The Selection Problem in Multi-Query Optimization:
a Comprehensive Survey

Sergey Zinchenko, Denis Ponomaryov

ABSTRACT

View materialization, index selection, and plan caching are well-
known techniques to speed up query processing in database systems.
In all these tasks it is necessary to select and save a subset of the
most useful candidates (views/indexes/plans) for re-use within
a given space/time budget. In this paper, we propose a unified
view on these selection problems, identify the root causes of their
complexity, and provide a detailed analysis of techniques to cope
with them. Our study gives a modern classification of selection
algorithms known in the literature, including the latest ones based
on Machine Learning. We provide a ground for re-use of the
selection techniques between different optimization scenarios and
highlight challenges and promising directions in the field.

1 INTRODUCTION

With the growing data storage and analysis demands, Data Ware-
houses (DWH)became increasingly widespread providing an unified
access to data coming from a large number of heterogeneous sources.
To mitigate the costs of configuring, maintatining, and scaling DB
systems, platforms based on Database-as-a-Service (DBaaS) are now
being widely implemented. Due to a typically large number of
similar requests to service-based DB systems it proves useful to op-
timize incoming queries in series and reuse common computations
between them. Multi-Query Optimization (MQO) aims at finding
and reusing common computations for a more efficient workload
execution. Savings achieved by re-use are typically called benefit. In
general, the task is to find candidate computations for re-use which
provide the highest benefit, while respecting the constraints on the
available resources (e.g., disk space or computing time). This task
can be divided into three orthogonal subproblems: 1) discovering
common computations between queries, 2) selecting the most useful
ones, and 3) making an optimal plan for their re-use. In this paper,
we focus only on the second problem, i.e., the problem of selection.

One obtains different instances of this problem depending on
the type of common candidate computations considered and the
range of possible actions over the selected candidates. For example,
in DWH scenarios, free disk space can be used to save (materialize)
common data (views) [59]. The precomputed data can then be read
from the disk instead of computing from scratch, which can speed
up query execution by several orders of magnitude. The selection
problem in this scenario is typically called View Selection Problem
(VSP), which is to identify a set of views that gives the highest
benefit for a workload and fits the storage and maintenance budgets.
Execution of a workload can also be accelerated by creating indexes
that make access to data faster. In general, the Index Selection

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license.

Problem (ISP) is similar to VSP because index can be considered as
a special case of a single-table, projection-only materialized view
[1]. MQO is also employed in the context of stored procedures
and analytical reports. Due to the relatively small data and high
processing time for reports, the latency of report generation can
be reduced by storing candidate computations for re-use in the
memory. In the literature, the selection problem for this scenario is
referred to as Query (Result) Caching and it is very similar to VSP.
Another way to speed up queries is to reduce planning time. This
can be achieved by caching good plans and by reusing them for
similar queries. The problem of selecting the most useful plans in
such scenarios is known as Plan Caching.

As we will show, instances of the selection problem have certain
specifics in different scenarios. In this paper we note however that
selection algorithms are agnostic to the nature of candidates
they manipulate with!, and thus, they can be reused between
optimization scenarios under similar constraints. Motivated
by this observation, we formulate a generalized Candidate Selection
Problem that abstracts away from the nature of candidates: they
can be views, indexes, cached data, or even plans.

Our contribution can be summarized as follows:

(1) we make a detailed analysis of the root causes of the
complexity of selection problems and summarize techniques
to cope with them

(2) based on the View Selection Problem, we introduce a
modern classification of selection algorithms, including the
recent ones based on Machine Learning

(3) we propose a general framework of Candidate Selection
which allows for reusing ideas and techniques between dif-
ferent instances of selection problems including View/Index
Selection and Query/Plan Caching

(4) we highlight challenges, open questions, and promising
directions in the development of selection algorithms for
Multi-Query Optimization

The paper is organized as follows. In Section 2, we review related
literature including surveys on similar topics and highlight the
main differences with our work. In Section 3, we begin our study
with examples of the main issues related to Selection and formulate
the general Candidate Selection Problem. Techniques to resolve
these issues are introduced in Section 4. We continue our analysis in
Section 5 with a classification of selection algorithms, emphasizing
the main techniques that can be (re)used to solve the Candidate
Selection Problem (and thus, instances thereof). Finally, in Section
6 we describe open questions, challenges, and promising directions
for future research and in Section 7 we conclude.

Lonly the way objects are represented and benefits are computed is important

https://creativecommons.org/licenses/by-nc-nd/4.0/

2 RELATED WORK

Most related to our work is the survey paper [40] from 2012 which
provides a classification of algorithms for View Selection. Recently
some novel algorithms have been proposed, which present a new
line of research related to Machine Learning. We review these
algorithms in detail in our paper. Also, unlike [40], we make a
detailed analysis of issues behind the proposed algorithms and
explain the reasons for the design decisions made for them. We
believe that this study could facilitate the development of better
solutions. We also propose a general framework based on the
Candidate Selection Problem, via which the previously proposed
algorithms can be used interchangeably in different selection
scenarios.

We now list the topics that are intentionally not covered in this
paper. One of the very first surveys on View Selection was focused
on the problem of choosing a view definition language and self-
maintaining a set of views [18]. This topic, as well as the problem of
finding an optimal way to use materialized views (Query Answering
Using Views [24]), is relevant for building efficient solutions, but it
is not focused on the selection itself and thus, not addressed in our
paper. Our exposition does not cover techniques from Data Mining
[52], Constraint Programming [41], and Game Theory [2], which
did not attract much interest in the context of selection problems.
Also, we do not consider strategies and techniques for updating
selected candidates, as well as the relationship of the selection
problem to the topics such as stream data processing, approximate
query processing, etc. We recommend [8] as a starting point for
exploring these fields. For an introduction to the Index Selection
Problem, we recommend [4]. We also do not touch questions
of coupling computation caching with other techniques such as
query execution scheduling and pipelining, which are studied in
paper [14]. We also mention that details on the problem of Plan
Caching for a template of parameterized queries can be found in
[16, 27, 28, 54] In the literature, these topics are referred to as
Parametric Query Optimization.

3 PRELIMINARIES

We begin our exposition with an analysis of the principal issues
related to selection problems. We introduce the necessary termi-
nology and then formulate the Candidate Selection Problem as a
unified view on the selection tasks. Then we summarize results
related to the computational complexity of this problem.

3.1 Representation of Candidates

Let Q be a workload (a set of queries). Assume that besides the base
relations in the database we have some precomputed information
(e.g., views, indexes, or cached query plans) denoted as C, which
we can use for processing these queries. An execution plan for an
individual query g € Q generally depends on C; we denote it as
Pc({q}). The union of plans for all g € Q is called execution plan
for workload Q and it is denoted as Pc(Q).

The Multi-Query Optimization Problem (MQO) is to compute a
set C such that P (Q) is optimal for executing Q. This problem is
fundamentally more complex than individual query optimization,

2it is assumed that the read time of the data is the same as its size, and the data is
permanently saved to disk between executions of the operations

a4 a4
CAY 6 C4' 6
| |
a 0] g € . @ (i) L £
merging
I =
¢ 3 C2 5 C3 8 C3 8 ¢ 3 C 5 C3 8
| | [| | |
QiliE Y2 € TE (713E = 7= 2=
! ! I I | .
Ty 7 To10 Th10 Th 10 T 7 T5 10

Figure 1: On the left: representation of the workload in the
form of Expression Trees. On the right: the result of merging
them into a Expression Forest 7. Eq-nodes (c;) are given in
rectangles, op-nodes (y;) are given in circles. Data size and the
latency of operations are given in small boxes inside these
figures?. Triangle-shaped nodes are used to depict which
data every query g; needs.

because it introduces the option of reusing items from C between
queries, as shown below on the example of VSP:

Example 3.1. (Ex. 1.1 from [49]) Let workload Q consist of queries
q1 =Ty > Ty T3, g = Ty < T3 < Ty and let P({g1}) = (T »<
T;) < T3 and P({q2}) = (Tr >« T3) »< T be their individually
optimal plans, respectively. Although these plans are optimal for
each query separately, it can be the case that by reusing C = {T »<
T3} one obtains an optimal plan for the entire Q. That is, using the
join sequences Ty »< (T2 > T3) and (T »< T3) > Ty gives a total
latency for both g and g2 lower than the sum of the latencies
obtained by using P ({q1}) and P({q2}).

In MQO, each query is typically represented in the form of
an expression tree which is built according to its execution plan.
An expression tree is a directed bipartite acyclic graph, which
represents required data, operations over it, and the result.

Definition 3.2. An expression tree is a pair (Vop U Veg, E), where
Vop is a set of operation nodes (op-nodes, for short), Veq is a set
of data nodes (known in the literature as equivalence nodes or eq-
nodes, for short3), and E is a set of directed edges, which can be of
two types. The first edge type (veq — vop) indicates that operation
Uop is applied to data veq. The second type of edge (vop — veq)
indicates that v, must be performed to retrieve data veq.

Then expression trees obtained for individual queries are joined
into an expression forest by merging common nodes.

Example 3.3. Let workload Q consist of the following four queries,
the optimal plans P ({q1})....,P({q4}) for which are shown on
the left in Fig. 1.
ql: SELECT week, AVG(price) as avg price

FROM T1 GROUP BY week;
q2: SELECT week, AVG(price) as avg price
FROM T2 GROUP BY week;

3due to the fact that for each date node there can exist several computation paths,
which give equivalent results

q3: SELECT week, day, AVG(price) as avg price
FROM T2 GROUP BY week, day;
q4: SELECT week, AVG(avg price) as macro_avg_price
FROM (
SELECT week, day, AVG(price) as avg price
FROM T2 GROUP BY week, day
) as weekly price
GROUP BY week;

In the resulting expression forest, plans P ({gz2}), P ({¢g3}) and
P ({q4}) are merged due to the common read of table T,. Also, since
the aggregation by (week, day) in queries g3 and g4 is the same,
the data of ¢3 and ¢} is the same and these nodes are merged too.

Candidates for re-use are searched among eq-nodes of the
resulting expression forest. As each eq-node corresponds to the
result of the execution of some subexpression, the search space in
this approach is also called subexpression space.

This simple approach has a significant drawback. Since an
expression forest is built over optimal plans for individual queries,
some candidates for building a plan optimal for the entire workload
can be missed (as already shown in Example 3.1). In order to obtain
an optimal solution, one needs to represent a query as an expression
tree in a way that takes into account alternative computation paths. To
achieve this, one can use graphs of a special type, which we consider
further in Section 4.1. However, having all possible expression trees
available may not suffice in general. As shown by Example 1 in
[7], the most optimal solution may contain a candidate which is
not a subexpression of any of the queries in a workload even if we
consider all alternatives. These observations indicate that choosing
an appropriate representation of candidates is an essential step
in solving the selection problem.

3.2 Benefit of Candidates

Typically, the total benefit B(C) of a subset C of candidates for a
workload Q is defined as Tz (Q) — To(Q) where, for a set S, Ts(Q)
means the execution time of Q with plan Pgs(Q). It is natural to
define benefit B. of a candidate as the savings of the execution
time obtained by reusing c in the optimal plan Pc(Q). Note that
benefit 8. depends on the other elements in C, because an optimal
plan depends on the whole set of candidates available for reuse:

Example 3.4. Consider the workload from Example 3.3 depicted
in Figure 1. Suppose that the data retrieval process consists of a)
reading all operands relevant to the corresponding operation and
b) executing it. Then in a plan P, (Q) we use c3 to answer both
queries g3, q4 and thus, the benefit 8., ({c3}) equals 2-[(10+¢)—8] =
2-(2+¢). Indeed, instead of reading table T and executing y3 in
10 + ¢ time, we just read c3 twice, each time spending 8 units of
time. However, in plan Py, ,1(Q) the benefit B, ({3, c4}) equals
2+ ¢, as we use c3 only to execute g3. This demonstrates that the
benefit of c3 is decreased when cy4 is selected.

Another problem is that estimates for operation latency and data
size for nodes in an expression forest can be inaccurate, since they
are typically obtained from a database optimizer. Moreover the
estimation errors are multiplied if the same operation is used on
several computation paths simultaneously. Since it is problematic
to obtain an optimal solution with wrong estimates, the problem

c3 6
aQ Y€1 g ©2
UPDATE T1
SET col = 'new_value' c 5 Cy 8
WHERE col = 'old value’ l
M el M2E1 |4
Ty 10

Figure 2: A workload with the selected candidates shown in
black rectangles. When T is updated, the candidates must
also be updated. Update operations with their execution
times are shown in green.

of accurate benefit estimation becomes crucial. We consider
different ways to approach this problem in Section 4.2.

3.3 Constraints

It can be shown that the total benefit does not decrease with the
expansion of the set C of candidates, so one potentially obtains
the highest benefit when all computations are selected for reuse.
Obviously, this is impractical, since selecting a candidate c incurs
some non-zero expense e, which is related, e.g., to the disk space
used for storing c. Similar to benefit, the expense of selecting a
candidate depends on other elements in C. For example, in VSP, it
is necessary to keep the data in materialized views up-to-date, so
ec represents the time required to update a view ¢ [21]. Given that
other views may be used for the update, the expense e, depends on
other candidates in C:

Example 3.5. Consider the workload from Figure 2. If ¢, is
selected, the time of updating c3 will be shorter, since we can re-use
the updated c:

8+ &9 vs 10+ + 1 + 8 + €.
—— —— S~—— —

update c3 over c; calculate ¢, update ¢z update c3 over c;

The non-linear behavior of expense occurs also in Plan Caching,
in which the problem is to optimally reuse computed plan trees
(not the data itself). Frequently occurring subtrees can be stored
separately and re-used when necessary (see Example 3.6). Then the
expense of storing a plan depends on whether any of its subplans is
already in the cache. As shown in [11], Plan Caching can improve
performance, and the marked behavior of e; can help enhance it:

Example 3.6. Let the optimal plans of some queries g;, qj from a
workload Q have a common subtree ST (see Figure 3). Instead of
saving ST for each of the plans P ({q}) we can save it once, and
refer to it in all its supertrees. Then the saved cache space can be
used to speed up Q by caching additional plans.

In general, one has to deal with with the constraint }\.cce. < E,
where E is an expense budget, which represents, e.g, the available

“the set of edges depicted with an arc is the and-arc (see Section 4.1 for more details)

1
N View Selection Index Selection Query Caching Plan Caching

candidate space C
expense e.(C)
benefit B.(C)

eq-nodes
non-constant?®

eq-nodes
non-constant®
non-constant, computed as the speed-up under reuse of ¢ in plan Pc(Q)

eg-nodes subtrees

constant non—constantb

2 under maintenance constraint
b when compressed tree storage is used

Table 1: Instances of the Candidate Selection Problem

I Cache :

gi 4j : E data; |

i : : Plan; By — :

data; data; | E right; j |

| ! |

| |

P > : data; I

ST ST | Plan L B] |
root right; root right; | [right; :
| | | !
[> | I
| |

| |

' I

Figure 3: On the left are the optimal execution plans for
some queries g;, with a common subtree ST*. On the right is
a plan caching schema, in which the plan for ST is stored in
memory only once.

storage space or time for update. As we will show further in the
paper, the problem of the non-linearity of expense fundamentally
complicates the selection problem.

3.4 Candidate Selection Problem

The examples above demonstrate that in all the types of selection
problems considered the nature of candidates is not important:
it is only relevant how the benefits and expenses are computed.
Therefore, we now introduce a generalized Candidate Selection
Problem (CSP) which highlights the main aspects of the selection
tasks.

Let C be a set of candidates and let B.(+) and e.(-) be functions
which for every candidate ¢ € C give its benefit and expense,
respectively. The Candidate Selection Problem is to select a subset
of candidates C C C which gives the maximal total benefit B(C)
under a given expense budget E:

B(C) = Z B.(C) —
ceC
CSP represents all selection problems in Multi-Query Op-
timization (see Table 1). It is worth noting that, unlike benefit
(which is non-linear in all the selection problems considered), the
behavior of e.(-) function depends on the type of the problem.

[CCCl Toecte(C)<E) @

Definition 3.7. CSP is monotone for benefit if for any candidate
set C = C1 U Cy it holds that B(C1 L Cy) < B(C1) +B(Cy) and it is

Snot to confuse with the Constraint Satisfaction Problem

monotone for benefit per unit space if p(C1 U Cz2) < p(C1) + p(C2),

where p(C) = ?Eg)) and E(C) = Y cec ec(0).

We will show later how the monotonicity property relates to the
complexity of the selection problem.

3.5 Computational Complexity

In this section, we demonstrate the hardness of the Candidate
Selection Problem by giving an overview of the complexity results
on the View Selection Problem (which is clearly, an instance of
CSP).

It is known that under the space constraint VSP is NP-hard. It has
been also proved that a greedy algorithm can give a solution that is
at least 63% of the optimal one (47%, respectively, for the case when
views are selected together with indexes), and this lower bound can
not be improved in polynomial time [20]. Under the maintenance
constraint (a limited budget for keeping views up-to-date) there
is no similar result: solutions obtained greedily can be arbitrarily
bad [21]. The reason is the lack of the monotonicity of the benefit
per unit space due to the non-linear behavior of e.. The drop in
accuracy from 63% to 47% in the case of selecting views together
with indexes is also due to the lack of monotonicity, but the reason
is the non-linear behavior of the benefit itself. Indeed, we can only
benefit from the index if the corresponding view is selected.

In minimizing the total execution time, VSP is known to be
polynomially non-approximable [33]. This does not contradict the
result with the 63% accuracy of a greedy algorithm, because by
using the benefit we implicitly transition to a closely related (i.e.,
their optimal solutions coincide) but still a different optimization
problem. The original optimization objective is the total time T-(Q),
but when using benefits we are maximizing B(C) = Ty (Q) — T (Q).
Let C and C* denote the obtained and the optimal sets of candidates,
respectively. Then clearly, from the relationship B(C) > k - B(C*)
it is impossible to derive the total time in terms of k. The reason is
that the ratio of Tz (Q) to Te+(Q) is unknown:

B To(Q) -T=(Q) 50 Tp ()
= = = k+(1-k)-
(3 " B0 e©@) ~F° T P 0)

For the case when query plans contain non-unary operators
(e.g., joins), approximability is still an open question for VSP even
in the benefit setting under the space constraint (as well as the
general question of the computational complexity) [22]. Besides, if
we consider only plan nodes as candidates (no matter how they are
represented), we may miss the optimal solution. Chirkova et al. [7]

a) b)
Q @ 43
Ty Ty <1 Ty Ty Ty <1 Ty o(Ty > T3)
| [
B B B o IndezScan

= . 3 ‘)
- - L |
‘ TiTy To<Ts Ty Ty Irpan
| | |

‘ > > >

/ / \ /
4 \ / \ /

T, T T3 Ty Ty Ty

Figure 4: a) AND-OR-DAG representing two alternative ways
of executing query T; »< T; >« T3 and a single way of executing
T, >« T3 >« T;. The option of reusing T» > T3 is shown. b) Index
utilization plan in which the the need for both, an index and
a materialized view is indicated by an and-arc.

showed that, in general, the space of candidates that needs to be
considered to find an optimal solution is infinite.

To overcome the algorithmic complexity of the selection
problem, a plethora of approaches has been proposed including
heuristic-based, randomized algorithms, or custom ones which
provide solutions close to the optimum only for a fixed pool of
queries and specific underlying data. The latter class of algorithms
is based on the recent Machine Learning approaches. There is also
a number of optimizations to reduce the search space and employ
the tree structure when computing benefits and expenses. We will
discuss these techniques in more detail in the next two sections.

4 PREPARATION FOR SELECTION

We now highlight several important techniques that are used prior
to the selection stage to make the overall procedure more efficient.

4.1 Query Representation

Subexpression Space. Although an optimal solution can be missed
when only subexpressions of queries are used for building a space
of candidates, this approach still has several important advantages.
First, it makes the process of building the candidate space relatively
simple: candidates are searched only among the nodes of the plan
obtained from the optimizer and alternative computation paths
are avoided, which greatly reduces the search space. Second, since
all candidates are subexpressions, their execution statistics can be
used to approximate benefits. Alternatively, special techniques are
sometimes used to modify subexpressions and build new candidates
given the specific workload and the nature of the MQO problem,
which makes the search space richer. We discuss this in more detail
at the end of this subsection.

Representation Frameworks. Even when the candidate space
is given by subexpressions there is still a freedom in choosing a
representation for expression trees. For example, in order to account
for the existence of alternative execution paths, an expression tree
can be represented as a OR-DAG. This is equivalent to allowing
egq-nodes to have multiple children, which correspond to different

computation paths. To represent non-unary operations (e.g., joins),
the AND-DAG representation framework can be used, which intro-
duces and-arcs as several directed edges connected by an arc. This
representation takes into account the need to compute all operands
to execute an operation. Definitions of these classes of DAGs can be
found in [22]. This work also introduces a notion of AND-OR-DAG,
which combines the features of the two previous frameworks.

Example 4.1. As one can see in Example 3.1, the option of using
T, > T3 for both queries must be available. This can be implemented
by representing multiple computation paths for node Ty < T3 > T3
with an or-arc (see Figure 4a). The arcs under joins are and-arcs,
which indicate the need compute all operands for a join operation.
Part b) of the figure shows that and-arc can represent a plan which
uses an index: to use the index (op-node IndexScan) we need both,
the data (eq-node T; »< T3) and the index itself (eq-node I s,).

In OLAP scenarios, queries often refer to table aggregations
and are uniquely defined by a set of columns in a GROUP BY
clause. Hence, it is possible to represent these queries as vertices
of the hypercube given by the set of table attributes. The ’can-
be-computed-by’ relation over queries then coincides with the
inclusion relation over the sets in the hypercube, so this represen-
tation is called Hypercube Lattice (or Data Cube). If a workload Q is
represented in the the form of a Data Cube, there is no need to build
an expression forest, since all query relationships are already given by
the cube. However the Data Cube introduces a space of 2" vertices
(where n is the number of table attributes) in which all possible
aggregate queries to the table are represented. If aggregation is
ranked according to some granularity (e.g., by day, week, or year),
one also has to consider the granularity hierarchy. For example,
the Product Graph (direct product in [25]) framework provides this
feature.

Choosing a representation framework is an important step,

because the complexity of selection strongly depends on the way
query plans are represented (see Section 3.5).
Computation Sharing. As we have already noted, the set of nodes
of an expression forest may not contain an optimal candidate. To
deal with this problem, one can use additional techniques to enrich
the search space. For example, one can employ the technique of
additional computations:

Example 4.2. Consider a workload of two queries o4(T1) and
og(T1) given in Figure 5. Suppose, we have a space budget, E = 9,
which is insufficient to store the answers to both queries (E =9 <
6+ 6 = ec, +ec,). Then we can generate and store an additional
computation c3 = o4yp(Th) that can be shared between the two
queries. This gives the maximal possible benefit

Bez) ~2-(10 — 7)=6
—_ ——
read Ty readcs
(compared to the cases when ¢ or ¢y are stored), but implies
the need of extra operation, (termed as compensations in [9]) for
fetching the required data. For example, to answer query qi, we

must apply extra selection o4 to candidate c3, which, in turn, was
also obtained using selection o4y .

Also various ‘rewriting’ strategies based on relational properties
[61] and identities [48, 49] can be used. By choosing rewrite rules

q q2
C1 6 C2 6
oA oB

| |

{ |

| c3 7 |

OAVB
/
Ty 10 °

Figure 5: Illustration of the technique of introducing addi-
tional computations (which are shown in orange).

and the order of their application to the nodes of individual query
plans one can influence the number of common nodes among plans,
as well as their sizes. This may have a positive impact on the quality
of the resulting solution. We provide more details on this technique
in Section 5.2.3 where we describe the corresponding algorithms.

4.2 Benefit Estimation

Lightest Path and Cost Models. In the expression tree framework,
it is easy to see that query latency is determined by the weight
of the lightest computation path from the eq-node corresponding
to the query to the leaves® of the tree. To compute the weight
of a computation path we need to take card of arc types: 1) if an
or-arc encountered, we can continue the computation path through
any of the children, 2) for a and-arc, we have to compute all the
children. A useful property of tree-calculated benefits is that the
time of executing a node c is affected only by the selection of its
descendants. But interestingly, the benefit of a candidate ¢ depends
on its parents too, since their selection may change the lightest
computation path preventing ¢ from being used (see Example 3.4).
In Section 5.2, we discuss how to employ this observation.

To compute the weight of a computation path, one also needs to

know the estimates for operation latencies and data sizes, which
can be obtained from the optimizer. To combat the inaccuracy of
these estimates, predictive models have been proposed, which, use,
e.g., run-time statistics on the execution of queries for making
predictions about the future [31].
End2End Modeling. Instead of representing queries as trees
and searching for the lightest computation paths one can use
the optimizer in what-if mode [68]. The idea is to simulate the
situation when a candidate computation of interest is reused. Then
the candidate benefit is the difference between the optimizer’s
predicted values with and without the candidate. Since the benefit
behaves non-linearly we have to compute it by a call to the optimizer
each time the set of candidates C changes, which is inefficient.
Instead, one can train a ML model to answer questions like “what
is the benefit B, of a candidate ¢ for a given workload Q if we have
already selected candidates C?” [63].

Sor saved eq-nodes, because we can read them instead of executing from scratch

IP. There are also approaches in which the problem of node selection
and re-use is reduced to an Integer Programming problem [60].
This is a simple way to obtain an exact solution for the selection
problem (provided accurate estimates are available), from which it
is also easy to compute the benefit 8. of each candidate c. Indeed,
it can be obtained as the difference between the execution time of
c and the time of its reuse, multiplied by the number of uses of ¢
in the optimal solution. We note however that computing an exact
solution to an IP problem to obtain benefits makes little sense for the
following reasons. First, if an optimal solution is found, then then
benefits are not needed anymore. Second, in order to formulate
the selection problem as an IP, one needs to introduce a large
number of additional variables, which would make solution search
prohibitively long. Instead, one can first fix a set of candidates C, and
then solve simpler problems of finding the optimal way to use them
independently, for each query q from a workload. These subtasks
can be solved in parallel giving an approximation of benefits. In
Section 5.4.2 we discuss several possible ways to implement this
idea.

4.3 Dealing with Constraints

Specialized Solutions. Recall that the constraint in CSP is given
as Ycec ec(C) < E and in some cases the expense function ec(-)
may be non-linear. That is, for C = C; U C; it holds in general that

Diec@#) e (C)+ Y e (Ca).

ceC c1€Cy 2€C,

This poses challenges to selection algorithms: for example, a greedy
algorithm can no longer guarantee any % of accuracy, in contrast
to the case of space constraints. In part, this can be overcome by
specialized solutions. For example, in [22] Gupta et al. made a
theoretical analysis of the behavior of the greedy algorithm and
proposed to use special inverted set tree structures to achieve the
desired accuracy of 63%. However, the complexity of this solution
is exponential in general.

Penalization. Even simple constraints with constant e, can pose
difficulties. For example, in randomized and genetic algorithms,
the set of candidates is built iteratively, and at each step the action
to be taken for a candidate ¢ must depend on its benefit B.. The
problem here is two-fold. First, the benefit takes into account
neither the expense of the candidate, nor the remaining budget.
Second, situations, in which a constraint is violated, must be handled
accordingly. Simply avoiding such situations may result in a poor
strategy. Indeed, the path which goes only through admissible
solutions from the current solution to a good local optimum may
either not exist or be very long. To address this, a penalization
approach has been proposed [36], which tries to account for the
presence of a constraint in the form of some penalty (regularizer).
The simplest way to implement this is the substract mode. The idea
is to use the penalty function ¢(C) = max(0, Y. e.(C) — E) and
compute the benefit as B’ (C) = B(C) — r - ¢(C), where r is some
regularization coefficient. The value of r affects “how much we
don’t want to violate the condition Y,.cc e.(C) < E”. Important
is to choose the right coefficient r, because if it is chosen badly,
the algorithm will tend to “non-violation of constraints” instead
of optimization. This can be avoided by measuring everything
in the same units. For example, in VSP, if we know the rates of

computational resources at runtime, as well as the price per unit
of disk space, we can express everything in money and maximize
the total profit [63]. This makes sense, because there is no problem
with disk space and memory availability nowadays, the only issue
is payback.

Stochastic Solutions. If a selection algorithm uses benefits only to
compare candidates (as in the local search algorithms), we can use
stochastic ranking instead of penalization [36]. In short, the idea is
to employ a comparison that favors more cheap candidates with
probability 1 — p with no regard to their benefits [50].

5 SELECTION ALGORITHMS

We analyse in detail the techniques sketched in the previous sections,
we provide a modern classification of the selection algorithms
employing these techniques, and discuss the main trends in the
development of such algorithms. Our exposition is primarily based
on an analysis of view selection algorithms, with the emphasis on
the techniques that can be reused for solving various instances of
the Candidate Selection Problem in Multi-Query Optimization.

5.1 Exhaustive Search

Assume a workload Q consists of queries that involve joins over
different subsets of tables {T]};’=1 Then, in the worst case, the
size of the search space (the number of candidates among which it
makes sense to look for a solution) is 2" (the number of all possible
joins). As the benefit 8. of an individual candidate non-linearly
depends on the set of selected candidates C, a naive search for an
optimal selection would have to enumerate all possible subsets of
C, which is already of double exponential size 22" This kind of
algorithm was proposed in [47], but its complexity is prohibitive
for the size of modern databases.

5.2 Heuristics

5.2.1 Optimizations of Greedy Algorithm. In many scenar-
ios, it suffices just to compute a good enough solution within a
constrained time budget. To implement this, one can search for
a solution only in a certain subexpression space. For this, plenty
of heuristics has been proposed which aim at selecting the most
useful candidates [30]:

(1) Topk-freq: selecting the most common candidates
(2) Topk-utility: selecting candidates with the maximal bene-
fit they can provide for an individual query
(3) Topk-TotalUtility: selecting candidates with the highest
total benefit for entire workload
(4) Topk-NormTotalUtility: selecting candidates with the
highest specific total benefit for entire workload per space
unit
These heuristics do not take the non-linearity of benefit into account
and thus, they can give poor solutions.
The paper [25] addresses this shortcoming. The authors propose
a greedy algorithm in which, at every step, the currently selected
set of candidates C is expanded with a candidate ¢, which gives
the largest total benefit B(C U c¢). It was proved in [33] that this
algorithm guarantees the accuracy of at least (1 — —-) = 63%,

exp
and no polynomial time algorithm can do better. We note however

that the constraint considered in [25] is the number of selected
candidates, not the space they occupy.

Gupta et. al in [20] adopted a similar idea for the case of the
space constraint. They proposed to measure the benefit change,
when a candidate ¢ is added, per the unit of space it occupies:

B(CUc) - B(C)
E(CUC) -&(0)

They proposed an algorithm for the OR-DAG and AND-DAG
frameworks which in both cases provided the accuracy guarantee
of 63%. For the general AND-OR-DAG framework, the authors
proposed a AO-Greedy algorithm which is in fact a greedy algorithm
over specially defined intersection graph structures. The size of this
structure is exponential in general, so the proposed algorithm is no
longer polynomial in the size of the expression forest.

For the setting when indexes are selected together with views,
Gupta et al. proposed an inner-level greedy algorithm. The option
of selecting indexes breaks the monotonicity property, because one
can not use an index if the corresponding data is not selected (see
Example 4.1), and as a consequence, the benefit of this index is zero.
The inner-level greedy algorithm guarantees a 47% accuracy in
OR/AND-DAG frameworks and it is based roughly on the following
idea. At each iteration, the algorithm first searches for a view which
has the highest benefit along with its best indices. Then the set
of candidates C is extended either by this view and its indices, or
by one new index (probably, for another view) having the highest
benefit. This procedure allows one to avoid the following problem:
if a view is useful only with an index, then it can not be selected by
the basic greedy algorithms. Indeed, the index will not be selected,
because without the view its benefit is 0, and the view is not
is selected because without an index its benefit insufficient. To
adapt their method to the AND-OR-DAG framework, the authors
proposed a generalization in the form of a r-level greedy algorithm,
which is able to guarantee a certain % of accuracy in situations
with more complex dependencies in benefit.

For the setting with the maintenance constraint in the OR-DAG
framework, the authors proposed to use an inverted-tree set structure
to regain the monotonicity property. An estimate of 63% accuracy
for a greedy algorithm using this set structure is guaranteed, but
the number of these sets is exponential in the worst case.

In [44] two optimizations of the greedy approach were proposed
by taking into account the tree structure in benefit computation.
Since at each step the greedy algorithm searches for the best
candidate ¢ to expand C with, one needs to frequently evaluate
the total benefit of sets that differ just in a single element. Since
the benefit of the nodes is often computed by tree traversal, one
can cache benefits for nodes and recompute them only when the
choice of a new candidate ¢ has an impact on them. Along with
this technique, the authors proposed a coarse heuristic that assumes
that the node benefit can only decrease’. With this heuristic, if
the nodes are stored in the descending order of (the previously
computed) benefits, then iteration over all candidate nodes outside
of C can often be avoided in finding the best next candidate to
expand C.

be(C) =

7this is not true in general, since there is also a non-linear update time /. component
in the overall execution time, which may decrease as new candidates are added

5.2.2 Candidate Space Reduction. Clearly, the running time of
a selection algorithm depends not only on the selection procedure
itself, but also on the size of the search space. Several approaches
to reduce the search space have been proposed in the literature. In
[3], each individual query plan is traversed in the level-order, and
only vertices from the level that gives the highest benefit are taken
into the candidate space C. This also allows one to get rid of the
complex dependencies in benefits and expenses as it is guaranteed
that the parents and children of the candidates will not be selected.

In [1], the authors suggested to consider only those candidates
which refer to the “most interesting” tables. A table T is considered
to be more interesting than a table T; if the total execution time
of queries touching Tj is higher than that of queries related to T5.
Based on the selected set of tables, the authors define the candidate
space according to the following idea: “if a candidate is not in the
optimal plan of any of the queries, it is unlikely to be useful”. For each
query q from a given workload they define a candidate space Cg as
the union of all subsets of the most interesting tables touched by
q (the authors also analyzed conditions in queries and formulated
conditions for grouping or selection over joins of interesting tables).
Then, with the help of a greedy(m, k) algorithm® they select from
them the most interesting candidates Cy4 for each query g. The
candidate space C for the selection problem is defined as the union
of all these interesting candidates.

In this approach, the selection of the candidate space is based on
optimizing queries individually. Therefore, the authors introduced
a MergeViewPair algorithm to take into account the nature of MQO.
The algorithm iteratively merges pairs of candidates c1, ¢z into a
single candidate ¢, while a) preserving the possibility of using c
instead of ¢; and cp, and b) guaranteeing a small computational
overhead of using c instead of ¢; and cy. It is worth noting that
using c is often slightly more expensive, since it contains data from
(at least) both ¢; and cy. But the number of situations in which ¢
can be reused is much larger, which is important for optimization
of the entire workload (Example 4.2 illustrates this technique). At
the final stage, greedy(m, k) selection algorithm is applied to the
candidate set C obtained by merging.

Gupta et al. [22] proposed a slightly different approach based
on the following idea: instead of reducing the entire search space
apriori, we can avoid exploring those parts of the space where
there is definitely no better solution. To implement this, the authors
adapted the ideas of A* algorithm [46]. They considered the situation
when all eq-nodes of the expression forest must be computed
(C = Q). Their A*-like algorithm looks as follows. The search
space is represented as a search tree, with vertices v = (C, Cgeen)
representing information about visited candidates Cseen € C
and selected ones C C Cgeen. There is an edge v — o’ if the
vertex v’ is obtained from v by adding a candidate ¢, ie., v’ =
(Cu{c},Cseen U {c}) or v’ = (C,Cgeen U {c}). The goal is to reach
a vertex v* = (C*,C) in which the selected set of candidates C*
gives the minimal time of executing the workload.

The algorithm tries to find this vertex by exploring the search
tree only in the most promising directions. To do this, it assigns to
each vertex v = (C, Cgeen) an estimate of the minimum time of

8greedy(m, k) algorithm first searches exhaustively for a subset of good k elements
and then it expands this set in a greedy manner

executing the entire workload C, provided we saved only C for
the execution of Cgeep. The principal problem is to get an accurate
estimation, because it directly influences the extent to which the
search space is reduced. This problem can be solved as follows.
Assume the optimal way to expand the current set of selected
candidates C is C’ C C\ Cgeen. Then, by taking into account the
additivity of the execution time, the best execution time for the
workload achievable from the current vertex v can be decomposed:

Teucer (€) = Teuer (Cseen) + Teuer (C\ Cseen)-

The key point of the algorithm is the traversal of vertices ¢ € C
in a topological order, which guarantees that the execution time of
queries from Cgeep, remains unchanged under future extensions of
C, i.e. Tcic' (Cseen) = Tc(Cseen) (the reason for this is explained
in Section 4.2). Then instead of estimating the value T (C) we
can compute the lower estimate i’l\(C) of a simpler value which is
the execution time of the rest of the workload C \ Cgeen. To do this
the authors use a separate greedy algorithm (see [22] for details).
At each iteration, the A*-like algorithm selects a vertex for which
the predicted execution time E(C) + Tc(Cseen) is minimal. This
significantly reduces the search space in practice. The algorithm
returns the exact solution, but in the worst case it has to explore
the entire graph of size exponential in C.

Labio et al. [35] employed similar ideas in a slightly different
scenario. They considered a setting in which already materialized
views Q need to be updated efficiently. One way to achieve this is
to spend some resources on materialization of new computations
which speed-up updates of Q. The problem can be formulated in
terms of the Candidate Selection Problem as follows. For a given
workload Q (queries that describe already materialized views),
select a set of candidates C from an appropriate candidate space
C such that a) the total update time for Q with C is minimal and
b) Q € C. The latter requirement is important, since the views
Q are already materialized Q and we have to spend resources on
updating them. The authors adapted A* algorithm for this scenario.
In this setting, for vertices (C, Cseen), it is required to estimate the
minimum time of the total update after expanding C with a set C’
provided Q C (C’ U C). The total update cost (UC) can obviously
be divided into two parts:

UCcrue(CUC) = UCerue(C) + UCerue(C).

If the vertices are traversed in the topological order then the
dependence of UC¢r,c(C) on C’ can be avoided. The remaining
update cost UCcric(C’) can be estimated by a separate greedy
algorithm. In practice, with this approach the authors obtained a 4
orders of magnitude reduction of the search space.

5.2.3 Design of Candidate Space. Heuristic approaches are also
used for a targeted design of a candidate space which should contain
a high quality solution. For example, in [61] a method to build an
expression forest # takes into account the fact that individually
optimal plans may not contain the most useful computations for
executing a given workload Q. First, an optimal plan P ({q}) is
built for every query q € Q. Then the selection and projection
operations are pushed up in expression trees, which makes the
candidates larger and hence, implies potentially more savings from
their re-use. Next, the resulting plans P’ ({q}) are merged into a

forest F in a cost-based manner. Finally, all the select and project
operations in F are pushed down’, and epy greedy algorithm is
run.

In [49], two more algorithms to design expression trees are
proposed. In the first one, Volcano-SH (SHared), individually optimal
plans are first built independently and then the techniques of
computation sharing described in Section 4.1 are applied. In the
second one, Volcano-RU (ReUse), plans are built sequentially. This
makes possible to figure out which nodes belong to optimal plans
for other queries. The execution time for these nodes is deliberately
underestimated, so that they are more often found in optimal plans
for other queries. Because of this the resulting expression tree has
more common nodes and provides options for their reuse. Node
benefits are computed in a special way. To calculate the benefit of
reusing a candidate ¢ one needs to know a) the time of computing ¢
and b) the frequency num_uses(c) of using c. Therefore, the benefit
depends on both the children and parents of a candidate node.
The first dependency is eliminated by traversing vertices in the
topological order and the second one by heuristically estimating
num_uses(c) by the number of ancestors of ¢: num_uses(c) >
#ancestors(c) 1°. This approach allows for quickly and accurately
estimating the benefit.

5.3 Randomized Algorithms

As we can see, all known heuristic methods are either rather time
consuming (A™ algorithm) or they return an approximate solution
(by greedy algorithms). We now consider randomized algorithms
which provide an efficient alternative to heuristic ones.

5.3.1 Random Sampling. In [32], several randomized algo-
rithms for solving VSP were proposed. The authors used the Data
Cube framework, in which the search space is represented by bit
strings of length equal to the number of nodes in the cube. Each
bit indicates whether the corresponding candidate is selected. One
of the simplest algorithms considered in [32] is Random Sampling
which looks as follows: a) randomly sample a bit string b) check
whether all constraints are satisfied, and c) estimate the benefit. The
solution that satisfies the constraints and has the highest benefit is
returned as the answer. The algorithm can be a solution of choice
in scenarios when the computation budget is very limited [15].

5.3.2 Local Search. In the same paper the authors proposed
more involved Iterative Improvement (abbreviated as II) and Simu-
lated Annealing (SA) algorithms. To explain the main ideas behind
them we need to define the notion of neighborhood of two solutions.
Let us introduce three types of actions: 1) select new candidate,
2) replace one candidate with another one, 3) remove candidate.
Two solutions are called neighbors if one of them can be obtained
from another by a single action. II algorithm implements random
transitions only to neighbors C” with a higher benefit 8(C’). In SA
algorithm, a (random) transition to neighbors with a lower benefit
is possible, but the probability of such a transition is the less the
smaller the benefit of the neighbor is. The intuition behind this
is as follows: local optima may well be connected by a short path

%this is a standard technique for reducing the size of processed data
1%this holds, because the framework considered does not reflect alternative computation
paths, so there is no way to avoid computing a child when executing an ancestor

via candidates with a smaller benefit, but frequent transitions to
less useful solutions make the search longer. As II algorithm makes
transitions only to useful neighbors, it converges to good solutions
rather quickly, although it may get stuck in isolated regions. In turn,
the quality of solutions obtained by SA is higher. To combine the
advantages of both algorithms, a Two-Phase Optimization procedure
(2PO) is employed, which was previously proposed in [29]. By using
1I algorithm, 2PO first converges to an area of potential interest
and then explores it a more detail by SA algorithm.

In [12], an algorithm based on Simulated Annealing is proposed.
In this work, solutions are considered to be neighbors if their
representation strings differ only at one position. The algorithm
is rather simply adapted to a parallel computing scenario [13], in
which communication between processes is not required when
moving to neighbors: several SA procedures are run independently
and the best solution they find is returned as the final answer.

5.3.3 Genetic Algorithm. The genetic algorithm is a well-
known approach to solve NP-hard problems; it is based on a
search procedure inspired by the principles of natural selection and
genetics. The search is carried out by an iterative improvement of
generations, each of which is represented by a population. From
each generation, with the help of mutations and crossovers, a new
generation is created, from which the best individuals are selected.
The principle step here is to present candidates as a population. To
both a) reflect the existence of multiple individual query plans and
b) represent the entire set of candidates, Horng et al. [26] propose
the following schema. By using a special query-plan string (qps),
they record which execution plans for queries are selected, and
concatenate it with a view string (vs), which represents selected
candidates. Mutation is implemented by changing the value in a
random position in the string, while the crossover is implemented
as a cut-and-swap operation separately on vs and gps. To keep the
population size limited, a random number of the best candidates
is kept according to their benefits. Also, at each iteration, the
candidates are improved via local search, i.e., in fact, the proposed
procedure refers to the class of Genetic Local search algorithms [34].

In the above presented schema, as in most evolutionary algo-
rithms, candidates are compared based on their benefit. But if the
optimization problem includes a space constraint then it must also
be taken into account. Indeed, if one candidate has a slightly less
benefit than another one, but implies a significantly less expense,
then it might be worth selecting it. In [36], the authors suggested to
use the technique of penalty functions, which allows for a) choosing
cheaper candidates from those having the same benefit and b) skip
solutions that violate constraints. This approach helps to reduce the
length of the shortest path to the optimum and to avoid complex
search landscapes where valid regions are separated by invalid ones.

An alternative approach is randomized stochastic ranking, in
which candidates are compared with probability p by their benefit,
and with probability 1 — p by the size of the remaining expense
budget. In [62] Yu et al. proposed an evolutionary algorithm which
generalizes the selection step. Population selection is implemented
similar to the bubble sort, where stochastic comparison is used
instead of the standard comparison. Sorting ends if no permutations
occurred at the iteration. After this, the first k individuals are
selected as the result.

5.4 Hybrid algorithms

One more important step in the development of selection algorithms
was made by hybrid approaches which compensate for weak points
of some methods with the advantages of the others.

5.4.1 Early Approaches. One of the first ideas in this direction
is proposed in [65]. The authors consider a setting in which a query
has several plans, and their algorithm has two stages. The first stage
is to select a plan for every query and build an expression forest 7
over them. The second stage is to select candidates from ¥ . At each
of these stages, two basic algorithms are applied: a greedy [20, 61]
and an evolutionary [26] one. The authors tried 4 combinations of
algorithms in total. In experiments they came to the conclusion that
going beyond individually optimal plans for queries can greatly
improve the quality of obtained solutions. Also, the most accurate
solution was obtained when the problem at level 2 was solved
by an evolutionary algorithm. This confirms the hypothesis that
correctly estimated benefits are essential for making good selection,
because evolutionary algorithms do not rely on greedy heuristics
and provides more accurate benefit estimates.

In [68], the authors combine the ideas of greedy and randomized
approaches for efficient selection of views together with indexes. At
the first step, similarly to the techniques described in Section 5.2.3,
they expand the candidate space by finding common subexpressions
and compensations (see Example 4.2). Benefits are calculated by
using the optimizer’s *what-if’ mode (see Section 4.2). Based on
the obtained values, a greedy algorithm is applied which has the
property that in case an index is selected at some iteration, the
algorithm tries to select the corresponding view simultaneously
(provided there is enough space). Then an iterative improvement
is performed for the solution obtained by the greedy algorithm,
which randomly picks several unselected candidates instead of
selected ones. This allows for compensating the non-optimality of
the greedy algorithm.

5.4.2 Modern Approaches. In [31], the View Selection Problem
is considered in a practical DBaaS scenario. The authors note that
% of common computations between queries from real workloads
is typically quite large, while savings from their reuse can be as
high as 40% (of the available computing resources). By using the
recurrent nature of queries in their scenario, the authors manage to
overcome two problems at once. First, to deal with inaccurate cost
estimates from the optimizer the authors propose to use statistics
on previously executed queries. This is known in the literature as
feedback loop technique. Secondly, they implement view selection in
an online scenario (i.e., when the workload is not known in advance)
by using information about the workload observed in the past and
by assuming that queries in the future will be similar. To quickly
search for relevant statistics and check for useful materialized views,
they employ so-called signature technique that takes into account
the recurrent nature of queries and is used as an efficient search
filter. The authors also take into account that queries are executed
in parallel and therefore, decisions on the materialization of views
are also made in parallel. As a consequence, the same view can be
created multiple times, which wastes both memory and time. To
deal with this, the authors propose a special early materialization
technique. In short, the idea is to: a) not to materialize the same

computation multiple times, b) make the materialized computation
available for reuse until the complete execution of the query that
triggered its materialization. Even if the triggering query is rolled
back, the materialized view remains available for reuse.

In [30], a number of novel ideas on the selection procedure was
proposed by the authors in BigSub solution. In their approach,
selection is initially formulated as a ILP problem. However, in order
to model the non-linear behavior of functions, one has to introduce
a large number of variables, which makes the resulting ILP problem
infeasible. The main idea of BigSub is to use an iterative algorithm
which allows for splitting the original problem into a big number
of independent subtasks. The decision which candidates should
be selected at each iteration is made by a random flip function.
After a set of candidates is fixed the optimal ways to use them are
decided independently for each of the queries by using solutions to
ILP subtasks. Based on the estimated benefit for selected candidates
the distribution of the flip function is changed and then the next
iteration is performed. To optimize the solution of ILP subtasks, a
number of heuristics are proposed for reducing the search space
and changing strategies depending on the workload. By using the
idea of problem decomposition and by employing a vertex-centric
graph processing model (like Giraph [39] or GraphLab in [37]), the
authors managed to cope with the size of the original problem,
which was beyond the capacity of the reference ILP solver Gurobi
[23].

The state-of-the-art solution to VSP is given by RLView algo-
rithm from [63] which extends the BigSub approach by replacing
the procedures of random flipping and benefit estimation with ML
algorithms. This work is not limited to the online scenario and
assumes that there is enough budget to factorize workload subex-
pressions into semantic equivalence classes (e.g., by using Equitas
equivalence checker [67]), which provide a fairly rich candidate
space. Then in each equivalence class, the cheapest representative
is chosen, which significantly reduces the set of candidates. The
authors approach the problem of inaccurate predictions of the
optimizer by using a Wide-Deep model, which is a neural network
capable of modeling both linear and highly non-linear dependen-
cies of the execution time on input parameters [6]. The model is
trained on collected statistics, which is similar to the feedback loop
technique [42, 53]. Various ways of encoding strings, keywords,
and table schemas in queries are employed, over which recurrent
LSTM networks [17] are run to capture the overall structure of
the query. The constraints in the selection problem are taken into
account in the form of a regularizer. The regularization coefficient
is defined by converting everything into a universal measure unit
(money).

The intuition behind the RLView approach can be explained as
follows. In fact, “BigSub has no memorization ability and it does not
converge to a global optimal solution, because there is no information
sharing between different iterations”. Therefore, inspired by the
success of Reinforcement Learning [55], the authors essentially
proposed a randomized (but informed) search procedure based on
a Markov Decision Process (MDP). Typically, a MDP is defined
by 4 parameters: a state space S, an action space A, a distribution
P,(s,s) of the probability of transition between states s and s’ by an
action a, and a distribution R, (s, s”) of reward r when moving from
state s to s’ by a. The task is to find a strategy 7 : S x A — {0, 1}

which gives, on average, the highest total reward. The fundamental
difference from BigSub is that this model of the flip function a) takes
into account the current state of s and b) learns over time. In RLView
algorithm, a state s is a set of selected candidates and a description
of how to use them, an action a means change in the decision on the
selection of a candidate, and a reward r reflects the change in the
total benefit due to an action. The optimal view selection strategy
is searched by using Q-Learning [58]. In particular, the authors
build a neural network DQN [45, 57], which is trained to predict
the potential benefit from each of the actions in a given state. In
experiments, the authors established 3 SotA results on different
datasets and also confirmed the hypothesis that the accuracy of
estimated benefits plays one of the key roles in solving the selection
problem. Both RLView and BigSub demonstrated best results when
using a predictive model instead of optimizer estimates.

5.5 Summary on Algorithms

As we have shown in this section, the algorithms for solving
the selection problem can be roughly divided into three classes.
Heuristic algorithms, based on intuitive assumptions for estimating
the benefit of candidates and reducing the candidate space, aim at
providing fast approximate solutions. However, the efficiency of
these algorithms strongly depends on the size of the input data,
which makes them problematic for high dimensions. Randomized
algorithms try to overcome this limitation by offering a trade-off
between the accuracy and speed of computations, but they provide
no guarantees on the quality of obtained solutions. Recent advances
in solving the Selection Problem have been made with hybrid
solutions that utilize the strengths of approaches from different
domains, including Machine Learning.

We conclude that there is a number of similar points in these
algorithms and we summarize the most important of them below.
The choice of candidate space. The quality of obtained solutions
strongly depends on the space of candidates. To obtain a good
candidate space one can use plan building strategies, plan merg-
ing techniques, and methods for finding common subexpressions
(Sections 5.2.3 and 5.4.1). It is also possible to use space reduction
methods, which provide more flexibility in building an efficient
selection algorithm (Section 5.2.2).

Tree structure of candidates. In selection problems, candidates
are typically tree nodes while benefits are given as weights of
lightest computation paths. Relationships between candidates and
the way benefits / expenses are computed can greatly reduce the
search space and speed up algorithms (Section 5.2.2).
Dependence on accurate cost estimates. Several implementa-
tions have confirmed the intuitively clear fact that the quality of
solutions obtained by selection algorithms strongly depends on the
accuracy of benefit estimates for candidates (Sections 5.4.1 and 5.4.2).
Recent advances in solving the View Selection Problem are due to
approaches which do not rely on DB optimizer. Modern algorithms
employ history-based (feedback loop) techniques and ML based
prediction models.

Modularity of solutions and the use of ML. There is a gen-
eral trend of developing modular solutions which compromise
between advantages and disadvantages of several types of algo-
rithms (Sections 5.3.2 and 5.4.2). Since the dependencies between
objects involved in the Selection Problem are highly complex, it

is hard to model them explicitly. However, a large amount of data
describing these dependencies is available. Given the fact that ML
is an excellent tool for discovering complex patterns in data, it
is natural to believe that ML will be used extensively in selection
algorithms.

6 CHALLENGES AND OPEN PROBLEMS

6.1 Design of Candidates

Candidate Space. Whatever the selection algorithm is, to find
a good solution, it must be at least be contained in the chosen
candidate space. The question of choosing the right space is highly
non-trivial. It has been shown in [7] that an optimal solution can
not be found if one builds a candidate space upon subexpressions
of queries. On the other hand, it is impractical to work with large
subexpression spaces. Hence, it is necessary to study ways how
to constrain the candidate space while providing guarantees on the
quality of contained solutions. Heuristic approaches have been
already attempted for this purpose (Section 5.2.2), but we believe
that there is much room for new results and advanced techniques
in this area.

Computational Complexity. The formal complexity analysis has
made a significant contribution to the development of selection
algorithms (Section 4.3). Based on the state-of-the-art results we
believe that it is worthwhile to study the approximability of the
Selection Problem for AND-OR-DAGs. Understanding this issue will
facilitate building efficient selection algorithms for this expressive
representation framework. The computational complexity is also
worth investigating for AND-DAG and Data Cube frameworks,
since for these representations the (non-)existence of an exact
polynomial solution [22, 33] has not been yet established. There are
also hopes for positive computational results on the little explored
classes of binary AND-OR-DAGs.

6.2 Benefit estimation

Model architecture. Correctly estimating the benefit of candidates
is an important part in solving the Selection Problem (Section
5.4). One way to obtain accurate estimates is to build a special
benefit prediction model. We noted that using the tree structure
of queries allows for designing more optimal selection algorithms
(Section 5.2), and we believe this knowledge should be employed in
prediction models as well. While searching for new architectures,
it is also worth adopting similar solutions from other fields, among
which we highlight Tree Convolution networks [56] and TreeLSTM
modification of recurrent neural networks [56].

Encoding. To built a vectorized representation of a query, it is
important to correctly encode its keywords and (sub)expressions.
In [42], a special encoding technique similar to word2vec [43] was
proposed which allows for encoding more information and signifi-
cantly improves prediction accuracy. State-of-the-art techniques
for encoding plans in prediction models typically use one-hot en-
coding and linear transformations, which leaves space for advanced
encoding techniques.

6.3 Diverse Scenarios

Dynamic. The algorithms considered in this paper use an implicit
assumption that candidates persist until the entire given workload

is executed. But if a candidate is found to be useful for executing
only a part of the workload, it can be replaced at some point [19, 64].
Controlling the order of query execution and dynamically changing
the set of selected candidates can significantly increase the overall
performance. We think that this feature should become a part of
modern selection algorithms.

Distributed. Due to the trend towards scalable computing systems,
in order to develop efficient solutions to the Selection Problem, it
is necessary to take into account data location in benefit modeling,
similar to the ideas from [5].

Partial Selection. In some situations one can partially save a
candidate, for example, to keep only its most frequently requested
part. Then, in processing a query, most of the data can be retrieved
by reusing the candidate, while the rest of the data can be computed
from base relations [38]. A similar approach was implemented by
using hotspot tables in paper [66]. We think that these techniques
should be further developed, since they allow for reducing the size
of candidates to store, thus avoiding expensive disk reads.

6.4 Unified Selection Framework

Interconnections of Problems. The common nature of selection
tasks in different domains suggests reuse of ideas. We see that the
idea of storing frequent objects from classical caching is adopted in
View Selection [10] and Index Selection [51]. Reuse of techniques
can also be observed in the combined index and view selection
algorithms (Sections 5.4.1, 5.2.1). We believe there is a strong
potential in such approaches. For example, we noticed the non-
linear cost of saving in plan caching (see Example 3.6), which leads
to the idea to more efficiently store plans and reuse techniques for
the maintenance constraint from the field of View Selection.
Evaluation Platform. With the potential of reuse of techniques
between different approaches, we see a great benefit in creating a
universal platform for evaluating pros and cons of different selection
algorithms. In this paper, we are taking the first step in this direction
by proposing a general Candidate Selection framework. We face
however a number of technical challenges on this way, including
platform-dependence and closed code of some implementations, as
well as the lack of custom benchmarks.

7 CONCLUSION

In this paper, we highlighted the cross-domain nature of selection
algorithms and proposed the framework of Candidate Selection for
re-use of these algorithms. The framework covers many aspects of
Multi-Query Optimization, ranging from View Selection and Index
Selection to Query / Plan Caching. We provided a deep analysis of
selection problems in different domains and techniques to address
them. We offered a modern classification of selection algorithms,
we formulated open issues and challenges and suggested promising
directions for future research.

REFERENCES

[1] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R Narasayya. 2000. Automated
selection of materialized views and indexes in SQL databases. In VLDB, Vol. 2000.
496-505.

[2] Hossein Azgomi and Mohammad Karim Sohrabi. 2018. A game theory based
framework for materialized view selection in data warehouses. Engineering
Applications of Artificial Intelligence 71 (2018), 125-137.

B3

=
)

=
]

[18

(19]

[20

[21]

[22]

[23

[24]
[25]

[26]

[27

[28

[29

[30

Xavier Baril and Zohra Bellahsene. 2003. Selection of materialized views: A cost-
based approach. In Advanced Information Systems Engineering: 15th International
Conference, CAISE 2003 Klagenfurt/Velden, Austria, June 16-20, 2003 Proceedings
15. Springer, 665-680.

Surajit Chaudhuri, Mayur Datar, and Vivek Narasayya. 2004. Index selection for
databases: A hardness study and a principled heuristic solution. IEEE transactions
on knowledge and data engineering 16, 11 (2004), 1313-1323.

Leonardo Weiss F Chaves, Erik Buchmann, Fabian Hueske, and Klemens Bohm.
2009. Towards materialized view selection for distributed databases. In Pro-
ceedings of the 12th international conference on extending database technology:
advances in database technology. 1088-1099.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7-10.

Rada Chirkova, Alon Y Halevy, and Dan Suciu. 2002. A formal perspective on
the view selection problem. The VLDB Journal 11 (2002), 216-237.

Rada Chirkova, Jun Yang, et al. 2012. Materialized views. Foundations and
Trends® in Databases 4, 4 (2012), 295-405.

Bobbie Cochrane, Hamid Pirahesh, and Markos Zaharioudakis. [n.d.]. APPLYING
MASS QUERY OPTIMIZATION TO SPEED UP. ([n. d.]).

Shaul Dar, Michael J Franklin, Bjorn T Jonsson, Divesh Srivastava, Michael Tan,
et al. 1996. Semantic data caching and replacement. In VLDB, Vol. 96. 330-341.
Kalen Delaney. 2007. Query tuning and optimization. Microsoft Press, Redmond,
WA.

Roozbeh Derakhshan, Frank KHA Dehne, Othmar Korn, and Bela Stantic. 2006.
Simulated Annealing for Materialized View Selection in Data Warehousing
Environment.. In Databases and applications. 89-94.

Roozbeh Derakhshan, Bela Stantic, Othmar Korn, and Frank Dehne. 2008.
Parallel simulated annealing for materialized view selection in data warehousing
environments. Lecture Notes in Computer Science 5022 (2008), 121-132.

AA Diwan, S Sudarshan, and Dilys Thomas. 2006. Scheduling and caching in
multi-query optimization. In International Conference on Management of Data
COMAD, Delhi, India.

César A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten. 1994. Fast,
Randomized Join-Order Selection - Why Use Transformations?. In Proceedings of
the 20th International Conference on Very Large Data Bases (VLDB *94). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 85-95.

Antara Ghosh, Jignashu Parikh, Vibhuti S Sengar, and Jayant R Haritsa. 2002.
Plan selection based on query clustering. In VLDB’02: Proceedings of the 28th
international conference on very large databases. Elsevier, 179-190.

Klaus Greff, Rupesh K Srivastava, Jan Koutnik, Bas R Steunebrink, and Jirgen
Schmidhuber. 2016. LSTM: A search space odyssey. IEEE transactions on neural
networks and learning systems 28, 10 (2016), 2222-2232.

Ashish Gupta, Inderpal Singh Mumick, et al. 1995. Maintenance of materialized
views: Problems, techniques, and applications. IEEE Data Eng. Bull. 18, 2 (1995),
3-18.

Amit Gupta, S Sudarshan, and Sundar Vishwanathan. 2001. Query scheduling in
multi query optimization. In Proceedings 2001 International Database Engineering
and Applications Symposium. IEEE, 11-19.

Himanshu Gupta et al. 1997. Selection of views to materialize in a data warehouse.
In ICDT, Vol. 97. 98-112.

Himanshu Gupta and Inderpal Singh Mumick. 1999. Selection of views to
materialize under a maintenance cost constraint. In Database Theory—ICDT’99:
7th International Conference Jerusalem, Israel, January 10-12, 1999 Proceedings.
Springer, 453-470.

Himanshu Gupta and Inderpal Singh Mumick. 2005. Selection of views to
materialize in a data warehouse. IEEE Transactions on Knowledge and Data
Engineering 17, 1 (2005), 24-43.

Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

Alon Y Halevy. 2001. Answering queries using views: A survey. The VLDB
Journal 10 (2001), 270-294.

Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman. 1996. Implementing
data cubes efficiently. Acm Sigmod Record 25, 2 (1996), 205-216.

J-T Horng, Y-J Chang, and B-J Liu. 2003. Applying evolutionary algorithms
to materialized view selection in a data warehouse. Soft Computing 7 (2003),
574-581.

Arvind Hulgeri and S Sudarshan. 2002. Parametric query optimization for
linear and piecewise linear cost functions. In VLDB 02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 167-178.

Arvind Hulgeri and S Sudarshan. 2003. AniPQO: Almost non-intrusive parametric
query optimization for nonlinear cost functions. In Proceedings 2003 VLDB
Conference. Elsevier, 766-777.

Yannis E Toannidis and Younkyung Kang. 1990. Randomized algorithms for
optimizing large join queries. ACM Sigmod Record 19, 2 (1990), 312-321.

Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. Select-
ing subexpressions to materialize at datacenter scale. Proceedings of the VLDB

https://www.gurobi.com
https://www.gurobi.com

[31]

[32]

[33]

[34]

)
S

[36]

[37

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45

[46

[47]

[48

[49

[50]

(51

[52]

[54]

[55

[56]

[57]

Endowment 11, 7 (2018), 800-812.

Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag,
Marc Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018.
Computation reuse in analytics job service at microsoft. In Proceedings of the
2018 International Conference on Management of Data. 191-203.

Panos Kalnis, Nikos Mamoulis, and Dimitris Papadias. 2002. View selection
using randomized search. Data & Knowledge Engineering 42, 1 (2002), 89-111.
Howard Karloff and Milena Mihail. 1999. On the complexity of the view-
selection problem. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 167-173.

Antoon Kolen and Erwin Pesch. 1994. Genetic local search in combinatorial
optimization. Discrete Applied Mathematics 48, 3 (1994), 273-284.

Wilburt Juan Labio, Dallan Quass, and Brad Adelberg. 1997. Physical database
design for data warehouses. In Proceedings 13th International Conference on Data
Engineering. IEEE, 277-288.

Minsoo Lee and Joachim Hammer. 2001. Speeding up materialized view selection
in data warehouses using a randomized algorithm. International Journal of
Cooperative Information Systems 10, 03 (2001), 327-353.

Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. 2014. Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1408.2041 (2014).

Gang Luo. 2006. Partial materialized views. In 2007 IEEE 23rd International
Conference on Data Engineering. IEEE, 756-765.

Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135-146.

Imene Mami and Zohra Bellahsene. 2012. A survey of view selection methods.
Acm Sigmod Record 41, 1 (2012), 20-29.

Imene Mami, Remi Coletta, and Zohra Bellahsene. 2011. Modeling view selection
as a constraint satisfaction problem. In Database and Expert Systems Applications:
22nd International Conference, DEXA 2011, Toulouse, France, August 29-September
2, 2011, Proceedings, Part I 22. Springer, 396-410.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Hoshi Mistry, Prasan Roy, S Sudarshan, and Krithi Ramamritham. 2001. Ma-
terialized view selection and maintenance using multi-query optimization. In
Proceedings of the 2001 ACM SIGMOD international conference on Management of
data. 307-318.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

Nils J Nilsson. 1982. Principles of artificial intelligence. Springer Science &
Business Media.

Kenneth A Ross, Divesh Srivastava, and S Sudarshan. 1996. Materialized view
maintenance and integrity constraint checking: Trading space for time. In
Proceedings of the 1996 ACM SIGMOD international conference on Management of
data. 447-458.

Prasan Roy, S Seshadri, S Sudarshan, and Siddhesh Bhobe. 1998. Practical
Algorithms for multi query Optimization. Technical Report. Technical report,
Indian Institute of Technology, Bombay.

Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. 2000. Efficient
and extensible algorithms for multi query optimization. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 249-260.
Thomas P. Runarsson and Xin Yao. 2000. Stochastic ranking for constrained
evolutionary optimization. IEEE Transactions on evolutionary computation 4, 3
(2000), 284-294.

Praveen Seshadri and Arun Swami. 1995. Generalized partial indexes. In
Proceedings of the Eleventh International Conference on Data Engineering. IEEE,
420-427.

Mohammad Karim Sohrabi and Vahid Ghods. 2016. Materialized View Selection
for a Data Warehouse Using Frequent Itemset Mining. . Comput. 11, 2 (2016),
140-148.

Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. 2001.
LEO-DB2’s learning optimizer. In VLDB, Vol. 1. 19-28.

Julia Stoyanovich, Kenneth A Ross, Jun Rao, Wei Fan, Volker Markl, and Guy
Lohman. 2008. ReoptSMART: A Learning Query Plan Cache. (2008).

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An
introduction. MIT press.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved
semantic representations from tree-structured long short-term memory networks.
arXiv preprint arXiv:1503.00075 (2015).

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. 2016. Dueling network architectures for deep reinforcement learning. In

[58

[59

[60

[61

o
&,

(63

[64

[65]

[67

[68

International conference on machine learning. PMLR, 1995-2003.

Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8 (1992), 279-292.

Jennifer Widom. 1995. Research problems in data warehousing. In Proceedings
of the fourth international conference on Information and knowledge management.
25-30.

Jian Yang, Kamalakar Karlapalem, and Qing Li. 1997. Algorithms for materialized
view design in data warehousing environment. In VLDB, Vol. 97. 136-145.

Jian Yang, Kamalakar Karlapalem, and Qing Li. 1997. A framework for designing
materialized views in data warehousing environment. In Proceedings of 17th
International Conference on Distributed Computing Systems. IEEE, 458-465.
Jeffrey Xu Yu, Xin Yao, Chi-Hon Choi, and Gang Gou. 2003. Materialized view
selection as constrained evolutionary optimization. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 33, 4 (2003), 458—-467.
Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. 2020. Automatic view
generation with deep learning and reinforcement learning. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 1501-1512.

Chuan Zhang, Jian Yang, and Kamalakar Karlapalem. 2003. Dynamic materialized
view selection in data warehouse environment. Informatica (Slovenia) 27, 4
(2003), 451-460.

Chuan Zhang, Xin Yao, and Jian Yang. 2001. An evolutionary approach to
materialized views selection in a data warehouse environment. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 31, 3 (2001),
282-294.

Jingren Zhou, Per-Ake Larson, Jonathan Goldstein, and Luping Ding. 2006.
Dynamic materialized views. In 2007 IEEE 23rd International Conference on Data
Engineering. IEEE, 526-535.

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019.
Automated verification of query equivalence using satisfiability modulo theories.
Proceedings of the VLDB Endowment 12, 11 (2019), 1276-1288.

Daniel C Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma, Guy M Lohman,
Roberta J Cochrane, Hamid Pirahesh, Latha Colby, Jarek Gryz, Eric Alton, et al.
2004. Recommending materialized views and indexes with the IBM DB2 design
advisor. In International Conference on Autonomic Computing, 2004. Proceedings.
IEEE, 180-187.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Representation of Candidates
	3.2 Benefit of Candidates
	3.3 Constraints
	3.4 Candidate Selection Problem
	3.5 Computational Complexity

	4 Preparation for selection
	4.1 Query Representation
	4.2 Benefit Estimation
	4.3 Dealing with Constraints

	5 Selection Algorithms
	5.1 Exhaustive Search
	5.2 Heuristics
	5.3 Randomized Algorithms
	5.4 Hybrid algorithms
	5.5 Summary on Algorithms

	6 Challenges and Open Problems
	6.1 Design of Candidates
	6.2 Benefit estimation
	6.3 Diverse Scenarios
	6.4 Unified Selection Framework

	7 Conclusion
	References

