
On Tractability of Disjoint AND-Decomposition
of Boolean Formulas?

Pavel Emelyanov1, Denis Ponomaryov2

1 Institute of Informatics Systems, Novosibirsk, Russia;
Novosibirsk State University

2 Institute of Artificial Intelligence, University of Ulm, Germany;
Institute of Informatics Systems, Novosibirsk, Russia

emelyanov@iis.nsk.su, ponom@iis.nsk.su

Abstract. Disjoint AND-decomposition of a boolean formula means its
representation as a conjunction of two (or several) formulas having dis-
joint sets of variables. We show that deciding AND-decomposability is
intractable in general for boolean formulas given in CNF or DNF and
prove tractability of computing AND-decompositions of boolean formu-
las given in positive DNF, Full DNF, and ANF. The results follow from
tractability of multilinear polynomial factorization over the finite field of
order 2, for which we provide a polytime factorization algorithm based
on identity testing for partial derivatives of multilinear polynomials.

1 Introduction

Decomposition of boolean functions is an important research topic having a
long history and a wide range of applications. Among other application fields
such as game and graph theory, it has attracted the most attention in the logic
circuit synthesis. Decomposition is related to the algorithmic complexity and
practical issues of implementation of electronic circuits, their size, time delay,
and power consumption. The report [11] contains an extensive survey of decom-
position methods till the mid–1990’s. The results of the next fifteen years of
research are presented in [8, 15, 7, 2, 4, 5, 3].

Typically one is interested in decompositions of the form F = F1 � . . .� Fk

where � ∈ {OR, AND, XOR}. Bi-decomposition is the most important case
of decomposition of boolean functions. Even though it may not be stated ex-
plicitly, this case is considered in many papers: [9, 1, 8, 4, 2, 3] and [5, Ch. 3–
6]. Bi-decomposition has the form: F (X) = π(F1(Σ1, ∆), F2(Σ2, ∆)), where
π ∈ {OR, AND, XOR}, ∆ ⊆ X, and {Σ1, Σ2} is a partition of the variables
X\∆. As a rule, a decomposition into more than two components can be obtained
by iterative computation of bi-decomposition. If ∆ = ∅ then decomposition is
called disjoint and considered as optimal for many reasons.

Bioch [2] studied computational properties of modular decompositions based
on a generalization of Shannon’s Expansion. A set of variables A is called
modular set of a boolean function F (X) if F can be represented as F (X) =

? An extended version of the paper containing proofs is available from
http://persons.iis.nsk.su/files/persons/pages/and-decomp-full.pdf



H(G(A), B), where {A,B} is a partition of X and H,G are some boolean func-
tions. The function G(A) is called component of F and a modular decomposition
is obtained from iterative decomposition into such components. It is shown that
in general it is coNP-complete to decide whether a subset of variables is modular,
however for monotone functions in DNF this problem is tractable.

We note that a function may have a modular or bi-decomposition, but may
not be AND-decomposable, since this form of decomposition requires represen-
tation of a function strictly as a conjunction. Thus, AND–decomposition can be
viewed as a special case of modular and bi-decomposition. Our results demon-
strate that deciding even this special case of decomposability is coNP-complete
for formulas given in CNF and DNF. On the other hand, we show tractability of
computing AND-decompositions of formulas given in the forms: positive DNF,
Full DNF, and ANF. It is not obvious, whether the technique used by Bioch
for positive DNF is applicable to these cases of AND-decomposition. We note
however that in our Lemma 1, the idea of computing decomposition components
resembles the final step of constructing components in [2, Sect. 2.9].

Approaches to decomposition of boolean functions can be classified into logic
and algebraic. The first are based on equivalent transformations of formulas in
propositional logic. The second ones consider boolean functions as algebraic ob-
jects with the corresponding transformation rules. The most elaborated repre-
sentation is polynomials, usually over finite fields, among which F2 (the Galois
field of order 2) is the best known. Shpilka and Volkovich [14] noted the strong
connection between polynomial factorization and polynomial identity testing
(i.e. testing equality to the zero polynomial). It follows from their results that
a multilinear polynomial over F2 can be factored in time that is cubic in the
size of the polynomial (given as a symbol sequence). We provide a factorization
algorithm for multilinear polynomials over F2 which runs in cubic time and is
based on identity testing for partial derivatives of a product of polynomials ob-
tained from the input one. We note however that while staying in the cubic time
complexity, the same can be achieved without computing the product explicitly,
thus contributing to efficiency of factorization of large input polynomials.

In our work, we follow the logic approach to decomposition, but show that
tractability of multilinear polynomial factorization over F2 gives polytime de-
composition algorithms for boolean functions in positive DNF and Full DNF.

2 Preliminaries

2.1 Basic Facts about AND-Decomposability

Let us introduce some conventions and notations. For a boolean formula ϕ, we
denote the set of its variables by var (ϕ). If Σ is a set of propositional variables
and var (ϕ) ⊆ Σ, then we say that the formula ϕ is over variables Σ (or over Σ,
for short); taut(Σ) denotes a valid formula over Σ. We call ϕ positive if it does
not contain negative literals. If ξ and ξ′ are clauses (or conjuncts, respectively),
then the notation ξ′ ⊆ ξ means that ξ′ is a subclause (subconjunct) of ξ, i.e. ξ′

is given by a non-empty subset of literals from ξ. If ϕ is in DNF, then a conjunct



ξ of ϕ is called redundant in ϕ if there exists another conjunct ξ′ of ϕ such that
ξ′ ⊆ ξ.

We now define the main property of boolean formulas studied in this paper,
the definition is adopted from [12], where it is given in a general form.

Definition 1 (Decomposability) A boolean formula ϕ is called disjointly AND–
decomposable (or decomposable, for short) if it is equivalent to the conjunction
ψ1 ∧ ψ2 of some formulas ψ1 and ψ2 such that:

1. var (ψ1) ∪ var (ψ2) = var (ϕ);
2. var (ψ1) ∩ var (ψ2) = ∅;
3. var (ψi) 6= ∅, for i = 1, 2.

The formulas ψ1 and ψ2 are called decomposition components of ϕ. We say
that ϕ is decomposable with a variable partition {Σ1, Σ2} if ϕ has some decom-
position components ψ1 and ψ2 over the variables Σ1 and Σ2, respectively.

Note that a similar definition could be given for OR–decomposability, i.e.
for decomposition into the disjunction of ψ1 and ψ2. Clearly, a formula ϕ is
AND–decomposable iff ¬ϕ is OR–decomposable.

Observe that Definition 1 is formulated with the two components ψ1 and ψ2,
which in turn can be decomposable formulas. Since at each decomposition step,
the variable sets of the components must be proper subsets of the variables of
the original formula ϕ, the decomposition process necessarily stops and gives
formulas which are non-decomposable. The obtained formulas define some par-
tition of var (ϕ) and the fact below (which follows from a property of a large
class of logical calculi shown in [12]) says that this variable partition is unique.

Fact 1 (Uniqueness of Decompositions - Corollary of Thm. 1 in [12])
If a boolean formula ϕ is decomposable, then there is a unique partition {π1,
. . . , πn} of var (ϕ), 2 6 n, such that ϕ is equivalent to

∧
{ψi | var (ψi) = πi, i =

1, . . . , n}, where each formula ψi is not decomposable.

This means that any possible algorithm1 for decomposing a formula into com-
ponents could be applied iteratively to obtain from a given ϕ some formulas ψi,
i = 1, . . . , n, which are non-decomposable and uniquely define a partition of the
variables of ϕ.

2.2 The Computational Problems Considered in the Paper

In the text, we omit subtleties related to efficient encoding of input sets of
variables and boolean formulas (given in CNF, DNF, or ANF) assuming their
standard representation as symbol sequences. The complexity of each computa-
tional problem below will be defined wrt the size of the input formula.

∅Dec For a given boolean formula ϕ, decide whether ϕ is decomposable.

1 Existence and complexity of decomposition algorithms in various logics have been
studied in [10, 6, 13, 12].



∅DecPart For a given boolean formula ϕ and a partition {Σ1, Σ2} of var (ϕ),
decide whether ϕ is decomposable with this partition.

It turns out that the problem ∅Dec for formulas in DNF is closely related to
the problem of multilinear polynomial factorization (DecF2) which we formulate
below. The connection is in particular due to the fact that taking a conjunction
of two formulas in DNF is quite similar to taking a product of two multivariate
polynomials. We recall that a multivariate polynomial F is linear (multilinear)
if the degree of each variable in F is 1. We denote a finite field of order 2 by F2

and say that a polynomial is over the field F2 if it has coefficients from F2. A
polynomial F is called factorable over F2 if F = G1 ·G2, where G1 and G2 are
non-constant polynomials over F2. The following important observation shows
further connection between polynomial factorization and the problem ∅Dec:

Fact 2 (Factoring over F2) If a multilinear polynomial F is factorable over
F2, then its factors do not have variables in common.

Clearly, if some factors G1 and G2 of F have a common variable then the
polynomial G1 · G2 is not linear and thus, is not equal to F in the ring of
polynomials over F2.

DecF2 Given a non-constant multilinear polynomial F over F2, decide whether
F is factorable over F2.

3 Main Results

First, we formulate the hardness result on decomposition of formulas given in
the Conjunctive Normal Form and then proceed to formulas in full DNF, positive
DNF, and ANF. We note that decomposition itself is conceptually closer to the
CNF representation, since it gives a conjunction of formulas. The situation with
positive DNF and full DNF is more complicated, because decomposable formulas
in DNF have a cartesian structure which can be recognized in polytime, but the
proof of this fact relies on polynomial factorization over F2.

Theorem 1 (Complexity for CNF) For boolean formulas given in CNF,
1. the problem ∅DecPart is coNP–complete;
2. the problem ∅Dec is coNP–hard and is in PNP .

Recall that the Algebraic Normal Form of a boolean formula (ANF) can
be viewed as a multilinear polynomial over F2. Due to Fact 2, the notion of
decomposability for formulas in ANF can be defined in terms of polynomial
factorability over F2. For this reason, we use the terminology of polynomials
when talking about algebraic results further in this section. We start with the
complexity of decomposition for formulas in Full DNF (i.e. formulas given by
the set of their satisfying assignments) and then formulate results on positive
DNF and polynomial factorization over F2. Interestingly, the latter problem
is related also to decomposition of formulas in Full DNF, even though such
formulas contain negative literals. The proof of the theorem below uses the trick
that negative literals can be encoded as “fresh” variables giving a positive DNF.



Theorem 2 (Complexity for Full DNF) For boolean formulas in Full DNF,

1. the problem ∅DecPart is in P ;
2. the problem ∅Dec is reducible to DecF2 and hence is in P .

In each of the cases, the corresponding decomposition components can be
computed in polynomial time.

It turns out that for a positive formula ϕ in DNF without redundant con-
juncts, decomposability is equivalent to factorability over F2 of the multilinear
polynomial corresponding to ϕ. The polynomial is obtained as the sum of mono-
mials (products of variables) corresponding to the conjuncts of ϕ. Observe that
the positive formula ϕ = x∨(x∧y)∨z with the redundant conjunct x∧y is equiv-
alent to (x ∨ z) ∧ taut({y}) and thus, decomposable. However, the polynomial
x+ xy + z corresponding to ϕ is non-factorable. Also note that if a polynomial
has a factor with the constant monomial, e.g. xy + y = (x + 1) · y, then the
corresponding boolean formula in DNF contains a redundant conjunct.

Theorem 3 (Decomposition of Positive DNF and Factorization)
For positive boolean formulas in DNF without redundant conjuncts, the problem
∅Dec is equivalent to DecF2.

We formulate the main result on formulas given in DNF in the following
corollary which is a consequence of Theorems 3, 4, and the constructions from
the proof of Theorem 1 given in the extended version of the paper.

Corollary 1 (Complexity for DNF)
1. For formulas in DNF, the problem ∅DecPart is coNP-complete;
2. for positive boolean formulas in DNF, the problem ∅Dec is in P and the cor-

responding decomposition components can be computed in polynomial time.

We now turn to tractability of the problem DecF2, to which the decomposition
problems in Theorem 2 and Corollary 1 are reduced. Originally, tractability
of DecF2 is a consequence of the results from [14], where the authors provide
two solutions to polynomial decomposition over an arbitrary finite field F. The
first one is a decomposition algorithm, which has a subroutine for computing
a justification assignment for an input polynomial, and relies on a procedure
for identity testing in F. It is proved that the complexity of this algorithm is
O(n3 · d · IT ), where n is the number of variables, d is the maximal individual
degree of variables in the input polynomial, and IT is the complexity of identity
testing in F. It follows that this gives a decomposition algorithm of quartic
complexity for factoring multilinear polynomials over the field F2. The second
solution proposed by the authors is a decomposition algorithm which constructs
for every variable of an input polynomial f , a combination f · f1 − f2 · f3 of
four polynomials, where each fi is a “copy” of f under a renaming of some
variables. Every combination is tested for equality to the zero polynomial. It can
be seen that this gives an algorithm of cubic complexity for factoring multilinear
polynomials over F2.



In Theorem 4 below, we provide a solution to factorization of multilinear
polynomials over F2, which is different from the both algorithms proposed in
[14]. The only common feature between the approaches is application of identity
testing, which seems to be inevitable in factorization. Our solution is based on
computation of partial derivatives of polynomials obtained from the input one
and gives an algorithm of cubic complexity. More precisely, the product f1 · f2
is computed, where fi are polynomials obtained from the input, and then for
each variable x, the partial derivative of f1 · f2 is tested for equality to zero. In
particular, our algorithm operates polynomials which are smaller than the ones
considered in [14]. Moreover, we note in the extended version of the paper that
the same can be achieved without computing the product f1 ·f2 explicitly, which
is particularly important on large inputs. We present the factorization algorithm
as the theorem below to follow the complexity oriented style of exposition used
in this paper.

Theorem 4 (Tractability of Linear Polynomial Factorization over F2)
The problem DecF2 is in P and for any factorable multilinear polynomial, its fac-
tors can be computed in polynomial time.

Proof. Let F be a non-constant multilinear polynomial over F2. We will describe
a number of important properties which hold if F is factorable over F2. Based
on these properties, we will derive a polynomial procedure for partitioning the
variables of F into disjoints sets Σ1 and Σ2 such that if F is factorable, then it
must have factors which are polynomials having these sets of variables. Having
obtained Σ1 and Σ2, it suffices to check whether F is indeed factorable wrt this
partition: if the answer is “no”, then F is non-factorable, otherwise we obtain the
corresponding factors. Checking whether F is factorable wrt a variable partition
can be done efficiently due the following fact:

Lemma 1 (Factorization Under a Given Variable Partition) In the no-
tations above, for i = 1, 2, let Si be the set of monomials obtained by restricting
every monomial of F onto Σi (for instance, if F = xy + y and Σ1 = {x}, then
S1 = {x, 1}). Let Fi be the polynomial consisting of the monomials of Si for
i = 1, 2. Then F is factorable into some polynomials with the sets of variables
Σ1 and Σ2 iff F = F1 · F2.

Proof of the lemma. The “if” direction is obvious, since for i = 1, 2, each
Fi necessarily contains all the variables from Σi. Now assume that F has a
factorization F = G1 · G2 which corresponds to the partition Σ1, Σ2. Then
every monomial of F is a product of some monomials from G1, G2, i.e. it either
contains variables of both Σ1 and Σ2, or only from Σi for some i = 1, 2 iff G3−i

contains the constant monomial. This means that Si is the set of monomials of
Gi for i = 1, 2, i.e. Fi = Gi. �

Let us proceed to properties of factorable polynomials. Let Fx=v be the
polynomial obtained from F by setting x equal to v. Note that ∂F

∂x = Fx=1+Fx=0.
First of all, note that if some variable x is contained in every monomial of

F , then F is either non-factorable (in case F = x), or trivially factorable, i.e.



F = x · ∂F
∂x . We further assume that there is no such variable in F . We also

assume that F 6= x+ 1, i.e. F contains at least two variables2.
Let F be a polynomial over the set of variables {x, x1, . . . , xn}. If F is fac-

torable, then it can be represented as
F = (x ·Q+R) ·H, where

– the polynomials Q,R, and H do not contain x;
– Q and R do not have variables with H in common;
– R is a non-empty polynomial (since F is not trivially factorable);
– the left-hand side of this product is a non-factorable polynomial.

Then we have Fx=0 = R · H and also ∂F
∂x = Q · H. Obviously, the both

polynomials can be computed in polynomial time. Let y be a variable of F
different from x and consider the following derivative of the product of these
polynomials:

∂
∂y (Q ·R ·H2) = ∂Q

∂y RH
2 +Q ∂

∂y (RH2) = ∂Q
∂y RH

2 + ∂R
∂y QH

2 + 2∂H
∂y QRH.

Since in F2 for all z it holds that 2z = z + z = 0, we have:
∂
∂y (Q ·R ·H2) = H2 ·

(
∂Q
∂y R+ ∂R

∂y Q
)

= H2 · ∂
∂y (Q ·R) .

It follows that in case y is a variable from H, we have ∂
∂y (Q ·R) = 0 and thus,

∂
∂y (Q · R · H2) = 0. Let us now show the opposite, assume that the variable y
does not belong to H and prove that the derivative is not equal to zero.

Since y does not belong to H, in general, Q and R have the form

Q = Ay +B, R = Cy +D,

for some polynomials A,B,C,D not containing y. Then Q ·R = ACy2 + (AD+
BC)y +BD and hence, ∂

∂y (Q ·R) = AD +BC.
Thus, we need to show that AD + BC 6= 0. Assume the contrapositive, i.e.

that AD +BC = 0. Note that AD and BC can not be zero, because otherwise
at least one of the following holds: A = B = 0, A = C = 0, D = B = 0, or
D = C = 0. The first two conditions are clearly not the case, since we have
assumed that x and y are not contained in H, while the latter conditions yield
that F is trivially factorable (wrt the variable y or x, respectively). From this
we obtain that AD +BC = 0 holds iff AD = BC (since we are in F2).

Let B = f1 · . . . · fm and C = g1 · . . . · gn be the (unique) factorizations of B
and C into non-factorable polynomials. We have AD = f1 · . . . · fm · g1 · . . . · gn,
thus this may assume that A = f1 · . . . · fk · g1 · . . . · gl for some 0 6 k 6 m and
0 6 l 6 n (when k = l = 0, we assume that A = 1). The polynomials B,C,D
can be represented in the same form. Let us denote for some polynomials U, V
by (U, V ) the greatest common divisor of U and V . Then A = (A,B) · (A,C),
B = (A,B) · (D,B), similarly for C and D, and we obtain

x ·Q+R = x · (Ay +B) + (Cy +D) =

= x · ((A,B)(A,C)y + (A,B)(D,B)) + ((A,C)(D,C)y + (D,B)(D,C)) =
2 We note that besides the factors of the form x and x + 1, there is a number of other

simple cases of factorization that can be recognized easily.



= ((A,B)x+ (D,C))((A,C)y + (D,B)),

which is a contradiction, because we have assumed that x·Q+R is non-factorable.
We have obtained a procedure for partitioning the variables of F into disjoint
sets Σ1 and Σ2 in the following way. Having chosen some initial variable x from
F , we first assign Σ1 = {x}, Σ2 = ∅ and compute the polynomial Q · R · H2

(which equals ∂F
∂x · Fx=0). Then for every variable y from F (distinct from x),

we compute the derivative ∂
∂y (Q ·R ·H2). If it equals to zero, we put y into Σ2,

otherwise we put y into Σ1. If at the end we have Σ2 = ∅, then the polynomial
F is non-factorable. Otherwise it remains to apply Lemma 1 to verify whether
the obtained sets Σ1 and Σ2 indeed correspond to a factorization of F . If the
answer is “no”, then F is non-factorable, otherwise the polynomials F1 and F2

defined in Lemma 1 are the required factors. �

If n is the size of the input polynomial as a symbol sequence, then it takes
O(n2) steps to compute the polynomial G = Q · R · H2 and test whether the
derivative ∂G

∂y equals zero for a variable y (since identity testing is trivial in
F2). As we must verify this for every variable y 6= x, we have a procedure that
computes a candidate variable partition in O(n3) steps. Then it takes O(n2)
time to verify by Lemma 1 whether this partition indeed corresponds to factors
of F .

4 Conclusions

We have noted that decomposability is intractable in general for boolean formu-
las given in CNF or DNF. On the other hand, we have shown the existence of
polytime algorithms for computing decomposition components of positive for-
mulas in DNF and formulas given in Full DNF, and the Algebraic Normal Form.
We believe that the tractability result on positive DNF can contribute to im-
proving efficiency of existing model counting techniques, while the result on Full
DNF can be applied in optimization of boolean functions given by lookup tables.
Since AND–decomposability and OR-decomposability are the dual notions, our
results are also applicable to the latter case. The factorization algorithm for mul-
tivariate polynomials over F2 given in this paper can be used to implement an
efficient solution to disjoint AND-decomposition of formulas in DNF and ANF.
It is an open question whether the algorithm can be used for obtaining decom-
positions of boolean formulas with a non-empty shared set of variables between
the components. Further research questions include implementation of the poly-
time decomposition algorithms and their evaluation on industrial benchmarks
for boolean circuits.

Acknowledgements

The first author was supported by the Russian Foundation for Humani-
ties, grant No. 13-01-12003B. The second author was supported by the German
Research Foundation within the Transregional Collaborative Research Center
SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems”.



References

1. Bengtsson, T., Martinelli, A., Dubrova, E.: A fast heuristic algorithm for disjoint
decomposition of Boolean functions. In: Notes of the 11th IEEE/ACM Interna-
tional Workshop on Logic & Synthesis (IWLS’02). (2002) 51–55

2. Bioch, J.C.: Decomposition of Boolean functions. In Crama, Y., Hammer, P.L.,
eds.: Boolean Models and Methods in Mathematics, Computer Science, and Engi-
neering. Volume 134 of Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, New York, NY, USA (2010) 39–78

3. Chen, H., Janota, M., Marques-Silva, J.: QBF-based Boolean function bi-
decomposition. In: Proceedings of the Design, Automation & Test in Europe
Conference (DATE’12), IEEE (2012) 816–819

4. Choudhury, M., Mohanram, K.: Bi-decomposition of large Boolean functions using
Blocking Edge Graphs. In: Proceedings of the 2010 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’10), Piscataway, New Jersy, USA,
IEEE Press (2010) 586–591

5. Khatri, S.P., Gulati, K., eds.: Advanced Techniques in Logic Synthesis, Optimiza-
tions and Applications. Springer, New York Dordrecht Heidelberg London (2011)

6. Konev, B., Lutz, C., Ponomaryov, D., Wolter, F.: Decomposing description logic
ontologies. In: Proceedings of the Twelfth International Conference on Principles
of Knowledge Representation and Reasoning (KR’10), Palo Alto, California, USA,
AAAI Press (2010)

7. Kuon, I., Tessier, R., Rose, J.: FPGA Architecture: Survey and Challenges. Now
Publishers Inc, Boston - Delft (2008)

8. Mishchenko, A., Sasao, T.: Large-scale SOP minimization using decomposition and
functional properties. In: Proceedings of the 40th ACM/IEEE Design Automation
Conference (DAC’03), New York, NY, USA, ACM (2003) 149–154

9. Mishchenko, A., Steinbach, B., Perkowski, M.A.: An algorithm for bi-
decomposition of logic functions. In: Proceedings of the 38th ACM/IEEE Design
Automation Conference (DAC’01), New York, NY, USA, ACM (2001) 103–108

10. Morozov, A., Ponomaryov, D.: On decidability of the decomposability problem for
finite theories. Siberian Mathematical Journal 51(4) (2010) 667–674

11. Perkowski, M.A., Grygiel, S.: A survey of literature on function decomposition,
Version IV. PSU Electrical Engineering Department Report, Department of Elec-
trical Engineering, Portland State University, Portland, Oregon, USA (November
1995)

12. Ponomaryov, D.: On decomposability in logical calculi. Bulletin
of the Novosibirsk Computing Center 28 (2008) 111–120, available at
http://persons.iis.nsk.su/files/persons/pages/delta–decomp.pdf

13. Ponomaryov, D.: The algorithmic complexity of decomposability in fragments of
first-order logic, Research Note. Abstract appears in Proc. Logic Colloquium’ 14.
Available at http://persons.iis.nsk.su/files/persons/pages/sigdecomp.pdf (2014)

14. Shpilka, A., Volkovich, I.: On the relation between polynomial identity testing
and finding variable disjoint factors. In: Proceedings of the 37th International
Colloquium on Automata, Languages and Programming. Part 1 (ICALP 2010).
Volume 6198 of Lecture Notes in Computer Science., Springer (2010) 408–419

15. Steinbach, B., Lang, C.: Exploiting functional properties of Boolean functions
for optimal multi-level design by bi-decomposition. Artificial Intelligence Review
20(3–4) (2003) 319–360


