abstract

Decomposition of boolean functions is an important research topic having a long history and a
wide range of applications in the logic circuit synthesis, (hyper)graph/game theory, and combina-
torial optimization. AND-decomposition means representing a boolean function as a conjunction
of two (or several) functions sharing a given subset of variables. If the shared subset is empty,
the decomposition is called disjoint. Though numerous heuristics and approaches to computing
more general forms of decompositions have been developed, the algorithmic complexity of AND-
decomposition remained unknown. The renewed interest to this question has been motivated by
the recent research on decomposition of theories in expressive logics and modern developments in
the analysis of complex systems, combinatorial optimization, and circuit design. In this paper,
we study the complexity of AND-decomposition for various representations of boolean functions
(CNF/DNF/Full DNF/ANF), prove a number of complexity bounds, and identify tractable cases.
The positive complexity results of this paper follow from tractability of multilinear polynomial fac-
torization over the finite field of order 2, for which we provide a polytime factorization algorithm
based on identity testing for partial derivatives of multilinear polynomials.

1 Introduction

Decomposition of boolean functions is an important research topic having a long history and a
wide range of applications. Among other application fields such as game and graph theory, it has
attracted the most attention in the logic circuit synthesis. Decomposition is related to the algorithmic
complexity and practical issues of implementation of electronic circuits, their size, time delay, and
power consumption. The report [16] contains an extensive survey of decomposition methods till the
mid–1990’s. The results of the next fifteen years of research are presented in [13, 23, 11, 3, 6, 9, 5].
To position our paper in this broad research landscape, we describe some key questions related to
decomposition and indicate the specifics of our work.

Representations of Boolean Functions. In general, the known approaches to decomposition
differ in representations of boolean functions they are applicable to. The form in which a boolean
function is given directly influences the computational complexity of operations on the function, as
studied in the field of Knowledge Compilation [7]. The representation of an input function is also
related to applicability of the existing methods of circuit design. In the paper, we consider several
well-known normal forms for boolean functions, CNF, DNF, Full DNF, and ANF, but omit questions
of translation between different representations.

Inputs in the above mentioned normal forms are widely used in the logic circuit synthesis: [16, 19,
20, 13, 11]. An input to SAT solvers is usually given in CNF which is the “Product of Sums” (PoS)
representation of boolean functions. Due to the efficiency of SAT solvers, there has been developed

1

quite a number of SAT-based approaches to decomposition of functions given in CNF, see e.g. [9, Ch.
5, 6], [5]. Another universal way to define a boolean function is DNF which is “Sum of Products”
(SoP). Approaches to logic synthesis based on SoP inputs are one of the best elaborated from the
point of view mapping to architectures. In this connection, decomposition methods for DNF are
widely presented in literature.

Both, CNF and DNF can be easily constructed from zeros and units of a boolean function.
One more advantage of these forms in the scope of decomposition is that both logic and algebraic
approaches can be applied. From 1950s and till the invention of BDDs, these PoS and SoP forms have
been used as the principle underlying data structures in the computer–aided logic design. They are
still widely used, in particular, because of their generic nature allowing the user to apply optimization
and decomposition simultaneously without additional expenses on transformation of representation.
Decomposition of positive boolean formulas (known also as monotone formulas) given in CNF/DNF
attracted particular attention in game and reliability theory (see the introduction in [3] for a summary
of literature). These appear also as a natural abstraction of read-once formulas, in which every
variable occurs only once and thus, the polarity of variables does not matter for certain operations
on such formulas [8]. Boolean functions in Full DNF (i.e. given by explicit enumeration of satisfying
vectors) have been considered in the logic synthesis in the scope of lookup tables (LUTs), which are
a space consuming representation, but allow for very efficient operations on their content [11].

Another well-known SoP–like form is the Algebraic Normal Form (ANF, Zhegalkin polynomial
or Reed–Muller canonical form). From the algebraic point of view, ANF is a linear multivariate
polynomial over the finite field of order 2. In comparison to DNF, the advantages of ANF that
recently made this form popular again are a more natural and compact representation of some classes
of boolean functions (for instance, arithmetical functions, coders/cyphers, etc; some researchers
conjectured that this basis is more economical in general), a more natural mapping to some circuit
technologies (FPGA–based and nanostructure–based electronics), and good testability properties.

Proposed about thirty years ago [4], Binary Decisions Diagrams (BDDs) are considered as the
most significant breakthrough in the logic design. BDD-based techniques are very popular among
decomposition methods for boolean functions, see [14, 1, 23] and [9, Ch. 3]. BDDs provide a canonical
form of boolean functions and allow for fast manipulations with them, however a wrong node ordering
may cause “combinatorial explosion”. Finding an optimal ordering is a NP-hard problem, but there
are heuristics which are known to provide good results.

Nevertheless some authors argued [5], [9, Ch. 5], [12] that BDDs are not suitable enough for
design of circuits over real-world boolean functions, in particular, due to the combinatorial explosion
problem. It turns out that in some cases, BDDs may not be appropriate representation for computing
decomposition [13]. Contrary to BDD-approaches to decomposition, in [5], the authors argued an
approach based on Quantified Boolean Formulas in which the underlying data structure is given
by formulas in the prenex normal form. Although the fact of using QBFs might seem to bring
computational difficulties, the approach gives a number of interesting results from the point of view
of logic design. Quantification allows for a succinct representation, while good performance and
quality of decomposition are achieved by solving the Minimally Unsatisfiable Subformula Problem
and by using the Craig interpolation theorem. These results belong to the “SAT-based” class of
decomposition algorithms (see also [9, Ch. 6]).

In this paper, we consider the PoS/SoP–representations of boolean functions: CNF, DNF, Full
DNF, and ANF. We specially consider positive CNF and DNF due to the above mentioned appli-
cations. Interestingly, positive DNF has a number of set theoretic and hypergraph interpretations
which makes this form particular interesting from the point of view of combinatorics. In particu-
lar, our solution to disjoint decomposition of positive formulas in DNF given in this paper shows
tractability of a variant of the well-known NP-complete Hypergraph 2-Coloring Problem. There are

2

other forms which are similar to PoS/SoP. For instance, there is a SoP–like form based on “additive”
XOR and “multiplicative” OR1. We note that our results on AND–decomposition are applicable to
this basis as well.

Types of Decomposition. Typically one is interested in decompositions of the form F = F1� . . .�
Fk where � ∈ {OR, AND, XOR}. Bi-decomposition is the most important case of decomposition of
boolean functions. Even though it may not be stated explicitly, this case is considered in many papers:
[14, 20, 1, 13, 6, 3, 5], [9, Ch. 3–6]. Bi-decomposition has the form: F (X) = π(F1(Σ1,∆), F2(Σ2,∆)),
where π ∈ {OR, AND, XOR}, ∆ ⊆ X, and {Σ1,Σ2} is a partition of the variables X \∆. As a rule,
a decomposition into more than two components can be obtained by iterative computation of bi-
decomposition. The well–known examples of bi-decomposition are Boole’s or Shannon’s Expansions:
F = xFx=1 ∨ ¬xFx=0 = (x ∨ Fx=0)(¬x ∨ Fx=1). They can be classified as OR/AND–decompositions
respectively and play an important role in the boolean function analysis and switching circuit design.
In some sense, a complete and self-contained solution to bi-decomposition of arbitrary functions is
described in series of papers by Steinbach et al. [23]. It allows to verify whether a given boolean
function is decomposable wrt a given variable partition and to compute its components. The solution
however implies a number of steps which may be intractable.

If ∆ = ∅ then decomposition is called disjoint and considered as optimal for many reasons.
Sometimes requirements to decompositions are strengthened by additional optimality criteria, with
the most popular being balancedness of the variable partition. It should be noticed that these
additional requirements usually imply solving computationally hard problems.

In [2, 3], Bioch studies computational properties of modular decompositions based on a gener-
alization of Shannon’s Expansion. A set of variables A is called modular set of a boolean function
F (X) if F can be represented as F (X) = H(G(A), B), where {A,B} is a partition of X and H,G are
some boolean functions. The function G(A) is called component of F and a modular decomposition
is obtained from iterative decomposition into such components. It is shown that in general it is
coNP-complete to decide whether a subset of variables is modular, however for monotone functions
in DNF this problem is tractable. The complexity of finding a modular tree representing all modular
sets of a monotone boolean function is O(n5N) where n is the number of variables and N is the
number of products in DNF.

We note that a function may have a modular or bi-decomposition, but may not be AND-
decomposable, since this form of decomposition requires representation of a function strictly as
a conjunction. Thus, AND–decomposition can be viewed as a special case of modular and bi-
decomposition. Our results demonstrate that deciding even this special case of decomposability is
coNP-complete for formulas given in CNF and DNF. On the other hand, we show tractability of
computing AND-decompositions of formulas given in the forms: positive CNF and DNF, Full DNF,
and ANF. It is not obvious, whether the technique used by Bioch for positive DNF is applicable
to the case of AND-decomposition. We note however that in our Lemma 2, the idea of computing
decomposition components resembles the final step of constructing components in [3, Sect. 2.9].

How to Partition the Variables. This is the principal problem in decomposition of boolean
functions. Constructing modular sets [2, 3] is one of possible ways of solving this problem. As
already mentioned, it becomes feasible for monotone functions in DNF. Once a modular set is given,
the corresponding component of decomposition can be easily computed.

Usually, if a partition of the variables is given, then a decomposition algorithm either finds
components corresponding to this partition, or says that decomposition does not exist. If a partition
is not given, then either the variable sets ∆,Σ1,Σ2 are guessed before the algorithm is run (BDD– and
PoS/SoP–based approaches [14, 20, 13]) or they evolve during decomposition (SAT–based approaches

1Of course, this form is slightly exotic (in particular, this basis is not complete).

3

[9, Ch. 5, 6] and [5]). In [1], a heuristic based method for variable partitioning is described and
proved to be efficient in practice.

In [6], the authors propose a graph–theoretical approach. To partition the variable set, the
authors describe a procedure to build an undirected “Blocking Edge Graph” and argue its efficiency.
However, the procedure essentially relies on massive checking whether boolean functions constructed
by some (simple) manipulations are equal to zero or not. Obviously, the efficiency of this step
strongly depends on representation of boolean functions; for some of them this problem is NP-
complete. Then the mentioned procedure detects a minimum vertex cut. Notice that the complexity
of this problem wrt some optimality criteria (balancedness-like) increases and the problem can easily
become NP-complete.

In this paper, we note the important fact that every AND–decomposable function given in one of
the considered forms (CNF, DNF or ANF) uniquely defines the finest partition of its variables. For
formulas in CNF/DNF, this follows from a property of a large class of logical calculi shown in [17].
For formulas in ANF, a similar result follows from the fact that the ring of (multivariate) polynomials
over the finite field of order 2 is a unique factorization domain. One of the main contributions of the
paper is that we identify cases when computing AND-decomposition is tractable even if a variable
partition is not given.

Logic vs Algebraic Decomposition.
Approaches to decomposition of boolean functions can be classified into logic and algebraic.

The first are based on equivalent transformations of formulas in propositional logic. The second
ones consider boolean functions as algebraic objects with the corresponding transformation rules.
The most elaborated representation is polynomials, usually over finite fields, among which F2 (the
Galois field of order 2) is the best known. Then AND–decomposition corresponds to factorization of
multivariate polynomials over F2. It is known (Theorem 1.6 in [21]) that a polynomial F (x1, . . . , xm)
of the total degree n over all its variables can be factored over a finite field of order pr in time that is
polynomial in nm, r, and p. The state of the research on this problem is described in [24]. Shpilka and
Volkovich [22] noted the strong relation between polynomial factorization and polynomial identity
testing (i.e. testing equality to the zero polynomial). It follows from their results that a multilinear
polynomial over F2 can be factored in time that is cubic in the size of the polynomial (given as a
symbol sequence). We provide a factorization algorithm for multilinear polynomials over F2 which
runs in cubic time and is based on identity testing for partial derivatives of a product of polynomials
obtained from the input one. The product is computed only once in contrast to the approach of
[22]. Moreover, we show that the algorithm can be implemented without computing the product of
polynomials explicitly, thus contributing to efficiency of factorization of large input polynomials.

In general, logic-based approaches to decomposition are more powerful and achieve better results
than algebraic ones: a boolean function can be decomposable logically, but not algebraically, since
boolean divisors of a boolean function can differ from its algebraic factors [9, Ch. 4]. In our work,
we follow the logic approach to decomposition, but show that tractability of multilinear polynomial
factorization over F2 gives polytime decomposition algorithms for boolean functions in positive DNF
and Full DNF.

2 Preliminaries

2.1 Basic Facts about AND-Decomposability

Let us introduce some conventions and notations. For a boolean formula ϕ, we denote the set of
its variables by var (ϕ). If Σ is a set of propositional variables and var (ϕ) ⊆ Σ, then we say that the
formula ϕ is over variables Σ (or over Σ, for short); taut(Σ) denotes a valid formula over Σ. A literal

4

is either a variable (positive literal) or negation of a variable (negative literal). We call ϕ positive
if it does not contain negative literals. If ξ and ξ′ are clauses (or conjuncts, respectively), then the
notation ξ′ ⊆ ξ means that ξ′ is a subclause (subconjunct) of ξ, i.e. ξ′ is given by a non-empty
subset of literals from ξ. If ϕ is in CNF (DNF, respectively), then a clause (conjunct) ξ of ϕ is called
redundant in ϕ if there exists another clause (conjunct) ξ′ of ϕ such that ξ′ ⊆ ξ.

We now define the main property of boolean formulas studied in this paper, the definition is
adopted from [17], where it is given in a general form.

Definition 1 (Decomposability) A boolean formula ϕ is called AND–decomposable wrt a (possibly
empty) subset of variables ∆ ⊆ var (ϕ) (or ∆–decomposable, for short) if it is equivalent to the
conjunction ψ1 ∧ ψ2 of some formulas ψ1 and ψ2 such that:

1. var (ψ1) ∪ var (ψ2) = var (ϕ);

2. var (ψ1) ∩ var (ψ2) ⊆ ∆;

3. var (ψi) \∆ 6= ∅, for i = 1, 2.

The formulas ψ1 and ψ2 are called ∆–decomposition components of ϕ. Note that ψ1 and ψ2

partition the set of variables var (ϕ) \∆ and may share the variables only from ∆. We say that ϕ
is ∆–decomposable with a variable partition {Σ1,Σ2} if ϕ has some ∆-decomposition components ψ1

and ψ2 over the variables Σ1 ∪∆ and Σ2 ∪∆, respectively.

Note that a similar definition could be given for OR–decomposability, i.e. for decomposition into
the disjunction of ψ1 and ψ2. Clearly, a formula ϕ is AND–decomposable wrt ∆ ⊆ var (ϕ) iff ¬ϕ is
OR–decomposable wrt ∆.

Example 1 The formula in CNF (x∨¬d) ∧ (u∨¬x∨d) ∧ (u∨x∨d) is equivalent to the conjunction
of x ∨ ¬d and u ∨ d and hence, {d}–decomposable (with the variable partition {{x}, {u}}).

The positive formula in DNF (x∧ u) ∨ (x∧ v) ∨ (y ∧ u) ∨ (y ∧ v) is ∅–decomposable into the
components x ∨ y and u ∨ v.

Note that Definition 1 is formulated with the two components ψ1 and ψ2, which in turn can be ∆–
decomposable formulas. Since at each decomposition step, the variable sets of the components must
be proper subsets of the variables of the original formula ϕ, the decomposition process necessarily
stops and gives formulas which are non-decomposable. The obtained formulas define some partition
of var (ϕ) \ ∆ and the fact below (which follows from a property of a large class of logical calculi
shown in [17]) says that this variable partition is unique.

Fact 1 (Uniqueness of Decompositions - Corollary of Thm. 1 in [17])
Let ϕ be a boolean formula and ∆ ⊆ var (ϕ) be a subset of its variables. If ϕ is ∆-decomposable,
then there is a unique partition {π1, . . . , πn} of var (ϕ) \ ∆, 2 6 n, such that ϕ is equivalent to∧
{ψi | var (ψi) = πi ∪∆, i = 1, . . . , n}, where each formula ψi is not ∆-decomposable.

This means that any possible algorithm2 for decomposing a formula into components could be applied
iteratively to obtain from a given ϕ some formulas ψi, i = 1, . . . , n, which are non-decomposable and
uniquely define a partition of the variables of ϕ “modulo” ∆.

2Existence and complexity of decomposition algorithms in various logics have been studied in [15, 10, 18, 17].

5

2.2 The Computational Problems Considered in the Paper

In the text, we omit subtleties related to efficient encoding of input sets of variables, boolean
formulas (given in CNF, DNF, or ANF), and polynomials, assuming their representation as symbol
sequences. The complexity of each computational problem below will be defined wrt the size of the
input formula/polynomial given in this way.

∆Dec For a given boolean formula ϕ and a subset ∆ ⊆ var (ϕ), decide whether ϕ is ∆–
decomposable.

∆DecPart For a given boolean formula ϕ, a subset ∆ ⊆ var (ϕ), and a partition {Σ1,Σ2} of
var (ϕ) \∆, decide whether ϕ is ∆–decomposable with this partition.

We also consider the variants of these problems for ∆ = ∅, which are denoted as ∅Dec and
∅DecPart, respectively.

It turns out that the problem ∅Dec for formulas in DNF is closely related to the problem of mul-
tilinear polynomial factorization (DecF2) which we formulate below. The connection is in particular
due to the fact that taking a conjunction of two formulas in DNF is quite similar to taking a product
of two multivariate polynomials. We recall that a multivariate polynomial F is linear (multilinear)
if the degree of each variable in F is 1. We denote a finite field of order 2 by F2 and say that a
polynomial is over the field F2 if it has coefficients from F2. A polynomial F is called factorable over
F2 if F = G1 ·G2, where G1 and G2 are non-constant polynomials over F2.

Example 2 Consider the multilinear polynomial F = xu+xv+ yu+ yv (cf. the positive DNF from
Example 1). We have F = (x+ y) · (u+ v), thus F is factorable.

The following important observation shows further connection between polynomial factorization
and the problem ∅Dec:

Fact 2 (Factoring over F2) If a multilinear polynomial F is factorable over F2, then its factors do
not have variables in common.

Clearly, if some factors G1 and G2 of F have a common variable then the polynomial G1 ·G2 is
not linear and thus, is not equal to F in the ring of polynomials over F2.

DecF2 Given a non-constant multilinear polynomial F over F2, decide whether F is factorable
over F2.

Since every monomial can be viewed as a set of variables and the whole polynomial as a family
of such sets, the problem DecF2 can be reformulated as a variant of the well-known NP-complete Set
Splitting Problem3 :

Cartesian Splitting Problem Given a family F of subsets of a set S, decide whether there
exists a partition {Σ1,Σ2} of S such that F = {S1∪S2 | Si ∈ Fi, i = 1, 2}, where each Fi is a family
of sets over elements from Σi.

It turns out that the above requirement of splitting into a cartesian union introduces enough
structure into the Set Splitting Problem to obtain tractability.

3known also as the Hypergraph 2-Coloring Problem

6

3 Main Results

First, we formulate complexity results on decomposition of formulas given in the Conjunctive
Normal Form and then proceed to formulas in DNF and ANF. Observe that decomposition itself is
conceptually closer to the CNF representation, since it gives a conjunction of formulas. In particular,
proving tractability of decomposition for positive CNF appears to be easier than for positive DNF.
The situation with positive DNF and full DNF is more complicated, because decomposable formulas
in DNF have a cartesian structure which can be recognized in polytime, but the proof of this fact
relies on polynomial factorization over F2.

Theorem 1 (Complexity for CNF) For boolean formulas given in CNF,

1. the problems ∅DecPart and ∆DecPart are coNP–complete.

2. the problem ∅Dec is coNP–hard and is in PNP ;

Proof Sketch. We prove coNP-hardness in point 1 by showing that the set of formulas in CNF which
are valid or unsatisfiable (denote it by Ω) is Karp-reducible to the set of ∅–decomposable formulas
in CNF. For a given formula ϕ in CNF we consider the following formula constructed for ϕ, where
p, q 6∈ var (ϕ) are “fresh” variables:

ψ = (ϕ ∨ p) ∧
∧

x∈var (ϕ)

(q ∨ x)

Clearly, ψ can be converted into CNF in linear time (in the size of ϕ). In the proof, we show the
following equivalences: ψ is ∅–decomposable ⇔ ψ is ∅–decomposable with the variable partition
{{p}, var (ϕ) ∪ {q}} ⇔ ϕ ∈ Ω. This shows coNP–hardness of the problems ∅Dec, ∅DecPart and
hence, of ∆DecPart as well.

The containment of ∆DecPart in coNP is shown by a Karp-reduction to the set of valid boolean
formulas. Let ϕ be a boolean formula, ∆ ⊆ var (ϕ) and {Σ1,Σ2} be an arbitrary partition of
var (ϕ) \ ∆. We consider the formulas ϕ∗Σ1

and ϕ∗Σ2
such that var (ϕ∗Σ1

) ∩ var (ϕ∗Σ2
) = ∆ and for

i = 1, 2, each formula ϕ∗Σi
is obtained from ϕ by renaming the variables from Σ3−i into “fresh” ones,

not present in ϕ. Then we show that ϕ is ∆–decomposable with the partition {Σ1,Σ2} iff the formula
ϕ∗Σ1
∧ ϕ∗Σ2

→ ϕ is valid.
For the proof of point 2 of the Theorem we provide a PNP -algorithm for solving the problem

∅Dec. We show that if a formula ϕ in CNF is ∅–decomposable and contains a clause ξ with variables
from both decomposition components, then ξ must contain a subclause ξ′ ⊂ ξ such that ϕ entails ξ′.
This property gives an algorithm for deciding ∅Dec, which tries to “eliminate” literals one-by-one
from clauses of a given formula in CNF (by quering an NP-oracle) and gives an equivalent formula,
for which ∅–decomposability can be decided (and the corresponding components can be computed)
in polytime. �

We now formulate the result on tractability of ∆-decomposition for positive CNF. There are two
key properties of positive formulas in CNF (and DNF) in proving tractability which can be informally
described as follows. A positive formula does not have “too many equivalent reformulations” and
entailment of positive formulas is tractable. This allows to easily compute a “canonical form” of a
positive formula ϕ in CNF as a set of clauses, which uniquely defines decomposition components of
ϕ (iff ϕ is ∆–decomposable).

Theorem 2 (Complexity for Positive CNF) For positive boolean formulas in CNF, the problem
∆Dec is in P . Moreover, ∆-decomposition components can be computed in polynomial time (if decom-
position exists).

7

Let us proceed to results on decomposition of formulas given in DNF and ANF. We recall that
the Algebraic Normal Form of a boolean formula (ANF) can be viewed as a multilinear polynomial
over F2. Due to Fact 2, the notion of ∅–decomposability for formulas in ANF can be defined in terms
of polynomial factorability over F2. For this reason, we use the terminology of polynomials when
talking about algebraic results further in this section. We start with the complexity of decomposition
for formulas in Full DNF (i.e. formulas given by the set of their satisfying assignments) and then
formulate results on positive DNF and polynomial factorization over F2. Interestingly, the latter
problem is related also to ∅–decomposition of formulas in Full DNF, even though such formulas
contain negative literals. We show that negative literals can be encoded as “fresh” variables giving
a positive DNF.

Theorem 3 (Complexity for Full DNF) For boolean formulas in Full DNF,

1. the problem ∆DecPart is in P ;

2. the problem ∅Dec is reducible to DecF2 and hence is in P .

In each of the cases, the corresponding decomposition components can be computed in polynomial
time.

Proof Sketch. The proof is based on the following important characterization:

Lemma 1 (Semantic Criterion of Decomposability) Let ϕ be a boolean formula, V be the set
of its satisfying assignments, and let ∆ ⊆ var (ϕ) be a subset of variables. The formula ϕ is ∆–
decomposable with a variable partition {Σ1,Σ2} iff V = V |Σ1∪∆]V |Σ2∪∆, where for i = 1, 2, V |Σi∪∆

is the restriction of V onto the variables from Σi∪∆ and V |Σ1∪∆]V |Σ2∪∆ is the set of all assignments
v such that the restriction of v onto Σi ∪∆ belongs to V |Σi∪∆.

To prove point 1 of Theorem 3, let ϕ be a formula in Full DNF and {Σ1,Σ2} be a partition of
var (ϕ). Since Full DNF is the explicit representation of all satisfying assignments, one can compute
the sets V |Σi∪∆, for i = 1, 2 and check whether the condition in Lemma 1 holds in polynomial time.
If this is the case, then the the formulas ψi =

∨
ξ∈V |Σi∪∆

ξ in DNF, for i = 1, 2 are the required
∆–decomposition components (for brevity, in the definition of ψi we abuse the notion of satisfying
assignment assuming that ξ is a conjunction of literals).

To prove point 2, for a given formula ϕ, we consider a positive formula ϕ′ obtained by injective
substitution of negative literals by “fresh” variables, not occurring in ϕ. Then we construct a
multilinear polynomial F as a sum of monomials which correspond to conjuncts of ϕ′ and show that
ϕ is ∅-decomposable iff F is factorable over F2. �

We show that for a positive formula ϕ in DNF without redundant conjuncts, ∅–decomposability is
equivalent to factorability over F2 of the multilinear polynomial corresponding to ϕ. The polynomial
is obtained as the sum of monomials (products of variables) corresponding to the conjuncts of ϕ.
Observe that the positive formula ϕ = x∨ (x∧ y)∨ z with the redundant conjunct x∧ y is equivalent
to (x∨z)∧taut({y}) and thus, ∅–decomposable. However, the polynomial x+xy+z corresponding
to ϕ is non-factorable. Also note that if a polynomial has a factor with the constant monomial, e.g.
xy+ y = (x+ 1) · y, then the corresponding boolean formula in DNF contains a redundant conjunct.

Theorem 4 (Decomposition of Positive DNF and Factorization) For positive boolean formu-
las in DNF without redundant conjuncts, the problem ∅Dec is equivalent to DecF2.

8

We formulate the main result on formulas given in DNF in the following corollary which is a
consequence of Theorems 4, 5, and the constructions mentioned in the proof sketch to Theorem 1.

Corollary 1 (Complexity for DNF)

1. For formulas in DNF, the problems ∅DecPart and ∆DecPart are coNP-complete;

2. for positive boolean formulas in DNF, the problem ∅Dec is in P and the corresponding decom-
position components can be computed in polynomial time.

Note that the formula ψ given in the proof sketch to point 1 of Theorem 1 can be converted into
DNF in polynomial time, if the input formula ϕ is given in DNF, which shows coNP-hardness for the
first point of the Corollary. The containment in coNP can be shown by reduction to the validity of
boolean formulas as in the proof sketch to Theorem 1, since the construction there does not depend
on the normal form in which the formula ϕ is given. The second point of the Corollary follows from
Theorems 4 and 5, and the fact that redundant conjuncts can be found and eliminated efficiently
from an input formula.

We now turn to tractability of the problem DecF2, to which the decomposition problems in
Theorem 3 and Corollary 1 are reduced. Originally, tractability of DecF2 is a consequence of the
results from [22], where the authors provide two solutions to polynomial decomposition over an
arbitrary finite field F. The first one is a decomposition algorithm, which has a subroutine for
computing a justification assignment for an input polynomial, and relies on a procedure for identity
testing in F. It is proved that the complexity of this algorithm is O(n3 ·d ·IT), where n is the number
of variables, d is the maximal individual degree of variables in the input polynomial, and IT is the
complexity of identity testing in F. It follows that for multilinear polynomials over the field F2 this
gives a factorization algorithm of quartic complexity (assuming that polynomials are given as symbol
sequences, as noted in Section 2.2). The second solution proposed by the authors is a decomposition
algorithm which constructs for every variable of an input polynomial f , a combination f · f1− f2 · f3

of four polynomials, where each fi is a “copy” of f under a renaming of some variables. Every
combination is tested for equality to the zero polynomial. It can be seen that this gives an algorithm
of cubic complexity for factoring multilinear polynomials over F2.

In Theorem 5 below, we provide a solution to factorization of multilinear polynomials over F2,
which is different from the both algorithms proposed in [22]. The only common feature between
the approaches is the application of identity testing, which seems to be inevitable in factorization.
Our solution is based on computation of partial derivatives of a polynomial obtained from the input
one and gives an algorithm of cubic complexity. More precisely, a product f1 · f2 is computed once,
where fi are multilinear polynomials obtained from the input, and then for each variable y, the
partial derivative of f1 · f2 by y is tested for equality to zero. In particular, our algorithm operates
polynomials which are smaller than the ones considered in [22]. Moreover, we note that the algorithm
can be implemented without computing the product f1 ·f2 explicitly, which is particularly important
for dealing with large inputs. We present the factorization algorithm as the theorem below to follow
the complexity oriented style of exposition used in this paper.

Theorem 5 (Tractability of Linear Polynomial Factorization over F2) The problem DecF2

is in P and for any factorable multilinear polynomial, its factors can be computed in polynomial
time.

Proof. Let F be a non-constant multilinear polynomial over F2. We will describe a number of
important properties which hold if F is factorable over F2. Based on these properties, we will derive
a polynomial procedure for partitioning the variables of F into disjoints sets Σ1 and Σ2 such that if F

9

is factorable, then it must have factors which are polynomials having these sets of variables. Having
obtained Σ1 and Σ2, it suffices to check whether F is indeed factorable wrt this partition: if the
answer is “no”, then F is non-factorable, otherwise we obtain the corresponding factors. Checking
whether F is factorable wrt a variable partition can be done efficiently due the following fact:

Lemma 2 (Factorization Under a Given Variable Partition) In the notations above, for i =
1, 2, let Si be the set of monomials obtained by restricting every monomial of F onto Σi (for instance,
if F = xy+y and Σ1 = {x}, then S1 = {x, 1}). Let Fi be the polynomial consisting of the monomials
of Si for i = 1, 2. Then F is factorable into some polynomials with the sets of variables Σ1 and Σ2

iff F = F1 · F2.

Proof of the lemma. The “if” direction is obvious, since for i = 1, 2, each Fi necessarily contains
all the variables from Σi. Now assume that F has a factorization F = G1 ·G2 which corresponds to
the partition Σ1, Σ2. Then every monomial of F is a product of some monomials from G1, G2, i.e.
it either contains variables of both Σ1 and Σ2, or only from Σi for some i = 1, 2 iff G3−i contains the
constant monomial. This means that Si is the set of monomials of Gi for i = 1, 2, i.e. Fi = Gi. �

Let us proceed to properties of factorable polynomials. Let Fx=v be the polynomial obtained
from F by setting x equal to v. Note that ∂F

∂x = Fx=1 + Fx=0.
First of all, note that if some variable x is contained in every monomial of F , then F is either

non-factorable (in case F = x), or trivially factorable, i.e. F = x · ∂F∂x . We further assume that there
is no such variable in F . We also assume that F 6= x+ 1, i.e. F contains at least two variables4.

Let F be a polynomial over the set of variables {x, x1, . . . , xn}. If F is factorable, then it can be
represented as

F = (x ·Q+R) ·H, where

• the polynomials Q,R, and H do not contain x;

• Q and R do not have variables with H in common;

• R is a non-empty polynomial (since F is not trivially factorable);

• the left-hand side of this product is a non-factorable polynomial.

Then we have Fx=0 = R · H and also ∂F
∂x = Q · H. Obviously, the both polynomials can be

computed in polynomial time5. Let y be a variable of F different from x and consider the following
derivative of the product of these polynomials:

∂
∂y (Q ·R ·H2) = ∂Q

∂y RH
2 +Q ∂

∂y (RH2) = ∂Q
∂y RH

2 + ∂R
∂yQH

2 + 2∂H∂y QRH.

Since in F2 for all z it holds that 2z = z + z = 0, we have:

∂
∂y (Q ·R ·H2) = H2 ·

(
∂Q
∂y R+ ∂R

∂yQ
)

= H2 · ∂∂y (Q ·R) .

It follows that in case y is a variable from H, we have ∂
∂y (Q ·R) = 0 and thus, ∂

∂y (Q ·R ·H2) = 0.
Let us now show the opposite, assume that the variable y does not belong to H and prove that the
derivative is not equal to zero.

4We note that besides the factors of the form x and x + 1, there is a number of other simple cases of factorization
that can be recognized easily.

5Note that since (x · Q + R) is non-factorable, the GCD of R · H and Q · H is exactly H, so the factorization
problem is solved given there exists a polytime algorithm for GCD computation. In fact, polytime factorization yields
the existence of such algorithm.

10

Since y does not belong to H, in general, Q and R have the form

Q = Ay +B, R = Cy +D,

for some polynomials A,B,C,D not containing y. Then Q · R = ACy2 + (AD + BC)y + BD and
hence, ∂

∂y (Q ·R) = AD +BC.
Thus, we need to show that AD +BC 6= 0. Assume the contrapositive, i.e. that AD +BC = 0.

Note that AD and BC can not be zero, because otherwise at least one of the following holds:
A = B = 0, A = C = 0, D = B = 0, or D = C = 0. The first two conditions are clearly not the case,
since we have assumed that x and y are not contained in H, while the latter conditions yield that F
is trivially factorable (wrt the variable y or x, respectively). From this we obtain that AD+BC = 0
holds iff AD = BC (since we are in F2).

Let B = f1·. . .·fm and C = g1·. . .·gn be the (unique) factorizations of B and C into non-factorable
polynomials. We have AD = f1 ·. . .·fm ·g1 ·. . .·gn, thus this may assume that A = f1 ·. . .·fk ·g1 ·. . .·gl
for some 0 6 k 6 m and 0 6 l 6 n (when k = l = 0, we assume that A = 1). The polynomials
B,C,D can be represented in the same form. Let us denote for some polynomials U, V by (U, V)
the greatest common divisor of U and V . Then A = (A,B) · (A,C), B = (A,B) · (D,B), similarly
for C and D, and we obtain

x ·Q+R = x · (Ay +B) + (Cy +D) =

= x · ((A,B)(A,C)y + (A,B)(D,B)) + ((A,C)(D,C)y + (D,B)(D,C)) =

= ((A,B)x+ (D,C))((A,C)y + (D,B)),

which is a contradiction, because we have assumed that x ·Q+R is non-factorable.

We have obtained a procedure for partitioning the variables of F into disjoint sets Σ1 and Σ2 in
the following way. Having chosen some initial variable x from F , we first assign Σ1 = {x}, Σ2 = ∅
and compute the polynomial Q·R·H2 (which is ∂F

∂x ·Fx=0). Then for every variable y from F (distinct
from x), we compute the derivative ∂

∂y (Q ·R ·H2). If it equals zero, we put y into Σ2, otherwise we
put y into Σ1. If at the end we have Σ2 = ∅, then the polynomial F is non-factorable. Otherwise
it remains to apply Lemma 2 to verify whether the obtained sets Σ1 and Σ2 indeed correspond to
a factorization of F . If the answer is “no”, then F is non-factorable, otherwise the polynomials F1

and F2 defined in Lemma 2 are the required factors.
If n is the size of the input polynomial as a symbol sequence, then it takes O(n2) steps to compute

the polynomial G = Q ·R ·H2 and test whether the derivative ∂G
∂y equals zero for a variable y (since

both, computing the derivative and identity testing can be done in linear time for polynomials over
F2, given as symbol sequences). As we must verify this for every variable y 6= x, we have a procedure
that computes a candidate variable partition in O(n3) steps. Then it takes O(n2) time to verify by
Lemma 2 whether this partition indeed corresponds to factors of F . �

The procedure described above gives at least two ways of computing a candidate variable partition
of the input polynomial F . Assuming we have computed the polynomials A = ∂F

∂x and B = Fx=0,
the first way is to compute the product A ·B once, thus obtaining a quadratically large polynomial,
and then use it to test identities of derivatives for each variable y (different from x). The other way
is to compute the polynomials D = ∂

∂y (Fx=0) and C = ∂
∂y (∂F∂x) for each variable y (different from x)

and test whether AD+BC = 0. On inputs obtained from large positive DNFs, it makes little sense
to compute products of polynomials of size “almost” as large as the input (in the worst case). We
show however that testing AD+BC = 0 can be done without computing the products AD and BC.
W.l.o.g. we assume that neither of these polynomials is zero, because otherwise we must have D = 0

11

and either B = 0 or C = 0, which can be easily verified. Then AD+BC = 0 iff AD = BC. We may
also assume that no variable is present in every monomial of A,B,C, or D and hence, there is no
variable z such that the polynomial z divides AD or BC. Now let z be any variable different from
x and consider the mentioned polynomials given as A = A1z + A2, D = D1z + D2, B = B1z + B2,
C = C1z + C2 wrt the variable z. Then we have AD = BC iff

(A1z +A2)(D1z +D2) = (B1z +B2)(C1z + C2),

A1D1z
2 + (A1D2 +A2D1)z +A2D2 = B1C1z

2 + (B1C2 +B2C1)z +B2C2.

and the equality holds iff the corresponding coefficients are equal:

A1D1 = B1C1 (1) A2D2 = B2C2 (2) A1D2 +A2D1 = B1C2 +B2C1 (3)

If at least one of the identities (1), (2) does not hold, then we have AD 6= BC. Otherwise, we can
use these identities to verify (3) in the following way. We may assume that the multiplier and the
residual of A,B,C or D wrt z are both not equal to zero; let it be the case for A, i.e. A1, A2 6= 0.
Multiplying the both sides of (3) by A1A2 gives

A2
1A2D2 +A1A

2
2D1 = A1A2B1C2 +A1A2B2C1 and next, by using the identities (1) and (2),

A2
1B2C2 +A1A2B2C1 = A2

2B1C1 +A1A2B1C2 =⇒ A1B2(A1C2 +A2C1) = A2B1(A2C1 +A1C2).

Hence, it suffices to check (A1B2 +A2B1)(A1C2 +A2C1) = 0, i.e. at least one of these factors equals
zero. It turns out that we need to test at most 4 polynomial identities and each of them are smaller
than the original identity AD = BC. Then we proceed recursively until trivial polynomials are
obtained.

4 Discussion

We have proved that AND–decomposability is intractable in general for boolean formulas given
in CNF or DNF. On the other hand, we have shown the existence of polytime algorithms for com-
puting decomposition components of positive formulas in CNF and DNF, and formulas given in
Full DNF and the Algebraic Normal Form. We believe that the tractability result on positive DNF
can contribute to improving efficiency of existing model counting techniques, while the result on
Full DNF can be applied in optimization of boolean functions given by lookup tables. Since AND–
decomposability and OR-decomposability are the dual notions, our results are applicable to this
notion as well. For instance, the quality of multilevel decomposition (i.e. alternating AND/OR–
decomposition) of monotone functions given in DNF strongly depends on the kind of decomposition
used at the topmost level. As a rule, OR–decomposition has a priority over AND-decomposition,
since it is simple6 for positive DNF. However, choosing AND-decomposition at the topmost level
may result in smaller factors. For example, let us consider the following monotone boolean function
given as positive DNF (we use the addition/multiplication notation for disjunctions/conjunctions):

F = absu+ absv + absw + abtu+ abtv + abtw + abxy + abxz + acsu+ acsv + acsw + actu+
actv + actw + acxy + acxz + desu+ desv + desw + detu+ detv + detw + dexy + dexz

Applying “AND–first” decomposes F into the following factors: F = (ab+ ac+ de)(su+ sv + sw +
tu + tv + tw + xy + xz). OR–decomposition of the second factor (the first factor OR-decomposes
syntactically too) gives the components: su+ sv + sw + tu+ tv + tw and xy + xz.

6for the same reason as AND-decomposition is simple for positive/negative CNF, cf. Theorem 2

12

Next, AND-decomposition is applied to each of the obtained factors and finally, we obtain

F = (a(b+ c) + de)((s+ t)(u+ v + w) + x(y + z)),

which is a read-once formula of depth 4 having 13 occurrences of variables.
ESPRESSO7 which implements “OR–first” decomposition at the topmost level gives a longer ex-
pression:

F = x(a(c+ b) + de)(z + y) + (a(c+ b) + de)(t+ s)(w + v + u)

which is a formula of depth 5 having 18 occurrences of variables and this formula is not read-once.
Disjoint AND-decomposition can be viewed as a “constructive” way to recognize read–once formulas.
By “constructive” we mean that it allows not only to recognize that a formula is read–once (see
Golumbic et al. [8]), but also to obtain its read–once form efficiently.

The result on tractability of AND-decomposition for full DNF given in Theorem 3, can be applied
to the class of formulas which can be called pre-full DNF. This is the class of formulas in DNF whose
conversion into the full DNF causes only polynomial increase in the size of the formula. One can
consider the following simple conversion process: if some conjunct of DNF does not include a variable
x, then this conjunct is duplicated with the literals x and x̄ respectively. Then it is not hard to see
that the class of pre-full DNF contains formulas such that their “deficit” (i.e. the maximum of absent
variables over all conjunctions) is O(log n), where n the is number of formula variables.
For example, given the formula ab̄x̄y+ab̄z̄+ cx̄y+ cz̄, the corresponding full DNF is obtained as:

abcxyz̄ + abcxȳz̄ + abcx̄yz + abcx̄yz̄ + abcx̄ȳz̄ + ab̄cxyz̄ + ab̄cxȳz̄ + ab̄cx̄yz + ab̄cx̄yz̄ +
ab̄cx̄ȳz̄ + ab̄c̄xyz̄ + ab̄c̄xȳz̄ + ab̄c̄x̄yz + ab̄c̄x̄yz̄ + ab̄c̄x̄ȳz̄ + ābcxyz̄ + ābcxȳz̄ + ābcx̄yz +

ābcx̄yz̄ + ābcx̄ȳz̄ + āb̄cxyz̄ + āb̄cxȳz̄ + āb̄cx̄yz + āb̄cx̄yz̄ + āb̄cx̄ȳz̄.

Then, by using the idea from the proof of Theorem 3, computing AND-decomposition of this formula
by polynomial factorization gives the components (xyz̄+xȳz̄+x̄yz+x̄yz̄+x̄ȳz̄)(abc+ab̄c+ab̄c̄+ābc+
āb̄c), which are again formulas in full DNF. Finally, by using the standard minimization techniques
for each of these factors independently, one obtains the representation of the initial formula as:
(z̄ + x̄y)(c+ ab̄).

Finally, it is important to note that a decomposable formula uniquely defines the finest partition
of its variables, thus in practice the only decomposition parameter to be specified is the set of
shared variables between the components. The polytime factorization algorithm for multilinear
polynomials over F2 provides a solution for the case when this set is empty, i.e. when decomposition
is disjoint. It is an open question whether a similar result could be applied for obtaining non-
disjoint decompositions. Further research questions include implementation of the proposed polytime
decomposition algorithms and their evaluation on industrial benchmarks for boolean circuits.

Acknowledgements

The first author was supported by the Russian Foundation for Humanities, grant No. 13-01-
12003B. The second author was supported by the German Research Foundation within the Transre-
gional Collaborative Research Center SFB/TRR 62 “Companion-Technology for Cognitive Technical
Systems”.

7a well–known heuristic optimizer used as a reference tool for optimization of boolean functions

13

References

[1] Tomas Bengtsson, Andres Martinelli, and Elena Dubrova, A fast heuristic algorithm
for disjoint decomposition of Boolean functions, in Notes of the 11th IEEE/ACM International
Workshop on Logic & Synthesis (IWLS’02), 2002, pp. 51–55.

[2] Jan C. Bioch, The complexity of modular decomposition of Boolean functions, Discrete Applied
Mathematics, 149 (2005), pp. 1–13.

[3] , Decomposition of Boolean functions, in Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, Yves Crama and Peter. L. Hammer, eds., vol. 134 of
Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York,
NY, USA, 2010, pp. 39–78.

[4] Randal E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans-
actions on Computers, 35 (1986), pp. 677–691.

[5] Huan Chen, Mikoláš Janota, and João Marques-Silva, QBF-based Boolean function
bi-decomposition, in Proceedings of the Design, Automation & Test in Europe Conference
(DATE’12), IEEE, 2012, pp. 816–819.

[6] Mihir Choudhury and Kartik Mohanram, Bi-decomposition of large Boolean functions
using Blocking Edge Graphs, in Proceedings of the 2010 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD’10), Piscataway, New Jersy, USA, 2010, IEEE Press, pp. 586–
591.

[7] Adnan Darwiche and Pierre Marquis, A knowledge compilation map, Journal of Artificial
Intelligence Research, 17 (2002), pp. 229–264.

[8] Martin C. Golumbic, Aviad Mintz, and Udi Rotics, An improvement on the complexity
of factoring read-once Boolean functions, Discrete Applied Mathematics, 156 (2008), pp. 1633–
1636.

[9] Sunil P. Khatri and Kanupriya Gulati, eds., Advanced Techniques in Logic Synthesis,
Optimizations and Applications, Springer, New York Dordrecht Heidelberg London, 2011.

[10] Boris Konev, Carsten Lutz, Denis Ponomaryov, and Frank Wolter, Decomposing
description logic ontologies, in Proceedings of the Twelfth International Conference on Principles
of Knowledge Representation and Reasoning (KR’10), Palo Alto, California, USA, 2010, AAAI
Press.

[11] Ian Kuon, Russell Tessier, and Jonathan Rose, FPGA Architecture: Survey and Chal-
lenges, Now Publishers Inc, Boston - Delft, 2008.

[12] Alan Mishchenko and Robert Brayton, Faster logic manipulation for large designs, in
Proceedings of the 22nd International Workshop on Logic and Synthesis, 2013.

[13] Alan Mishchenko and Tsutomu Sasao, Large-scale SOP minimization using decomposition
and functional properties, in Proceedings of the 40th ACM/IEEE Design Automation Conference
(DAC’03), New York, NY, USA, 2003, ACM, pp. 149–154.

[14] Alan Mishchenko, Bernd Steinbach, and Marek A. Perkowski, An algorithm for bi-
decomposition of logic functions, in Proceedings of the 38th ACM/IEEE Design Automation
Conference (DAC’01), New York, NY, USA, 2001, ACM, pp. 103–108.

14

[15] Andrey Morozov and Denis Ponomaryov, On decidability of the decomposability problem
for finite theories, Siberian Mathematical Journal, 51 (2010), pp. 667–674.

[16] Marek A. Perkowski and Stanislaw Grygiel, A survey of literature on function decom-
position, Version IV, PSU Electrical Engineering Department Report, Department of Electrical
Engineering, Portland State University, Portland, Oregon, USA, November 1995.

[17] Denis Ponomaryov, On decomposability in logical calculi, Bulletin of
the Novosibirsk Computing Center, 28 (2008), pp. 111–120, available at
http://persons.iis.nsk.su/files/persons/pages/delta–decomp.pdf.

[18] Denis Ponomaryov, The algorithmic complexity of decomposability in fragments of first-
order logic, Research Note. Abstract appears in Proc. Logic Colloquium’ 14. Available at
http://persons.iis.nsk.su/files/persons/pages/sigdecomp.pdf, 2014.

[19] Tsutomu Sasao and Jon T. Butler, On bi-decompositions of logic functions, in Notes of
the 1997 IEEE/ACM International Workshop on Logic & Synthesis (IWLS’97), 1997, pp. 1–6.

[20] , On the minimization of SOPs for bi-decomposition functions, in Proceedings of the 2001
Asia and South Pacific Design Automation Conference (ASP-DAC’01), New York, NY, USA,
2001, ACM, pp. 219–224.

[21] Igor E. Shparlinski, Computational and Algorithmic Problems in Finite Fields, Springer,
New York Dordrecht Heidelberg London, 1992.

[22] Amir Shpilka and Ilya Volkovich, On the relation between polynomial identity testing
and finding variable disjoint factors, in Proceedings of the 37th International Colloquium on
Automata, Languages and Programming. Part 1 (ICALP 2010), vol. 6198 of Lecture Notes in
Computer Science, Springer, 2010, pp. 408–419.

[23] Bernd Steinbach and Christian Lang, Exploiting functional properties of Boolean func-
tions for optimal multi-level design by bi-decomposition, Artificial Intelligence Review, 20 (2003),
pp. 319–360.

[24] Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge
University Press, New York, NY, USA, Third ed., 2013.

15

Appendix (Missing Proofs for Section 3)

Additional Conventions and Notations in Proofs

Throughout the text, we assume that conjuncts and clauses of boolean formulas do not contain
duplicate occurrences of literals and that formulas do not contain duplicate occurrences of clauses or
conjuncts. If ϕ is a formula in CNF (respectively, DNF), then the notation ξ ∈ ϕ means that ξ is a
clause (respectively, conjunct) of ϕ and ϕ \ {ξ} denotes the formula given by the remaining clauses
(conjuncts). A variable x ∈ var (ϕ) is called inessential in ϕ if ϕ is equivalent to some formula
ϕ′ such that x 6∈ var (ϕ′). Note that for any subset ∆ ⊆ var (ϕ), if a variable x ∈ var (ϕ) \ ∆ is
inessential in ϕ, then ϕ is ∆–decomposable (into the components taut(x) and ϕ′).

Let Σ be a set of variables. An assignment to Σ is some assignment v to the variables from Σ.
A satisfying assignment of a boolean formula ϕ (or assignment of ϕ, for short) is an assignment to
the variables of ϕ which makes ϕ true. We will slightly abuse our terminology and call assignment
of ϕ any conjunction ξ of literals over the variables from var (ϕ) such that the assignment to these
variables, which corresponds to their negative/positive occurrences in ξ, makes ϕ true. A partial
assignment of ϕ is an assignment to some subset of var (ϕ). An expansion of a partial assignment v
is any assignment to var (ϕ) which agrees with v. If σ ⊆ var (ϕ) is a subset, then ℘(σ) denotes the
set of conjuncts which represents all the possible assignments to σ.

Definition 2 (Set of Formulas Uniquely Defines Partition) Let Φ be a set of boolean formu-
las over variables Σ and let ∆ ⊆ Σ be a subset. Denote Φ∆ = {ϕ ∈ Φ | var (ϕ) ⊆ ∆} and consider
the bipartite graph ΓΦ

∆ = (Σ\∆, Φ\Φ∆, E), where for x ∈ Σ\∆ and ϕ ∈ Φ\Φ∆, we have 〈x, ϕ〉 ∈ E
iff x ∈ var (ϕ).

We say that Φ uniquely defines the partition of Σ wrt ∆ if for any x, y ∈ Σ \∆ the following are
equivalent:

• x and y belong to the same connected component of ΓΦ
∆;

•
∧
ϕ∈Φ ϕ is not ∆–decomposable into some components ψ1 and ψ2,

with x ∈ var (ψ1) and y ∈ var (ψ2).

Example 3 Consider the set of formulas Φ = {x, x∨y} and let ∆ = ∅. Both x and y belong to the
same connected component of the graph ΓΦ

∆ from Definition 2. The set Φ does not uniquely define
the partition of Σ = {x, y} wrt ∆, since x ∧ (x ∨ y) is ∅–decomposable into the components x and
taut({y}). Note that the set of formulas {x, taut({y})} is equivalent to Φ and defines the partition
of Σ uniquely (in fact, wrt any ∆).

The following fact is a simple consequence of Definition 2.

Remark 1 There exists a polynomial time algorithm which, given a set Φ of boolean formulas over
variables Σ and a subset ∆ ⊆ Σ, computes the graph ΓΦ

∆ from Definition 2 and outputs “yes” iff ΓΦ
∆

is not connected.

Every proof of an upper complexity bound of ∆–decomposition will be based on a procedure for
computing a “canonical representation” of a given formula ϕ as a conjunction

∧
i=1,...,n ψi such that

the set {ψi}i=1,...,n uniquely defines the partition of var (ϕ) wrt ∆. Then, to verify whether ϕ is ∆–
decomposable (and to obtain the corresponding variable partition and decomposition components),

16

it suffices to compute the graph Γ over the set of formulas {ψi}i=1,...,n by using Remark 1 and verify
whether it is connected.

Missing Proofs

Theorem 1 (Complexity for CNF) For boolean formulas given in CNF,

1. the problems ∅DecPart and ∆DecPart are coNP–complete.

2. the problem ∅Dec is coNP–hard and is in PNP ;

Proof. Let us note the following property of decomposable formulas in CNF, which will be the key
to proving the complexity bounds.

Lemma 3 (Property of Decomposable Formulas in CNF) Let ϕ be a
formula, ∆ ⊆ var (ϕ) be a subset, and let ϕ be equivalent to the conjunction of formulas ψ1 and ψ2

such that var (ψ1) ∩ var (ψ2) = ∆. Let ϕ have the form χ ∧ (ξ1 ∨ ξ2), where ξ1 ∨ ξ2 is a clause such
that var (ξi) ⊆ var (ψi) for i = 1, 2. Then ϕ ` (ξ1 ∨ θ∆) ∧ (¬θ∆ ∨ ξ2) for some formula θ∆ over
variables ∆.

Proof of the lemma. We have ψ1 ∧ ψ2 ` ξ1 ∨ ξ2, hence ψ1 ∧ ¬ξ1 ` ψ2 → ξ2 and, by the conditions of
the lemma, we have var (ψ1 ∧¬ξ1)∩ var (ψ2 → ξ2) = ∆. By interpolation, there exists a formula θ∆

over variables ∆ such that ψ1 ∧ ¬ξ1 ` θ∆ and θ∆ ` ψ2 → ξ2 hold. Therefore we have ψ1 ` ξ1 ∨ θ∆,
ψ2 ` ¬θ∆ ∨ ξ2 and hence, ϕ ` (ξ1 ∨ θ∆) ∧ (¬θ∆ ∨ ξ2). �

Corollary 2 In the conditions of the lemma, if ∆ = ∅, then ϕ ` ξi for some i = 1, 2.

Let us prove coNP-hardness in point 1 of the theorem by showing that the set of formulas in
CNF which are valid or unsatisfiable (denote it by Ω) is Karp-reducible to the set of ∅–decomposable
formulas in CNF. We recall that the set Ω is coNP-complete, since the set of valid boolean formulas
in CNF is in P . Let ϕ be a formula in CNF. Consider the following formula

ψ = (ϕ ∨ p) ∧
∧

x∈var (ϕ)

(q ∨ x)

constructed for ϕ, where p, q 6∈ var (ϕ) are “fresh” variables. Clearly, ψ can be converted into CNF
in linear time (in the size of ϕ). We claim that ψ is ∅–decomposable iff ϕ ∈ Ω.

The “if” direction is simple: if ϕ is valid, then ψ is equivalent to (p∨¬p)∧
∧
x∈var (ϕ)(q ∨ x) and

if ϕ is unsatisfiable, then ψ is equivalent to p∧
∧
x∈var (ϕ)(q∨x). For the “only if” direction, suppose

that ϕ 6∈ Ω, but ψ is ∅–decomposable.
Note that the variable q must then belong to the same decomposition component of ψ together

with every variable x ∈ var (ϕ). Indeed, for every such x, (q∨x) is a clause in ψ, hence by Corollary 2,
we would otherwise have ψ ` q or ψ ` x. Neither condition holds, because there exists an assignment
of ψ in which q is false and there is also an assignment of ψ in which x is false. Therefore, all the
variables of ϕ together with q must belong to exactly one ∅–decomposition component of ψ. Now
let us consider a clause ξ ∨ p from the CNF representation of ϕ ∨ p, where ξ is a clause from ϕ. Let
us demonstrate that the variable p must be in the same decomposition component together with at
least one variable x ∈ var (ϕ). If it is not the case, then by Corollary 2, we would have ψ ` p or

17

ψ ` ξ (actually, for every clause ξ from ϕ). The first condition obviously does not hold, since we have
assumed that ϕ is satisfiable and hence, there is an assignment of ψ in which p is false. The second
condition yields ϕ∨ p ` ξ, because any assignment to var (ϕ)∪{p} satisfying ϕ∨ p can be expanded
to an assignment of ψ (by setting q equal to true). Since p 6∈ var (ξ), the condition ϕ ∨ p ` ξ can
hold only if every clause ξ of ϕ is tautological, i.e. if ϕ is a tautology, which is not the case by our
assumption. Thus, we have arrived at contradiction with ∅–decomposability of ψ, having shown
that all its variables must be in exactly one decomposition component.

The above mentioned reduction shows coNP–hardness of ∅DecPart and hence, of ∆DecPart as
well: it suffices to note that ψ is ∅–decomposable iff it is ∅–decomposable with the variable partition
{{p}, var (ϕ) ∪ {q}}.

Let us now prove that ∅DecPart and ∆DecPart are in coNP by showing a Karp-reduction to
the set of valid boolean formulas.

We consider separately the case ∆ = ∅. For a given formula ϕ and a partition {Σ1,Σ2} of
var (ϕ), let us consider the formula χ defined as the conjunction of the formulas from the set

{(ϕ→ ξ1) ∨ (ϕ→ ξ2) | ξ1 ∨ ξ2 ∈ ϕ and var (ξi) ⊆ Σi for i = 1, 2}.

Then it is not hard to verify by Corollary 2 that χ is valid iff ϕ is ∅–decomposable.
Now let ∆ ⊆ var (ϕ) and {Σ1,Σ2} be an arbitrary partition of var (ϕ)\∆. Consider the formulas

ϕ∗Σ1
and ϕ∗Σ2

such that var (ϕ∗Σ1
) ∩ var (ϕ∗Σ2

) = ∆ and for i = 1, 2, each formula ϕ∗Σi
is obtained

from ϕ by renaming the variables from Σ3−i into “fresh” ones, not present in ϕ. We claim that ϕ is
∆–decomposable with the partition {Σ1,Σ2} iff the formula ϕ∗Σ1

∧ ϕ∗Σ2
→ ϕ is valid.

If ϕ is ∆–decomposable with components ψ1 and ψ2 such that var (ψi) ⊆ Σi ∪ ∆ for i = 1, 2,
then clearly we have ϕ∗Σi

` ψi. Since ϕ is equivalent to ψ1 ∧ ψ2, we obtain ϕ∗Σ1
∧ ϕ∗Σ2

` ϕ. In the
reverse direction, if ϕ∗Σ1

∧ϕ∗Σ2
` ϕ, then by interpolation (cf. Lemma 1 in [17]), there exist formulas

ψ1 and ψ2 such that var (ψi) = Σi ∪∆ and ϕ∗Σi
` ψi for i = 1, 2, and ψ1 ∧ ψ2 ` ϕ. Note that any

assignment to var (ϕ) satisfying ϕ can be expanded to an assignment of ϕ∗Σi
, for i = 1, 2. This yields

ϕ ` ψi, i = 1, 2 and hence, ϕ is equivalent to ψ1 ∧ψ2. Due to the definition of ψ1 of ψ2, we conclude
that ϕ is ∆–decomposable with the variable partition {Σ1,Σ2}.

Finally, let us prove point 2 of the theorem. The proof of point 1 shows coNP-hardness of
∅Dec, so it remains to provide a PNP -algorithm for solving this problem. Corollary 2 says that if a
formula ϕ in CNF is ∅–decomposable and contains a clause ξ with variables from both decomposition
components, then ξ must contain a subclause ξ′ ⊂ ξ such that ϕ ` ξ′. Let us demonstrate that this
property gives a PNP –algorithm for deciding ∅Dec.

Given a formula ϕ in CNF, we apply exhaustively the following trasformation rule to ϕ. For
every clause ξ = ξ′ ∨ l from ϕ, where l is a literal and ξ′ is a subclause, we check the condition
ϕ ` ξ′ (by using an NP–oracle) and eliminate l from ξ if the condition holds. Let ϕ′ be the resulting
formula obtained after exhaustive application of this trasformation; clearly, ϕ′ and ϕ are equivalent.
We have var (ϕ′) ⊆ var (ϕ) and by Corollary 2, every clause of ϕ′ contains variables only from one
∅-decomposition component of ϕ (if decomposition exists). Therefore, the union of the set of clauses
of ϕ′ with the set of formulas taut({x}) for each x ∈ var (ϕ)\var (ϕ′) uniquely defines the partition
of var (ϕ) (and thus, the decomposition components of ϕ if it is ∅–decomposable). Together with
Remark 1 this implies that the problem ∅Dec for formulas in CNF belongs to PNP . This completes
the proof of Theorem 1. �

We now prove two auxiliary propositions which will be used in the tractability results below.

Proposition 1 (Positiveness Criterion) A boolean formula ϕ is equivalent to a positive formula
iff the following condition holds:

18

(∗) if η = ξ∧
∧
x∈σ ¬x is an assignment of ϕ, where ∅ 6= σ ⊆ var (ϕ) and ξ is a positive conjunct,

then for every ρσ ∈ ℘(σ), ξ ∧ ρσ is an assignment of ϕ.

Proof. (⇒) : Let ϕ′ be a positive formula in DNF which is equivalent to ϕ. If η is an assignment of
ϕ, then η satisfies at least one of the conjuncts µ of ϕ′, which means that µ ⊆ η and hence, condition
(∗) holds.

(⇐) : W.l.o.g. we may assume that ϕ is in DNF. Suppose that ϕ contains some conjunct ζ with
negative occurrences of variables: ζ = ξ ∧

∧
x∈σ ¬x, σ ⊆ var (ϕ), where ξ is a positive conjunct. The

conjunct ζ defines a set of possible assignments of ϕ. Denote Ω = ℘(σ) \
∧
x∈σ ¬x. By the condition

(∗), for every ρ ∈ Ω, there is an assignment ξ∧ρ∧χ of ϕ, where χ is some assignment to the variables
from var (ϕ) \ var (ζ). This yields that ϕ is equivalent to

(ϕ \ {ζ}) ∨ (ξ ∧
∧
x∈σ
¬x) ∨

∨
ρ∈Ω

(ξ ∧ ρ),

which is equivalent to the formula (ϕ \ {ζ}) ∨ ξ. Thus, we have eliminated the negative occurrences
of σ-variables which appeared in ζ and since the choice of ζ was arbitrary, we conclude that ϕ is
equivalent to a positive formula. �

Remark 2 (Conjunction of DNFs Gives Cartesian Structure) Taking
conjunction of some formulas ξ1 ∨ . . .∨ ξm and ζ1 ∨ . . .∨ ζn in DNF gives the formula in DNF which
has the form

∨
(ξi ∧ ζj), for all pairs 〈ξi, ζj〉, 1 6 i 6 m, 1 6 j 6 n.

Proposition 2 (Existence of Positive Components) If a positive formula ϕ without inessential
variables is ∆–decomposable for some ∆ ⊆ var (ϕ), then it has decomposition components which are
positive formulas.

Proof. Let ψ1 and ψ2 be some ∆–decomposition components of ϕ in DNF and assume that ψ1

contains a conjunct ζ with negative occurrences of variables: ζ = ξ ∧
∧
x∈σ ¬x, σ ⊆ var (ψ1), where

ξ is a positive conjunct. If there is no assignment of ϕ which expands ζ, then from Remark 2 we
conclude that ϕ is equivalent to (ψ1\{ζ})∧ψ2; besides, we have var (ψ1\{ζ})\∆ = var (ψ1)\∆, since
otherwise ϕ would contain inessential variables. If there exists an assignment of ϕ which expands ζ,
then from Proposition 1 and the idea of its proof we conclude that ψ1 is equivalent to (ψ1 \ {ζ})∨ ξ.
As all the variables are essential in ϕ, every variable from σ \∆ must be present in some conjunct
of ψ1 \ {ζ}. Due to the arbitrary selection of the decomposition component ψ1 and conjunct ζ, we
conclude that in both cases, negative occurrences of variables from ψi, i = 1, 2 are eliminated giving
positive ∆–decomposition components of ϕ. �

Theorem 2 (Complexity for Positive CNF) For positive boolean formulas in CNF, the problem
∆Dec is in P . Moreover, ∆-decomposition components can be computed in polynomial time (if
decomposition exists).

Proof. The result follows from Proposition 2 and the three short lemmas below which justify the fact
that a positive formula (in CNF) has a unique prime and irredundant representation. We provide
the full proof here for the sake of completeness.

Lemma 4 (Positive CNF: Criterion for Inessential Variables) If a variable x is inessential
in a positive formula ϕ in CNF, then any clause ξ ∈ ϕ containing x is redundant in ϕ.

19

Proof of the lemma. Assume the opposite, i.e. that the variable x is inessential, but there is a
clause ξ = (η ∨ x) ∈ ϕ, for which no other clause ξ′ exists in ϕ such that ξ′ ⊆ ξ. Let ϕ have the
form ξ ∧

∧
i∈I ζi for some index set I (which is not empty, because otherwise ϕ = ξ and x would

be essential). By our assumption, every clause ζi, i ∈ I, must contain a variable yi which is not
in var (ξ). Thus, there is an assignment v of ϕ, in which all yi are set to true, x is true, and η is
false. Since x is inessential in ϕ, the assignment, which coincides with v on the values of all variables
except x, must satisfy ϕ, so we arrive at contradiction. �

Lemma 5 (Entailment Criterion) If ϕ and ψ are positive formulas in CNF such that ϕ ` ψ,
then for any clause ξ ∈ ψ, there must exist a clause ξ′ ∈ ϕ such that ξ′ ⊆ ξ.

Proof of the lemma. Assume there does not exist such a clause ξ′ for some ξ ∈ ψ. This means that
every clause ζ from ϕ contains a variable which is not present in ξ. Since ϕ and ψ are positive, setting
these variables to true and the remaining variables of var (ϕ) ∪ var (ψ) to false gives an assignment
of ϕ, but clearly it does not satisfy ξ and hence, does not satisfy ψ. �

Lemma 6 (Canonical Form) If two positive formulas ϕ and ψ in CNF are equivalent and do not
contain redundant clauses, then they are syntactically equal, i.e. consist of the same clauses.

Proof of the lemma. Let ξ be a clause in ϕ. We have ψ ` ϕ, hence by Lemma 5, there must be a
clause ξ′ ∈ ψ such that ξ′ ⊆ ξ. Since ϕ ` ψ, there exists a clause ξ′′ ∈ ϕ such that ξ′′ ⊆ ξ′. Thus,
there exist clauses ξ and ξ′′ in ϕ such that ξ′′ ⊆ ξ. If ξ′′ ⊂ ξ, then ξ is redundant in ϕ. Therefore we
have ξ′′ = ξ and ξ = ξ′ and thus, ϕ and ψ consist of the same clauses. �

Let us complete the proof of Theorem 2. Assume we are given a positive formula ϕ in CNF
and a subset ∆ ⊆ var (ϕ). Let ϕ′ be a formula obtained from ϕ by removing all redundant clauses;
this operation can be done in polynomial time and clearly, ϕ′ is equivalent to ϕ. If Σ = var (ϕ) \
(var (ϕ′)∪∆) 6= ∅, then ϕ is equivalent to the conjunction ϕ′∧taut(Σ), and thus ∆-decomposable. If
Σ = ∅, then ϕ′ is ∆-decomposable iff so is ϕ. Since ϕ′ does not contain redundant clauses, by Lemma
4, it also does not contain inessential variables. Hence, by Proposition 2, if ϕ′ is ∆-decomposable
with some components ψ1, ψ2, we may assume that ψ1 and ψ2 are positive formulas in CNF.

To apply Lemma 6, let us show that if ϕ′ is ∆-decomposable into positive formulas ψ1 and ψ2, then
the conjunction ψ1 ∧ψ2 does not contain redundant clauses. Assume that every ∆-decomposition of
ϕ′ of this kind gives a conjunction ψ1∧ψ2 having a redundant clause. Eliminating redundant clauses
from this conjunction gives an equivalent formula ψ′1 ∧ψ′2, where var (ψ′i) ⊆ var (ψi) for i = 1, 2. By
our assumption, ψ′1 and ψ′2 are not ∆-decomposition components of ϕ′, thus one of the conditions of
points 1-3 from Definition 1 must be violated. The condition in point 2 is preserved by elimination
of redundant clauses and one of the remaining conditions is violated iff var (ψ′1∧ψ′2) ⊂ var (ψ1∧ψ2).
This means that some variable is inessential in ϕ′, but this is a contradiction due to Lemma 4, since
ϕ′ is positive and does not contain redundant clauses.

Finally, by Lemma 6, ϕ′ must be syntactically equal to ψ1 ∧ ψ2 and thus the set of clauses from
ϕ′ uniquely defines the partition of var (ϕ′) wrt ∆ (and also ∆-decomposition components of ϕ′).
Applying Remark 1 concludes the proof of the theorem. �

Theorem 3 (Complexity for Full DNF) For boolean formulas in full DNF,

1. the problem ∆DecPart is in P ;

2. the problem ∅Dec is reducible to DecF2 and hence is in P .

20

In each of the cases, the corresponding decomposition components can be computed in polynomial
time.

Proof. Note the following important characterization:

Lemma 1 (Semantic Criterion of Decomposability) Let ϕ be a boolean formula, V be the
set of its satisfying assignments, and let ∆ ⊆ var (ϕ) be a subset of variables. The formula ϕ is
∆–decomposable with a variable partition {Σ1,Σ2} iff V = V |Σ1∪∆] V |Σ2∪∆, where for i = 1, 2,
V |Σi∪∆ is the restriction of V onto the variables from Σi ∪∆ and V |Σ1∪∆] V |Σ2∪∆ is the set of all
assignments v such that the restriction of v onto Σi ∪∆ belongs to V |Σi∪∆.

Proof of the lemma. (⇐) : W.l.o.g. we may assume that V and V |Σi∪∆, for i = 1, 2, are sets of
conjunctions of literals. Consider the formulas in DNF: ψi =

∨
ξ∈V |Σi∪∆

ξ, for i = 1, 2. We have
var (ψi) = Σi ∪∆. By the conditions of the lemma and by Remark 2, ϕ is equivalent to ψ1 ∧ψ2 and
thus ∆–decomposable with the variable partition {Σ1,Σ2}.

(⇒) : Let ψ1 and ψ2 be ∆–decomposition components of ϕ corresponding to the partition
{Σ1,Σ2}. Then the equivalence of ϕ and ψ1 ∧ ψ2 immediately yields the required statement, since
for i = 1, 2, each V |Σi∪∆ is the set of assignments of ψi. �

Proof of point 1. Let ϕ be a formula in full DNF and {Σ1,Σ2} be a partition of var (ϕ). Since full
DNF is the explicit representation of all satisfying assignments, one can compute the sets V |Σi∪∆,
for i = 1, 2 and check whether the condition in Lemma 1 holds in polynomial time. If this is the case,
the formulas ψi, i = 1, 2 from the proof of the lemma are the required ∆–decomposition components.

Proof of point 2. Let ϕ be a formula in full DNF. Let Σ be a set of variables disjoint from var (ϕ)
such that there is an injection ι : var (ϕ) → Σ. Consider the multilinear polynomial F constructed
from ϕ as follows. If x1 ∧ . . . , xk ∧ ¬xk+1 ∧ . . . ∧ ¬xn is a conjunct of ϕ, then F has the monomial,
which is the product of variables x1 · . . . · xk · ι(xk+1) · . . . · ι(xn), and no other monomials are in F .
In other words, when constructing F , all the negative literals are replaced by “fresh” variables. We
claim that ϕ is ∅-decomposable iff F is factorable over F2.

(⇐): If G1 and G2 are factors of F , then they do not have variables in common. Note that for
any variable x ∈ var (ϕ), x occurs in Gi for some i = 1, 2 iff ι(x) occurs in Gi. Otherwise F would
have a monomial with both x and ι(x), which is impossible, since ϕ is in full DNF. For the same
reason, every Gi must contain at least one variable x ∈ var (ϕ).

Now for i = 1, 2, let ψi be the boolean formula in DNF constructed from Gi by converting
monomials into conjuncts and applying the inverse of the function ι, i.e. if x1 ·. . .·xk ·ι(xk+1)·. . .·ι(xn)
is a monomial of Gi, then x1, . . . , xk,¬xk+1, . . . ,¬xn is a conjunct of ψi. By the above mentioned,
we have var (ψ1) ∩ var (ψ2) = ∅. Then by Remark 2, the condition F = G1 · G2 yields that ϕ is
equivalent to ψ1 ∧ ψ2, i.e. ψ1 and ψ2 are the required decomposition components.

(⇒): If ϕ is ∅-decomposable, then it has decomposition components ψ1 and ψ2 as described in
the proof of Lemma 1 for ∆ = ∅. Since var (ψ1) ∩ var (ψ2) = ∅, we conclude that F has factors
corresponding to ψ1 and ψ2. �

21

Theorem 4 (Decomposition of Positive DNF and Factorization)
For positive boolean formulas in DNF without redundant conjuncts, the problem ∅Dec is equivalent

to DecF2.

Proof. Let ϕ be a positive formula in DNF without redundant conjuncts and let F be the multilinear
polynomial corresponding to ϕ. We show that ϕ is ∅–decomposable iff F is factorable over F2.

(⇐): If F = G1 ·G2, then G1 and G2 do not have variables in common and every monomial of F
is a product of some monomials from G1 and G2. Neither of the polynomials G1 and G2 can have the
constant monomial (i.e. 1), because otherwise ϕ would contain redundant conjuncts. For i = 1, 2, let
ψi be the formula in DNF corresponding to Gi, i.e. ψi is the disjunction of conjuncts corresponding
to the monomials of Gi. By Remark 2, then ϕ is ∅–decomposable with the components ψ1 and ψ2.

(⇒): Let us first prove the auxiliary lemma which is analogous to Lemma 4, but is formulated
for the case of DNF.

Lemma 7 (Positive DNF: Criterion for Inessential Variables) If a variable x is inessential
in a positive formula ϕ in DNF, then any conjunct ξ ∈ ϕ containing x is redundant in ϕ.

Proof of the lemma. Assume the opposite, i.e. the variable x is inessential in ϕ, but there is a
conjunct ξ = (η ∧ x) of ϕ, for which no other conjunct ξ′ exists in ϕ such that ξ′ ⊆ ξ. Let ϕ have
the form ξ ∨

∨
i∈I ζi for some index set I (which is not empty, since otherwise ϕ = η ∧ x and x is

essential). By our assumption, every conjunct ζi, i ∈ I, contains a variable yi, which is not in var (ξ).
Thus, there is an assignment v of ϕ, in which all yi are set to false, η is true and x is true. Since x is
inessential in ϕ, the assignment, which agrees with v on all the variables except x, must also satisfy
ϕ, so we arrive at contradiction. �

Let us complete the proof of Theorem 4. Let ϕ be a positive formula in DNF without redundant
conjuncts. Let ϕ be ∅–decomposable into some components ψ1 and ψ2. By Lemma 7 and Proposition
2, we may assume that these formulas are positive. Let us prove that taking conjunction of ψ1 and
ψ2 gives a formula which is syntactically equivalent to ϕ (i.e. it consists of the same conjuncts as ϕ).
By Remark 2, every conjunct from ψ1 ∧ψ2 has the form ξ1 ∧ ξ2 for some ξi ∈ ψi, i = 1, 2. Let ξ be a
conjunct from ϕ. As ϕ ` ψ1 ∧ ψ2, we have ξ ` ψ1 ∧ ψ2. Then there must be a conjunct ξ′ in ψ1 ∧ ψ2

such that ξ′ ⊆ ξ. Otherwise, if every conjunct from ψ1 ∧ ψ2 has a variable not in ξ, we immediately
conclude ξ 6` ψ1 ∧ψ2, which is a contradiction. Indeed, then there would exist an assignment v of ϕ,
which makes ξ true and all the variables from var (ψ1 ∧ ψ2) \ var (ξ) false.

Similarly, as ψ1∧ψ2 ` ϕ, for ξ′ there must be a conjunct ξ′′ in ϕ such that ξ′′ ⊆ ξ′. We obtain that
there are conjuncts ξ and ξ′′ in ϕ such that ξ′′ ⊆ ξ. Since ϕ does not contain redundant conjuncts,
we conclude that ξ′′ = ξ and hence, ξ = ξ′. The argument shows that ϕ and ψ1 ∧ ψ2 consist of the
same conjuncts, i.e. we have shown that if ϕ is ∅–decomposable, then there exists a decomposition
into components ψ1 and ψ2 such that the conjunction of ψ1 and ψ2 gives ϕ. By Remark 2, we obtain
that the polynomial F is factorable. �

Corollary 1 (Complexity for DNF)

1. For formulas in DNF, the problems ∅DecPart and ∆DecPart
are coNP-complete;

2. for positive boolean formulas in DNF, the problem ∅Dec is in P and the corresponding decom-
position components can be computed in polynomial time.

Proof. (1): coNP–hardness of ∅DecPart (and hence, of ∆DecPart) follows the the proof of Theorem
1. The set of formulas in DNF which are valid or unsatisfiable is coNP-complete and it suffices to

22

note that if ϕ is a formula in DNF, then by Remark 2, the formula ψ constructed in the proof of point
1 of Theorem 1 can be converted into DNF in polynomial time, since

∧
x∈var (ϕ)(q ∨ x) is equivalent

to q ∨
∧
x∈var (ϕ) x. The containment of ∆DecPart in coNP is shown by the second part of the proof

of point 1 of Theorem 1, since the construction there does not depend on the normal form, in which
the formula ϕ is given.

(2): Let ϕ be a positive formula in DNF and let ϕ′ be a formula obtained from ϕ by removing
all redundant conjuncts. This operation can be done in polynomial time and clearly, ϕ′ is equivalent
to ϕ. If Σ = var (ϕ) \ var (ϕ′) 6= ∅, then ϕ is equivalent to the conjunction ϕ′ ∧ taut(Σ), and
thus ∅-decomposable. If Σ = ∅, then ϕ′ is ∅-decomposable iff so is ϕ. Since ϕ′ does not contain
redundant conjuncts, applying Theorems 4 and 5 proves the required statement. �

23

