A Decomposability Criterion for Elementary Theories *

Denis Ponomaryov

Abstract

We prove that each elementary theory has a unique decomposition into indecomposable components and formulate a decomposability criterion.

Definition 1 A theory \mathcal{T} of signature Σ is called **decomposable**, if \mathcal{T} is the deductive closure in the predicate calculus of signature Σ of all sentences of some theories S_1 and S_2 with the disjoint signatures Σ_1 and Σ_2 , $\Sigma_1 \cup \Sigma_2 = \Sigma$ (we use the notation: $\mathcal{T} = S_1 \uplus S_2$).

The theories S_1 and S_2 are called (decomposition) components of \mathcal{T} .

Only nontrivial decompositions, with $\Sigma_1 \neq \emptyset \neq \Sigma_2$, are of interest for consideration. Throughout this paper, we assume that every decomposition component of a theory \mathcal{T} includes all equality formulas of \mathcal{T} . Thus every component \mathcal{S}_i of signature Σ_i contains all sentences of \mathcal{T} in signature Σ_i . For instance, if Σ consists of a sole symbol then every theory in this signature has only trivial decomposition.

Let us formulate the main question under study: Consider a theory \mathcal{T} of signature Σ defined by some set of axioms Φ in signature Σ . How can we determine whether \mathcal{T} is decomposable judging from Φ ?

This question was formulated by D. Palchunov in [4]. The interest in this problem is connected with applications in computer science such as automated theorem proving [1] and the maintenance of terminological systems [3, 5].

^{*}The author was supported by the RFBR (Grant 05–01–04003–NNIO_a) and DFG project COMO, GZ: 436 RUS 113/829/0–1.

We answer the question as follows: First, we introduce the notion of decomposable sentence in Section 1 and demonstrate that the sentences of this kind are crucial for determining the decomposition components of a theory. Next, we prove that each theory has a unique decomposition into indecomposable components. The key result used in the proof is the well-known Craig interpolation theorem [2].

In Section 2 we describe a method of finding decomposition components for a given theory. This method makes it possible to formulate a decomposability criterion.

The author thanks Professor Palchunov and the anonymous reviewer for their valuable pieces of advice and comments on this paper.

1 The Theorem of the Uniqueness of the Decomposition

Proposition 1 Let \mathcal{P} and \mathcal{Q} be theories of disjoint signatures $\Sigma_1 \cup \Sigma_2 = \Sigma$, and let φ be a sentence of signature Σ .

If φ follows from the union of \mathcal{P} and \mathcal{Q} , then there exist sentences $\theta \in \mathcal{P}$ and $\phi \in \mathcal{Q}$ such that $\theta, \phi \vdash \varphi$. Moreover, θ includes only those symbols of Σ_1 that are contained in φ , and ϕ includes only those symbols of Σ_2 that are present in φ .

As $\mathcal{P}, \mathcal{Q} \vdash \varphi$, there exist sentences $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$, for which $P, Q \vdash \varphi$. Hence, $P \vdash Q \rightarrow \varphi$.

By Craig's interpolation theorem, there exists a sentence θ of signature Σ_1 , which includes only those symbols of Σ_1 that are present in φ . Moreover, $P \vdash \theta$ and $\theta \vdash Q \to \varphi$. Hence, $Q \vdash \theta \to \varphi$.

Similarly, there exists a sentence ϕ of signature Σ_2 , which includes only those symbols of Σ_2 that are contained in φ . Moreover, $Q \vdash \phi$ and $\phi \vdash \theta \rightarrow \varphi$. Thus, $\theta, \phi \vdash \varphi$. \Box

Definition 2 Let \mathcal{T} be a theory. We call a sentence $\varphi \in \mathcal{T}$ decomposable in \mathcal{T} if there exist sentences $\theta \in \mathcal{T}$ and $\psi \in \mathcal{T}$ with the following properties: θ and ψ contain symbols only from the signature of φ ; θ and ψ do not have signature symbols in common; neither θ nor ψ is an equality formula; $\theta, \psi \vdash \varphi$. Sentences θ and ψ are called **decomposition fragments** of φ . If there are no such sentences in T then we call φ **indecomposable in** T.

Lemma 1 Let \mathcal{T} be a theory. For each sentence $\varphi \in \mathcal{T}$ there exist a sequence ϕ_1, \ldots, ϕ_n of sentences such that $\phi_1, \ldots, \phi_n \vdash \varphi$ holds, and each ϕ_i , $i = 1 \ldots n$, is a sentence of \mathcal{T} indecomposable in \mathcal{T} .

Consider the set $T_1 = \{\varphi\}$. Take the decomposition fragments ϕ and ψ for φ , if they exist in \mathcal{T} , and build the set $T_2 = \{\phi, \psi\}$. By repeating this transformation for the sentences of T_2 and further resulting sets, we obtain the sequence T_1, T_2, T_3, \ldots . Each sentence contains only finitely many signature symbols; therefore, each sentence can be decomposed only finitely many times. Thus, for some k the set $T_k = \{\phi_1, \ldots, \phi_n\}$ will contain only those sentences of \mathcal{T} that are indecomposable in \mathcal{T} , and for which $\phi_1, \ldots, \phi_n \vdash \varphi$ holds. \Box

Theorem 1 Let \mathcal{T} be a theory of signature Σ . Then \mathcal{T} has a unique decomposition into indecomposable components.

Let $S_1 \subseteq \mathcal{T}$ be a theory of signature $\Sigma_1 \subseteq \Sigma$ consisting of all sentences of \mathcal{T} in Σ_1 . Then S_1 is a decomposition component of \mathcal{T} iff the following condition (*) is satisfied: if φ is a sentence of signature $\Sigma_{\varphi} \cap \Sigma_1 \neq \emptyset$ and φ is indecomposable in \mathcal{T} then $\Sigma_{\varphi} \subseteq \Sigma_1$.

We now prove this statement.

 \Rightarrow : Let $\mathcal{T} = \mathcal{S}_1 \uplus \mathcal{S}_2$, where \mathcal{S}_2 is a theory of signature $\Sigma_2 = \Sigma \setminus \Sigma_1$. Suppose that $\Sigma_{\varphi} \cap \Sigma_2 \neq \emptyset$. Then $\mathcal{S}_1, \mathcal{S}_2 \vdash \varphi$. It follows from Proposition 1 that φ is decomposable in \mathcal{T} , which contradicts the initial assumption in (*).

 \Leftarrow : Let S_2 be a theory of signature $\Sigma_2 = \Sigma \setminus \Sigma_1$, which consists of all sentences of \mathcal{T} in signature Σ_2 . Let ψ be a sentence of \mathcal{T} . By Lemma 1, there exists a sequence ϕ_1, \ldots, ϕ_n of sentences such that $\phi_1, \ldots, \phi_n \vdash \psi$, and each $\phi_i, i = 1 \ldots n$, is a sentence of \mathcal{T} indecomposable in \mathcal{T} .

From (*) we have $\{\phi_1, \ldots, \phi_n\} \subset S_1 \cup S_2$; hence, $S_1 \uplus S_2 \vdash \psi$.

Thus, a subset $\Sigma_1 \subseteq \Sigma$ corresponds to an indecomposable component of \mathcal{T} iff it satisfies the condition (*) and does not have a proper subset satisfying (*). Note that the collection of subsets of Σ with the property (*) is closed under intersection; thus, each symbol of Σ is contained in one minimal subset of Σ satisfying (*), and these minimal subsets do not intersect. This completes the proof of Theorem 1. \Box

2 A Decomposability Criterion

It follows from the proof of Theorem 1 that each sentence of a theory \mathcal{T} , which is indecomposable in \mathcal{T} , contains symbols only from one decomposition component of \mathcal{T} . This allows us to determine the partitioning of the signature, as well as components of \mathcal{T} judging from the system of axioms of \mathcal{T} .

Let us formalize this result with the help of the following

Definition 3 Let \mathcal{T} be a theory of signature Σ , and let Φ be a system of axioms of \mathcal{T} .

We call a pair of symbols $p, q \in \Sigma$ directly connected (by Φ), if there exists a sentence $\psi \in \Phi$ containing p and q.

The symbols p and q are called **connected**, if there exists a sequence $p = t_1, \ldots, t_k = q$ of signature symbols in which every pair t_i, t_{i+1} is directly connected.

Thus, for a given system Φ of axioms we have a nonoriented labelled graph, where the set of vertices is Σ , and the incidence relation is determined by sentences from Φ . The connectedness relation is an equivalence on Σ ; therefore, the signature Σ is partitioned into the cosets, which coincide with the connectedness components of the graph. We may say that Φ induces connectedness components on Σ .

Remark 1 Each theory \mathcal{T} has a system of axioms consisting of sentences indecomposable in \mathcal{T} .

Remark 2 Let \mathcal{T} be a theory of signature Σ and let Φ be a system of axioms for \mathcal{T} , with each sentence $\varphi \in \Phi$ indecomposable in \mathcal{T} .

Then Φ induces a connectedness component $\sigma \subseteq \Sigma$ on Σ iff $\sigma \in \Pi$, where Π is a partition of Σ , which corresponds to the decomposition of \mathcal{T} into indecomposable components. We obtain from Theorem 1 that each system Φ of axioms of a theory \mathcal{T} , with all $\varphi \in \Phi$ indecomposable in \mathcal{T} , induces the same connectedness components on the signature of \mathcal{T} . This leads us to the following

Decomposability Criterion A theory \mathcal{T} of signature Σ is decomposable iff some system Φ of axioms of \mathcal{T} , with all $\varphi \in \Phi$ indecomposable in \mathcal{T} , induces more than one connectedness component on Σ .

References

- E. Amir and S. McIlraith. Partition-based logical reasoning for firstorder and propositional theories. *Artificial Intelligence*, 162(1-2):49-88, 2005.
- [2] C.C. Chang and H.J. Keisler. *Model Theory*. North-Holland, 1973.
- [3] B. Cuenca-Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and Web ontologies. In *Proceedings of KR2006*, pages 198-208, 2006.
- [4] D. Palchunov. GABEK for ontology generation. GABEK. Contributions to Knowledge Organization, 2, Wien: LIT-publishing Company, 2005.
- [5] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description logics. In *Proceedings of IJCAI 2007*, pages 453-458, 2007.