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Abstract

We prove that each elementary theory has a unique decomposition
into indecomposable components and formulate a decomposability cri-
terion.

Definition 1 A theory T of signature X is called decomposable, if T is the
deductive closure in the predicate calculus of signature > of all sentences of
some theories 81 and Sy with the disjoint signatures 31 and Yo, X1 Udg = X
(we use the notation: T =S WS,).

The theories 81 and Sy are called (decomposition) components of T.

Only nontrivial decompositions, with ¥, # & # ¥, are of interest for
consideration. Throughout this paper, we assume that every decomposition
component of a theory 7 includes all equality formulas of 7. Thus every
component S; of signature ¥; contains all sentences of 7 in signature ;. For
instance, if ¥ consists of a sole symbol then every theory in this signature
has only trivial decomposition.

Let us formulate the main question under study: Consider a theory T
of signature Y. defined by some set of axioms ® in signature X. How can we
determine whether T is decomposable judging from ®7

This question was formulated by D. Palchunov in [4]. The interest in
this problem is connected with applications in computer science such as au-
tomated theorem proving [1] and the maintenance of terminological systems
3, 5].
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We answer the question as follows: First, we introduce the notion of
decomposable sentence in Section 1 and demonstrate that the sentences of
this kind are crucial for determining the decomposition components of a
theory. Next, we prove that each theory has a unique decomposition into
indecomposable components. The key result used in the proof is the well-
known Craig interpolation theorem [2].

In Section 2 we describe a method of finding decomposition components
for a given theory. This method makes it possible to formulate a decompos-
ability criterion.

The author thanks Professor Palchunov and the anonymous reviewer for
their valuable pieces of advice and comments on this paper.

1 The Theorem of the Uniqueness
of the Decomposition

Proposition 1 Let P and Q be theories of disjoint signatures ¥4 U Xy = 3,
and let ¢ be a sentence of signature 3.

If ¢ follows from the union of P and Q, then there exist sentences 6 € P
and ¢ € Q such that 6,¢ = p. Moreover, 0 includes only those symbols of
Y1 that are contained in @, and ¢ includes only those symbols of 3o that are
present in .

As P, Q F ¢, there exist sentences P € P and ) € Q, for which P, Q + .
Hence, P+ Q — .

By Craig’s interpolation theorem, there exists a sentence 6 of signa-
ture 3y, which includes only those symbols of >; that are present in .
Moreover, P+ 6 and 6 - Q — . Hence, Q -6 — .

Similarly, there exists a sentence ¢ of signature 5, which includes only
those symbols of Y5 that are contained in ¢. Moreover, Q) - ¢ and ¢ - 0 — .
Thus, 0,0 F . UJ

Definition 2 Let T be a theory. We call a sentence ¢ € T decomposable
in T if there exist sentences 0 € T and iy € T with the following properties:
0 and 1 contain symbols only from the signature of ; 6 and ¢ do not
have signature symbols in common,; neither 0 nor 1 is an equality formula;

0,0 F .



Sentences 6 and i are called decomposition fragments of p. If there
are no such sentences in T then we call p indecomposable in T .

Lemma 1 Let 7 be a theory. For each sentence p € T there exist a sequence
¢1,...,0n of sentences such that ¢q,...,¢, = @ holds, and each ¢;, i =
1...n, is a sentence of T indecomposable in T .

Consider the set T3 = {¢}. Take the decomposition fragments ¢ and
Y for ¢, if they exist in 7, and build the set To = {¢,1}. By repeating
this transformation for the sentences of T, and further resulting sets, we
obtain the sequence T, T5, T3, . ... Each sentence contains only finitely many
signature symbols; therefore, each sentence can be decomposed only finitely
many times. Thus, for some k the set T, = {¢1,...,¢,} will contain only
those sentences of 7 that are indecomposable in 7, and for which ¢, ..., ¢, F

¢ holds. [J

Theorem 1 Let T be a theory of signature 3. Then T has a unique decom-
position into indecomposable components.

More precisely, there exists a unique partition II of ¥ such that T =
W{7Z, | o € I1}, with every 7, a theory, which consists of all sentences of T
n signature o and has only trivial decompositions.

Let &1 € 7 be a theory of signature »; C ¥ consisting of all sentences
of 7 in ¥;. Then &; is a decomposition component of 7 iff the following
condition () is satisfied: if ¢ is a sentence of signature ¥, N¥; # & and ¢
is indecomposable in 7 then ¥, C ;.

We now prove this statement.

=: Let 7 = 8§ W Sy, where Sy is a theory of signature ¥y = X\X.
Suppose that ¥, N Yy # &. Then &1, 8, F ¢. It follows from Proposition 1
that ¢ is decomposable in 7', which contradicts the initial assumption in (x).

<: Let Sy be a theory of signature ¥y = Y\X;, which consists of all
sentences of 7 in signature X,. Let ¢ be a sentence of 7. By Lemma 1, there
exists a sequence ¢, ..., ¢, of sentences such that ¢1,...,¢, F ¢, and each
¢;, 1 =1...n,is a sentence of 7 indecomposable in 7.

From () we have {¢1,...,¢,} C 81 USy; hence, S; WSy 1.

Thus, a subset ¥; C ¥ corresponds to an indecomposable component
of 7 iff it satisfies the condition (%) and does not have a proper subset
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satisfying (x). Note that the collection of subsets of ¥ with the property (x) is
closed under intersection; thus, each symbol of ¥ is contained in one minimal
subset of ¥ satisfying (x), and these minimal subsets do not intersect. This
completes the proof of Theorem 1. [J

2 A Decomposability Criterion

It follows from the proof of Theorem 1 that each sentence of a theory 7,
which is indecomposable in 7, contains symbols only from one decomposition
component of 7. This allows us to determine the partitioning of the signature,
as well as components of 7 judging from the system of axioms of 7.

Let us formalize this result with the help of the following

Definition 3 Let 7 be a theory of signature %, and let ® be a system of
axioms of T .

We call a pair of symbols p,q € X directly connected (by ®), if there
exists a sentence ¢ € ® containing p and q.

The symbols p and q are called connected, if there exists a sequence
p=ty,...,.tx = q of signature symbols in which every pair t;, t;, 1 is directly
connected.

Thus, for a given system ® of axioms we have a nonoriented labelled
graph, where the set of vertices is 3, and the incidence relation is determined
by sentences from ®. The connectedness relation is an equivalence on 3;
therefore, the signature X is partitioned into the cosets, which coincide with
the connectedness components of the graph. We may say that ® induces
connectedness components on 2.

Remark 1 FEach theory T has a system of axioms consisting of sentences
indecomposable in T .

Remark 2 Let T be a theory of signature > and let ® be a system of axioms
for T, with each sentence p € ® indecomposable in T .

Then ® induces a connectedness component o C % on X iff o € I,
where 11 is a partition of 3, which corresponds to the decomposition of T
into indecomposable components.



We obtain from Theorem 1 that each system & of axioms of a theory
T, with all ¢ € ® indecomposable in 7, induces the same connectedness
components on the signature of 7. This leads us to the following

Decomposability Criterion A theory 7 of signature 3 is decomposable iff
some system ® of axioms of T, with all ¢ € ® indecomposable in T, induces
more than one connectedness component on X.
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