
Progression of Decomposed
Situation Calculus Theories

Denis Ponomaryov1 and Mikhail Soutchanski2

1 Institute of Artificial Intelligence, University of Ulm,
James-Franck-Ring, Geb. O27, 89069, Germany;
A.P. Ershov Institute Of Informatics Systems,

Russian Academy of Sciences, Siberian Division,
6, Acad. Lavrentjev pr., Novosibirsk, 630090, Russia

ponom@iis.nsk.su
2 Department of Computer Science, Ryerson University,

245 Church Street, ENG281, Toronto, ON, M5B 2K3, Canada
mes@scs.ryerson.ca

Abstract. In many tasks related to reasoning about consequences of
a logical theory, it is desirable to decompose the theory into a num-
ber of weakly-related or independent components. However, a theory
may represent knowledge that is subject to change due to execution of
actions that have effects on some properties mentioned in the theory.
Having once computed a decomposition of a theory, one would like to
know whether a decomposition has to be computed again in the theory
obtained from taking into account changes resulting from execution of
an action. In the paper, we address this problem in the scope of the
situation calculus, where a change of an initial theory is related to the
notion of progression. Progression provides a form of forward reason-
ing; it relies on forgetting values of those features which are subject to
change and computing new values for them. We consider decomposabil-
ity and inseparability, two component properties of theories known from
the literature, and contribute by studying these properties wrt progres-
sion and the related notion of forgetting. We provide negative examples
and identify cases when these properties are preserved under forgetting
and progression of initial theories in local–effect basic action theories of
the situation calculus.

Keywords: decomposition, inseparability, forgetting, progression, reasoning
about actions

1 Introduction

Modularity of theories has been established as an important research topic in
knowledge representation. It includes both theoretical and practical aspects of
modularity of theories formulated in different logical languages L ranging from
weak (but practical) description logic (DL) EL to more expressive logics [10, 9,

24, 7], to cite a few. Surprisingly, this research topic is little explored in the con-
text of reasoning about actions. More specifically, it is natural to decompose a
large heterogeneous theory covering several loosely coupled application domains
into components that have little or no intersection in terms of signatures. Po-
tentially, such decomposition can facilitate solving the projection problem that
requires answering whether a given logical formula is true after executing a se-
quence of actions (events). In cases, when a query is a logical formula composed
from symbols occuring only in one of the components, the query can be answered
more easily than in the case when the whole theory is required. In turn, this can
help in solving other reasoning problems such as planning or high-level program
execution that require solution to the projection problem as a prerequisite. To
the best of our knowledge, the only previous work that explored decomposition
of logical theories for the purposes of solving the projection problem are the
papers [1, 2]. These papers investigate decomposition in the situation calculus
[22, 25], a well-known logical formalism for representation of actions and their
effects. The author proposed reasoning procedures for a situation calculus theory
by dividing syntactically the whole theory into weakly related partitions. Specif-
ically, he developed algorithms that use local computation inside syntactically
identified partitions and message passing between partitions. We take a different
approach in our paper. Instead of decomposing the whole action theory into sub-
sets, as in [1, 2], we consider signature decompositions of an initial theory only.
Our components are not necessarily syntactic subsets of the initial theory. We
concentrate on foundations, and explore properties of components produced by
our decomposition. Whenever possible, we try to formulate these properties in
a general logical language L that is a fragment of second order logic, but when
necessary, we talk about a specific logic.

This paper considers the decomposability and inseparability properties of
logical theories. These properties are well-known in research on modularization
in the area of knowledge representation [9, 24, 10, 19]. Both properties are con-
cerned with subdividing theories into components to facilitate reasoning. Infor-
mally, decomposability of a theory means that it can be equivalently represented
as a union of two (or several) theories sharing a strictly defined set ∆ of signature
symbols. Inseparability of theories wrt some signature ∆ means that the theories
have the same set of logical consequences in the signature ∆. If a theory T is
∆–decomposable into ∆–inseparable components, then (under certain restric-
tions on the underlying logic) each component of the decomposition contains all
information from T in its own signature. This is an ideal case of decomposition,
since in this case the problem of entailment from T can be reduced to entailment
from components which are potentially smaller than the theory T .

In the area of reasoning about actions, an initial logical theory represents
knowledge that is subject to change due to effects of actions on some of the
properties mentioned in the theory. It can be updated with new information
caused by actions, while some other knowledge should be forgotten as no longer
true in the next situation. We consider two types of update operators: forgetting
in arbitrary theories and progression of theories in the situation calculus. Forget-

ting is a well-known operation on theories first introduced by Fangzhen Lin and
Ray Reiter in their seminal paper [14]. Forgetting a signature σ in a theory T
means obtaining a theory indistinguishable from T in the rest of signature sym-
bols sig (T) \ σ. In this sense, forgetting a signature is close to the well-known
notion of uniform interpolation. Forgetting a ground atom P (t̄) in a theory T
gives a theory which implies all consequences of T “modulo” the truth value of
P (t̄). The operation of forgetting is closely related to progression in basic action
theories in the situation calculus.

The situation calculus [25] is a knowledge representation logical formalism,
which has been designed for axiomatization of problems in planning and high-
level program execution. The idea is to axiomatize a set of initial states (as an
initial theory), axiomatize preconditions telling when actions can be performed,
and add also the axioms about the effects of actions on situation-dependent prop-
erties. Then, one can reason about consequences of sequences of actions to check
whether properties of interest hold in a given situation resulting from executing
a sequence of actions and whether a certain sequence of actions is executable. In
the situation calculus, the so-called basic action theories represent such axiom-
atizations [25]. As mentioned above, each basic action theory contains an initial
theory which represents incomplete knowledge about an initial situation S0. In a
special case, when there is complete knowledge about a finite number of individ-
uals having unique names, the initial theory can be implemented as a relational
database [25]. Roughly, a basic action theory D is a union of an initial theory
DS0 with some theory T , defining transitions among situations, and a set of
“canonical” axioms assumed to be true for all application problems represented
in the situation calculus. Informally speaking, an update of the initial theory af-
ter execution of an action is called progression of the initial theory wrt an action.
More precisely, progression of DS0 wrt some action α is a logical consequence
of D which contains all information from D about the situation resulting from
execution of α in the situation S0. Ideally, it is computed as updating DS0 with
some logical consequences of T , once all information in DS0 which is no longer
true in the resulting situation has been forgotten. Note the intuitive relation
with the operation of forgetting.

Historically, the situation calculus (earlier known as situational logic) is the
earliest logical framework developed in the area of artificial intelligence (AI).
Having been developed in the 1960s by John McCarthy and his colleagues [20,
22, 6], it is still one of the most popular logical frameworks for reasoning about
actions, e.g., it is presented in most well-known textbooks on AI. It is worth
mentioning that there are both conceptual and technical differences between
the situation calculus, designed for reasoning about arbitrary actions, and the
Floyd–Hoare logic, Dijkstra’s predicate transformers, dynamic logic (and other
related formalisms), which are designed for reasoning about the correctness of
computer programs. For example, the latter formalisms would consider the oper-
ator assigning a new value to a variable in a program as a primitive action, while
the former would consider as primitive the actions on higher level of abstraction,
e.g., such as moving a book from its current location to the table. For this rea-

son, the situation calculus is chosen as foundation for high-level programming
languages in cognitive robotics [12]. In our paper, when we talk about the situ-
ation calculus, we follow the axiomatic approach and notation by R.Reiter [25]
who developed a general approach to axiomatizing direct effects and non-effects
of actions. It has been observed for a long time that in practical applications
real world actions have no effect on most properties. However, it was Reiter who
first proposed an elegant axiomatization that represents compactly non-effects
of actions. The cited book covers several extensions of the situation calculus to
reasoning about concurrent actions, instantaneous actions, processes extended
in time, interaction between action and knowledge, stochastic actions, as well
as high-level programming languages based on the situation calculus. In our pa-
per, we concentrate on the case when actions are sequential, atemporal, and
deterministic. Despite this focus of our paper, our results can be subsequently
adapted to characterize more general classes of actions. The main limitation of
our work is in concentrating on direct effects only. Side effects of actions remain
to be considered in future work.

In this paper, we are interested in the case when the initial theory is de-
composed into inseparable components and study which restrictions guarantee
preservation of decomposability and inseparability of components after progres-
sion. We would like to avoid computing a decomposition of an updated initial
theory again after executing an action. Moreover, we would like to know whether
the components remain inseparable after progression. This invariance is impor-
tant since progression may continue indefinitely as long as new actions are being
executed. If it is the case, then it would suffice to compute a decomposition of
the initial theory once, and this decomposition would remain “stable” after pro-
gression wrt any arbitrary sequence of actions. Moreover, if an executed action
has effects only on one component of the initial theory, then we would like to
be able to compute progression using only this part instead of the whole initial
theory. This leads to the question of when the decomposability and inseparabil-
ity properties are preserved under progression and under forgetting. This paper
contributes to general understanding of forgetting and progression, since new
results about them are needed for the purposes of our investigation. Not surpris-
ingly, both forgetting and progression have intricate interactions with properties
of decomposed components. In general, it is very hard to guarantee preserva-
tion of decomposability and inseparability, because there is a certain conceptual
distance between these notions on one hand, and forgetting and progression on
the other – we provide examples witnessing this. Nevertheless, we identify cases
when these properties are preserved. It turns out that some of these cases have
a practically important formulation. Another contribution of the paper is in for-
mulating clear negative examples demonstrating the cases when decomposability
and inseparability are lost under progression. In particular, our examples demon-
strate there is little hope to preserve inseparability if the different components
share a fluent. Decomposability turns out to be also a fragile property that can be
easily lost after executing just one action in a simple basic action theory. Overall,
this paper contributes by not only studying forgetting and progression, but also

by completing a thorough and comprenehsive study when decomposability and
inseparability are preserved and when they are lost.

We start with some model-theoretic remarks useful in this paper, then intro-
duce the basics of situation calculus and proceed to the component properties
of forgetting in Section 3 and progression in Section 4. The last section contains
a summary of the obtained results.

2 Background

2.1 Model-Theoretic Definitions

Let L be a logic (possibly many-sorted) which is a fragment of second-order
logic (either by syntax or by translation of formulas) and has the standard model-
theoretic Tarskian semantics. We call signature a subset of non-logical symbols
of L. If M1 and M2 are two many–sorted structures and ∆ is a signature then
we say thatM1 andM2 agree on ∆ if they have the same domains for each sort
and the same interpretation of every symbol from ∆. If M is a structure and σ
is a subset of predicate and function symbols from M, then we denote by M |σ
the reduct ofM to σ, i.e. the structure with predicate and function names from
σ, where every symbol of σ names the same entity as in M. The structure M
is called expansion of M |σ. For a set of formulas T in L, we denote by sig (T)
the signature of T , i.e. the set of all non-logical symbols which occur in T . We
will use the same notation sig (ϕ) for the signature of a formula ϕ in L. If t is
a term in the language of second–order logic then the same notation sig (t) will
be used for the set of all non-logical symbols occurring in t. Throughout this
paper, we use the notion of theory as a synonym for a set of formulas in L which
are sentences when translated into second-order logic. Whenever we mention a
set of formulas, it is assumed that this set is in L, if the context is not specified.
For two theories T1 and T2, the notation T1 ≡ T2 will be the abbreviation for
the semantic equivalence. If T is a set of formulas in L and ∆ is a signature
then Cons (T , ∆) will denote the set of semantic consequences of T (in L) in
the signature ∆, i.e. Cons (T , ∆) = {ϕ ∈ L | T |= ϕ and sig (ϕ) ⊆ ∆}. We
emphasize that this is a notation for a set of formulas in L, because T may
semantically entail formulas which are in second-order logic, but outside of L.

Let us recall some basic model-theoretic facts that are important for under-
standing the results of this paper.

Fact 1 If T is a theory in L and ∆ a signature, then some models of Cons (T , ∆)
may not have an expansion to a model of T .

Indeed, let L be first-order logic and {P, f} be a signature, where P is a unary
predicate and f is a unary function. Let T be a theory saying that f is a bijection
between the interpretation of P and its complement. Thus, T axiomatizes the
class of models, where the interpretation of P and its complement are of the
same cardinality. Then, by the Löwenheim–Skolem theorem, there is a model
M of Cons (T , {P}) in which the interpretation of P is a countable set, but the
complement is uncountable. This model has no expansion to a model of T .

Fact 2 If T is a theory in L and ∆ a signature, then Cons (T , ∆) may not be
finitely axiomatizable in L.

Let T be the first-order theory axiomatized by the following two axioms:
∀x[A(x)→ B(x)]
∀x[B(x)→ ∃yR(x, y) ∧B(y)],

where A and B are unary predicates, R is a binary predicate. Define the signature
∆ = {A,R}. Then Cons (T , ∆) is the following infinite set of formulas
∀x A(x)→ ∃yR(x, y),
∀x A(x)→ [∃y∃uR(x, y) ∧R(y, u)],
∀x A(x)→ [∃y∃u∃vR(x, y) ∧R(y, u) ∧R(u, v)],
...

By compactness, this theory is not finitely axiomatizable in first-order logic.

There is plenty of known examples similar to the above mentioned, but we
believe we have given the simplest ones. The example from Fact 2 is widely
known in the literature on Description Logics (e.g., see Section 3.2 in [18]).

First, we formulate two component properties of theories considered in this
paper. The notion of inseparability has been previously introduced in the context
of entailment in Description Logics, e.g., see [10, 19].

Definition 1 (∆–inseparability) Theories T1 and T2 in L are called ∆–insepa-
rable for a signature ∆, if Cons (T1, ∆) = Cons (T2, ∆). That is, no formula in
the signature ∆ “witnesses” any distinction between T1 and T2.

In other words, T1 and T2 are ∆–inseparable, if for any formula ψ in signature
∆, T1 entails ψ iff T2 does. The following notion is introduced in [24], and is
applied to the study of modularity in [9].

Definition 2 (∆–decomposability property) Let T be a theory in L and
∆ ⊆ sig (T) be a subsignature. We call T ∆–decomposable, if there are theories
T1 and T2 in L such that

– sig (T1) ∩ sig (T2) = ∆, but sig (T1) 6= ∆ 6= sig (T2);
– sig (T1) ∪ sig (T2) = sig (T);
– T ≡ T1 ∪ T2.

The pair 〈T1, T2〉 is called ∆–decomposition of T and the theories T1 and T2
are called ∆–decomposition components of T . We will sometimes omit the word
“decomposition” and call the sets T1 and T2 simply components of T , when the
signature ∆ is clear from the context. The sets sig (T1) \∆ and sig (T2) \∆ are
called signature (∆–decomposition) components of T .

The notion of ∆–decomposition is defined using a pair of theories, but easily
extended to the case of a family of theories. It is important to realize that T1
and T2 need not be subsets of T in the above definition. Clearly, if L satisfies
compactness and T is a finite ∆–decomposable theory in L for a signature ∆,
then there is a ∆–decomposition 〈T1, T2〉 of T , where T1 and T2 are finite. Al-
though, the union T1 ∪ T2 must entail all consequences of T in the signature ∆,

the components T1 and T2 may not be ∆–inseparable, if we demand them to be
finite. For example, the set of ∆–consequences of T2 may not be finitely axiom-
atizable in L by axioms of T1. This easily follows from Fact 2 which notes that
this effect is already possible in weak languages such as the sub-boolean descrip-
tion logic EL. On the other hand, ∆–inseparability of decompositions can always
be obtained if the underlying logic L has uniform interpolation (cf. Proposition
2 in [24]). Both ∆–decomposition and ∆–inseparability are required to achieve
modularity. Without ∆–inseparability components are not self-sufficient, since a
component may not entail some of the consequences in the shared vocabulary ∆.
The ideal case is when a theory T has ∆-decomposition into finite ∆–inseparable
components, as noted in the following.

The well-known property of logics related to signature decompositions of
theories is the Parallel Interpolation Property (PIP) first considered in a special
form in [11] and studied later in a more general form in [9]. Note that PIP is
closely related to Craig’s interpolation [4, 5].

Definition 3 (Parallel Interpolation Property) The logic L is said to have
the parallel interpolation property (PIP) if for any theories T1, T2 in L with
sig (T1) ∩ sig (T2) = ∆ and any formula ϕ in L, the condition T1 ∪ T2 |= ϕ
yields the existence of sets of formulas T ′1 and T ′2 in L such that:

– Ti |= T ′i , for i = 1, 2, and T ′1 ∪ T ′2 |= ϕ;
– sig (T ′i) \∆ ⊆ (sig (Ti) ∩ sig (ϕ)) \∆.

In fact, PIP can be understood as an iterated version of Craig’s interpolation
in the logics that have compactness and deduction theorem (see Lemma 1 in
[24]). Many logics known to have Craig interpolation, e.g. second and first-order
logics, numerous modal logics and some description logics, also have PIP. It is
easy to note that, in presence of PIP, decomposing a set T of formulas into
inseparable components wrt a signature ∆ gives a family of theories that imply
all the consequences of T in their own subsignatures.

Fact 3 Let L have PIP, T be a theory in L, and ∆ be a signature. Let 〈T1, T2〉
be a ∆–decomposition of T with T1 and T2 being ∆–inseparable. Then for any
formula ϕ with sig (ϕ) ⊆ sig (Ti), for some i = 1, 2, we have T |= ϕ iff Ti |= ϕ.

Proof. Assume sig (ϕ) ⊆ sig (T1). If T1 |= ϕ then T |= ϕ by definition of ∆–
decomposability. If T |= ϕ then T1 ∪ T2 |= ϕ and by PIP, there are T ′1 and T ′2
such that T1 |= T ′1 , T2 |= T ′2 , T ′1 ∪ T ′2 |= ϕ, and sig (T ′2) ⊆ ∆. As T1 and T2 are
∆–inseparable, we obtain T1 |= T ′2 and conclude that T1 |= ϕ. �

In other words, in presence of PIP, inseparable decomposition components
can be used instead of the original theory for checking entailment of formulas
in the corresponding subsignatures. This is the reason for our interest in the
inseparability property in connection with decompositions. As shown in [1, 2],
having a decomposed theory can be beneficial even without inseparability by ap-
plying the known methods of distributed reasoning via message passing between
components. However, having inseparability of components allows the reasoner
to avoid message passing completely.

2.2 Basics of the Situation Calculus

The language of the situation calculus Lsc has the first-order syntax over
three sorts action, situation, object and is provided with the standard model-
theoretic semantics. It is defined over the countably infinite alphabet Asc =
{do,�, S0, Poss} ∪A∪F ∪O ∪P, where do is a binary function symbol of sort
situation, � is a binary relation on situations, S0 is the constant of sort situ-
ation, Poss(a, s) is a binary predicate (saying whether a is possible in s) with
the first argument of sort action and the second one of sort situation, A is a set
of action functions with arguments of sort object, F is a set of so-called fluents,
i.e. predicates having as arguments a tuple (vector) of sort object and one last
argument of sort situation, O is a set of constants of sort object, and P is a
set of static predicates and functions, i.e. those that only have objects as argu-
ments. A symbol v ∈ Asc (predicate or function) is called situation-independent
if v ∈ Asc ∪ O ∪ P. A ground term is of sort situation iff it is either the con-
stant S0 or a term do(A(t̄), S), where A(t) is a ground action term and S is a
ground situation term. For instance, a term do(A2(t̄2), do(A1(t̄1), S0)) denotes
the situation resulting from executing actions A1(t̄1) and A2(t̄2) consecutively
from the initial situation S0. Informally, static predicates specify object proper-
ties that do not change over time and fluents describe those object properties
that are situation–dependent. The language of the situation calculus is used to
formulate basic action theories (BAT s). For example, they may serve as formal
specifications of planning problems. Every BAT consists of a set of foundational
axioms Σ which specify constraints on how the function do and fluents must
be understood, a theory Duna stating the unique name assumption for action
functions and objects, an initial theory DS0 describing knowledge in the initial
situation S0, a theory Dap specifying preconditions of action execution, and a
theory Dss (the set of successor-state axioms, SSAs for short) which contains
definitions of fluents in the next situation in terms of static predicates and the
values of fluents in the previous situation. More precisely, in every basic action
theory D over a signature σ ⊆ Asc, the theory Σ is the set of the following
axioms (note the axiom schema for induction):

∀ a1, a2, s1, s2 [do(a1, s2) = do(a2, s2)→ a1 = a2 ∧ s1 = s2]
∀ s ¬(s � S0 ∧ s 6= S0)
∀ s1, s2 [s1 � s2 ↔ ∃a (do(a, s1) � s2) ∨ s1 = s2]
∀P P (S0) ∧ ∀a, s[P (s)→ P (do(a, s))]→ ∀sP (s)

For every pair of distinct action functions {A,A′} ⊆ σ and every pair 〈a, b〉 of
distinct object constants from σ, a theory Duna contains axioms of the form:

a 6= b
∀ x̄, ȳ A(x̄) 6= A′(ȳ)
∀ x̄, ȳ A(x1, . . . , xn) = A(y1, . . . , yn)→ x1 = y1 ∧ . . . ∧ xn = yn if A is n–ary,

and no other axioms are in Duna.
To define the remaining subtheories of BAT , we need to introduce the fol-

lowing syntactic notion.

Definition 4 A formula ϕ in language Lsc is called uniform in a situation term
s if:

1. it does not contain quantifiers over variables of sort situation;
2. it does not contain equalities between situation terms;
3. the predicates Poss,� do not occur in ϕ: {Poss,�} ∩ sig (ϕ) = ∅;
4. for every fluent F ∈ sig (ϕ), the term in the situation argument of F is s.

A set T of formulas in Lsc is called uniform in a situation term s if every
formula of T is uniform in s.

By definition, a set T of formulas uniform in a situation term S either does not
contain any situation terms (and hence, fluents), or the only situation term is
S which occurs as the situation argument of each fluent from sig (T). If T is a
set of sentences uniform in situation term S (i.e., T has no free variables) and
S occurs in formulas of T , then by items (1), (2) of the definition, S must be
ground and thus, it must either be the constant S0, or have the form do(A(t̄), S′),
where S′ is a ground situation term. Note that if the constant S0 or the binary
function symbol do is present in sig (T) and T is uniform in S, then necessarily
S0 ∈ sig (S), or do ∈ sig (S), respectively. By items (1) and (2), T does not
restrict the interpretation of the term S and the cardinality of the sort situation,
so the observations above lead to the following property of uniform theories,
which informally can be summarized by saying that in sentences of a theory T
uniform in a ground situation term S, we can understand this situation term as
playing a role of an index that can remain implicit. Whenever we change the
interpretation of S (e.g., by choosing a different interpretation for do and S0) in
a model of T , it suffices to “move” interpretations of fluents to this new point
to obtain again a model for T .

Lemma 1 Let T be a set of sentences uniform in a ground situation term S.
Let M = 〈Act ∪ Sit ∪ Obj, do,S0,F1, . . . ,Fn, I 〉 be a model of T , where
Act, Sit, and Obj are domains for the corresponding sorts action, situation,
and object, do and S0 are the interpretations of the function do and constant
S0, respectively, F1, . . . ,Fn are the interpretations of fluents from sig (T), and
I is the interpretation of the rest of symbols from sig (T). For example, Fi is a
set of tuples 〈u1, . . . , um−1,S〉, where S is the interpretation of the ground term
S in M.

Consider the structure M′ = 〈Act ∪ Sit′ ∪ Obj, do′,S0
′,F1

′, . . . ,Fn
′, I 〉,

where Sit′ is an arbitrary set, the domain for sort situation, do′ and S0
′ are

arbitrary interpretations of do and S0 on Sit′, respectively, and for i 6 n, Fi
′

denotes the interpretation of the fluent Fi as a set of tuples 〈u1, . . . , um−1,S′〉,
with S′ being the interpretation of term S in M′ and 〈u1, . . . , um−1,S〉 ∈ Fi.

Then, M′ is a model of T . By definition, the interpretation of situation–
independent predicates and functions is the same in M′ and M.

If S and S′ are two situation terms and T is a set of formulas uniform in S,
then we denote by T (S′/S) the set of formulas obtained from T by replacing

every occurrence of S with S′. This notation will be extensively used in Section
4. Obviously, T (S′/S) is uniform in S′.

The initial theory DS0 of D is defined as an arbitrary set of sentences in
the signature σ that are uniform in the situation constant S0. Throughout the
paper, we assume that DS0 can be a theory in (any fragment of) second-order
logic which can be translated into a set of sentences of first-order logic uniform in
S0. In particular, DS0 can include both an ABox and a TBox in an appropriate
Description Logic, as argued in [8, 27].

Next, for every n-ary action function A ∈ σ, a theory Dap includes an axiom
of the form

∀ x̄, s [Poss(A(x̄), s)↔ ΠA(x̄, s)],

where ΠA(x̄, s) is a formula uniform in s with free variables among x̄ and s.
Informally, ΠA(x̄, s) characterizes preconditions for executing the action A in
the situation s. No other formulas are in Dap.

Finally, for every fluent F ∈ σ, a theory Dss contains an axiom of the form

∀ x̄, a, s [F (x̄, do(a, s))↔ γ+
F (x̄, a, s) ∨ F (x̄, s) ∧ ¬γ−F (x̄, a, s)].

Here γ+
F is a disjunction of formulas of the form [∃ȳ](a = A+(t̄) ∧ φ+(x̄, ȳ, s)),

where A+ is an action function, t̄ is a (possibly empty) vector of object terms
with variables at most among x̄ and ȳ, and φ+ is a formula uniform in s with
variables at most among x̄, ȳ, and s. We write [∃ȳ] to show that ∃ȳ is optional;
it is present only if t̄ includes ȳ or if φ has an occurrence of ȳ. The formula
φ+ is called a (positive) context condition meaning that A+(t̄) makes the fluent
F true if this context condition holds in s, but otherwise, A+(t̄) has no effect
on F . Similarly, γ−F is a disjunction of formulas of the form [∃z̄](a = A−(t̄′) ∧
φ−(x̄, z̄, s)), where A− is an action function, t̄′ is a (possibly empty) vector
of object terms with variables at most among x̄ and z̄, and φ− is a formula
uniform in s with variables at most among x̄, z̄, and s. The formula φ− is called
a (negative) context condition meaning that A−(t̄) makes the fluent F false if
this context condition holds in s, but otherwise, A−(t̄) has no effect on F . In
the definition above, we assume that the empty disjunction is equal to false. No
other formulas are in Dss. This completes the definition of Dss.

Definition 5 (SSA and active position of an action) The axioms of Dss
in the form above are called successor state axioms (SSAs) of a basic action
theory D.

An action function f is said to be in active position of some SSA ϕ ∈ Dss if
f occurs either as A+, or A− in the definition of Dss above.

We say that ϕ ∈ Dss is SSA for the fluent F if F is the fluent from the
left-hand side of ϕ.

Following the original consistency requirement on SSAs by Reiter (see Propo-
sition 3.2.6 in [25]), we require that in case an action function A+ occurs in active
position in some disjunct of γ+, then it must not occur in active position in γ−.

Analogously, if A− occurs in active position in γ−, then it must not be in active
position in γ+. Informally, this means that an action cannot have both positive
and negative effects on F .

Each SSA for a fluent F completely defines the truth value of F in the
situation do(a, s) in terms of what holds in situation s. Also, SSA compactly
represents non-effects by quantifying ∀a over variables of sort action. Only action
terms that occur explicitly on the right hand side of SSA for a fluent F have
effects on this fluent, while all other actions have no effect.

We note that the original version of Reiter’s situation calculus admits func-
tional fluents, e.g. functions having a vector of arguments of sort object and one
last argument of sort situation. Reiter defines the notion of SSA for functional
fluents in an appropriate form. We omit functional fluents in our version of the
situation calculus.

Proposition 1 (Theorem 1 in [23]) A basic action theory Σ ∪Duna ∪DS0 ∪
Dap ∪Dss is satisfiable iff Duna ∪DS0 is satisfiable.

Suppose α1, · · · , αn is a sequence of ground action terms, and ϕ(s) is a for-
mula with one free variable s of sort situation which is uniform in s. One of
the most important reasoning tasks in the situation calculus is the projection
problem, that is, to determine whether

D |= ϕ(do(αn, do(αn−1, do(· · · , do(α1, S0))))).
Informally, ϕ represents some property of interest and entailment holds iff this
property is true in the situation resulting from performing the sequence of actions
α1, · · · , αn starting from S0.

Another basic reasoning task is the executability problem. Let
executable(do(αn, do(αn−1, do(· · · , do(α1, S0)))))

be an abbreviation of the formula
Poss(α1, S0) ∧

∧n
i=2 Poss(αi, do(α1, do(· · · , do(αi−1, S0))).

Then, the executability problem is to determine whether
D |= executable(do(αn, do(αn−1, do(· · · , do(α1, S0))))),

i.e. whether it is possible to perform the sequence of actions starting from S0.
Planning and high-level program execution are two important settings, where

the executability and projection problems arise naturally. Regression is a central
computational mechanism that forms the basis for automated solution to the
executability and projection tasks in the situation calculus ([25]). Regression
requires reasoning backwards: a given formula

ϕ(do(αn, do(αn−1, do(· · · , do(α1, S0)))))
is recursively transformed into a logically equivalent formula by using SSAs until
the resulting formula has only occurrences of the situation term S0. It is easy to
see that regression becomes computationally intractable if the sequence of actions
grows indefinitely [8]. In this case, an alternative to regression is progression,
which provides forward style reasoning. The initial theory DS0 is updated to
take into account the effects of an executed action. Computing progression of a
given theory DS0 requires forgetting facts in DS0 which are no longer true after
executing an action. The closely related notions of progression and forgetting
are discussed in the next sections of our paper.

Definition 6 (local-effect SSA and BAT) SSA ϕ ∈ Dss for the fluent F
is called local-effect if the set of arguments of every action function in active
position of ϕ contains all object variables from F . A basic action theory is said
to be local-effect if every axiom of Dss is a local-effect SSA.

Local-effect BAT s are a well-known class of theories (first introduced in [16])
for which the operation of progression (Section 4) can be computed effectively,
even independently of decidability of the underlying theory itself. They are spe-
cial in the sense that the truth value of each fluent defined by a local-effect SSA
can change only for a finite set of objects after performing an action. Thus, each
action has only some local effect on fluents. This allows for employing forgetting,
the operation considered in Section 3.

Before we proceed to component properties of forgetting (Section 3) and to
progression of initial theories (Section 4), we consider an example that helps
to illustrate the notion of BAT and advantages of decomposition of its initial
theory. Our example combines the simplified Blocks World (BW) with a kind of
Stacks World. A complete axiomatization of BW modelled as a finite collection
of finite chains can be found in [3].

Example 1 (Running example of BAT). The blocks-and-stacks-world consists
of a finite set of blocks and a finite set of other entities. Blocks can be located
on top of each other, while other entities can be either in a heap of unlimited
capacity, or can be organized in stacks. There is an unnamed manipulator that
can move a block from one block to another, provided that there is nothing on
the top of the blocks. It can also put an entity from the heap upon a stack with
a named top element, or move the top element of a stack into the heap. For
stacking/unstacking operations we adopt the push/pop terminology and use the
unary predicate Block to distinguish between blocks and other entities. We use
the following action functions and relational fluents to axiomatize the mentioned
world as a local-effect BAT in SC.
Actions

– move(x, y, z): Move block x from block y onto block z, provided both x and
z are clear.

– push(x,y): Stack entity x from the heap on top of entity y.
– pop(x): Unstack entity x into the heap, provided x is the top element and is

not in the heap.

Fluents

– On(x, z, s): Block x is on block z, in situation s.
– Clear(x, s): Block x has no other blocks on top of it in s.
– Top(x, s): Entity x is the top element of a stack in s.
– Inheap(x, s): Entity x is in the heap in situation s.
– Under(x, y, s): Entity y is directly under x in situation s.

The subtheories of the basic action theory are defined as follows (all free
variables are assumed to be universally quantified):

Successor state axioms (theory Dss)
On(x, z, do(a, s))↔ ∃y(a=move(x, y, z)) ∨On(x, z, s) ∧ ¬∃y(a=move(x, z, y))

Clear(x, do(a, s))↔ ∃y, z(a=move(y, x, z)∧
On(y, x, s)) ∨ Clear(x, s)∧ ¬∃y,z(a=move(y, z, x))

Inheap(x, do(a, s))↔ a=pop(x) ∨ Inheap(x, s) ∧ ¬∃y(a=push(x, y))

Top(x, do(a, s))↔ ∃y(a=push(x, y)) ∨ ∃y(a=pop(y) ∧ Under(y, x, s)) ∨
Top(x, s) ∧ a 6=pop(x) ∧ ¬∃y(a=push(y, x))

Under(x, y, do(a, s))↔ a=push(x, y) ∨ Under(x, y, s) ∧ a 6=pop(x)

Action precondition axioms (theory Dap)
Poss(move(x, y, z), s)↔ Block(x) ∧Block(y) ∧Block(z)∧

Clear(x, s) ∧ Clear(z, s) ∧ x 6= z

Poss(push(x, y), s)↔ ¬Block(x) ∧ ¬Block(y) ∧ Top(y, s) ∧ Inheap(x, s)
Poss(pop(x), s)↔ ¬Block(x) ∧ Top(x, s)

Initial Theory (DS0) is defined using the set of object constants {A,B,C} as
the set of axioms:
¬∃yOn(y, x, S0) ∧ ∃yOn(x, y, S0) ∧ ¬Inheap(x, S0)→Clear(x, S0)
∃y On(x, y, S0)→ Block(x)
(Top(x, S0) ∨ Inheap(x, S0))→ ¬Block(x)
On(A,B, S0)∧Block(B)∧Block(C)∧ Clear(A,S0)∧ Clear(C, S0)

Unique names axioms for actions and objects (theory Duna) is the set of
unique-name axioms for all pairs of object constants and action functions used
above.

Then Σ∪Duna∪Dap∪Dss∪DS0 is the resulting local-effect basic action theory.

Notice that all fluents are syntactically related in DS0 , so purely syntactic
techniques fail to decompose DS0 into components sharing no fluents. Dss is the
union of two theories with the intersection of signatures equal to {do}. At the
same time, the initial theory DS0 is ∆–decomposable for ∆ = {Block, S0} into
two distinct ∆–inseparable components:

¬∃y On(y, x, S0) ∧ ∃y On(x, y, S0)→ Clear(x, S0)
∃y On(x, y, S0)→ Block(x)
On(A,B, S0)∧Block(B)∧Block(C)∧ Clear(A,S0)∧ Clear(C, S0)

and
(Top(x, S0) ∨ Inheap(x, S0))→ ¬Block(x)
∃x Block(x)

The Example is continued after Theorem 2 in Section 4, where we will show
that progression for BAT s of this kind preserves both decomposability and in-
separability of the decomposition components.

3 Properties of Forgetting

As progression is closely related to forgetting, we take a look at some prop-
erties of this operation first. Let us define a relation on structures as follows. Let
σ be a signature or a ground atom and M, M′ be two many–sorted structures.
Then we set M∼σM′ if:

– M and M′ have the same domain for each sort;
– M and M′ interpret all symbols which are not in σ identically;
– if σ is a ground atom P (t̄) then M and M′ agree on interpretation ū of t̄

and for every vector of elements v̄ 6= ū, we have M |= P (v̄) iff M′ |= P (v̄).

Obviously, ∼σ is an equivalence relation.

The following notion summarizes the well-known Definitions 1 and 7 in [14].

Definition 7 (Forgetting an atom or signature) Let T be a theory in L
and σ be either a signature, or some ground atom. A set T ′ of formulas in a
fragment of second-order logic is called the result of forgetting σ in T (denoted
by forget (T , σ)) if for any structure M′, we have M′ |= T ′ iff there is a model
M |= T such that M∼σM′.

It is known that forget (T , σ) always exists, i.e. is second–order definable,
for a finite set of formulas T in L and a finite signature or a ground atom
σ (see [14], or Section 2.1 in [16]). On the other hand, the definition yields
T |= forget (T , σ), thus forget (T , σ) is a set of second-order consequences of
T which suggests that it may not always be definable in the logic where T is
formulated and it may not be finitely axiomatizable in this logic, even if so is T .

Fact 4 (Basic properties of forgetting) If σ and π are signatures or ground
atoms and T , T ′ are theories in L then:

– forget (T , σ ∪ π) ≡ forget (forget (T , σ), π) (if σ and π are signatures)
– forget (forget (T , σ), π) ≡ forget (forget (T , π), σ)
– forget (forget (T , σ), σ) ≡ forget (T , σ)
– forget (T , σ) ≡ T (if σ is a signature with σ ∩ sig (T) = ∅, or a ground

atom with predicate not contained in sig (T))
– forget (T ∪ T ′, σ) 6≡ forget (T , σ) ∪ forget (T ′, σ) (see Example 3)
– forget (ϕ ∨ ψ, σ) ≡ forget (ϕ, σ) ∨ forget (ψ, σ) (if ϕ and ψ are formulas

in L).

Proposition 2 (Signature of forget(T ,σ)) Let T be a theory in L, σ be a
signature (or a ground atom, respectively) and let forget (T , σ) be a set of
formulas in a language L′, a fragment of second-order logic with PIP. Then
forget (T , σ) is logically equivalent in L′ to a set of formulas in the signature
sig (T) \ σ (sig (T), respectively).

Proof. We consider the case when σ is a signature; the case of a ground atom
is proved analogously. Assume that σ ∩ sig (forget (T , σ)) 6= ∅. Denote by
forget (T , σ)∗ a “copy” of the set of formulas forget (T , σ), where each sym-
bol from σ ∪ [sig (forget (T , σ)) \ sig (T)] is uniquely replaced with a fresh
symbol, not present in sig (forget (T , σ)). We claim that forget (T , σ)∗ |=L′
forget (T , σ). There is nothing to prove if forget (T , σ)∗ is unsatisfiable. Note
that, by definition of forgetting, forget (T , σ)∗ and forget (T , σ) are satisfiable
iff T is. Let us assume that T is satisfiable. Take an arbitrary model M∗ |=
forget (T , σ)∗; then there exists a model M′ |= forget (T , σ) which agrees on
sig (forget (T , σ)∗) withM∗ and interprets symbols from σ∪ [sig (forget (T ,
σ)) \ sig (T)] equally to the interpretation of the corresponding fresh sym-
bols in M∗. Therefore, we may assume that M∗ ∼σ M′. By definition of
forgetting, there is a model M |= T such that M′ ∼σ M, hence M∗ ∼σ
M and M∗ |= forget (T , σ). We have forget (T , σ)∗ |=L′ forget (T , σ) and
sig (forget (T , σ)∗)∩sig (forget (T , σ)) ⊆ sig (T)\σ. By PIP, there is a set of
formulas Θ in signature sig (T) \ σ such that forget (T , σ)∗ |=L′ Θ and Θ |=L′
forget (T , σ). Note that forget (T , σ)∗ |=L′ Θ yields forget (T , σ) |=L′ Θ, be-
cause every model of forget (T , σ) can be expanded to a model of forget (T , σ)∗

and the reduct of this model onto (a subset of) sig (T) \ σ suffices to satisfy Θ.
Thus, we conclude that forget (T , σ) is equivalent to Θ. �

Corollary 1 Let T be a theory in L having PIP and σ be a signature. Then
T ≡ forget (T , σ) iff T is equivalent to a set of formulas in the signature
sig (T) \ σ.

We note that the similar statement does not hold when σ is a ground atom.
It follows from Proposition 2 that in case σ is a signature, forget (T , σ) axiom-
atizes the class of reducts of models of T onto the signature sig (T)\σ. Clearly,
if T is a theory in language L, then forget (T , σ) may not be in L, however it is
always expressible in second-order logic if T is finitely axiomatizable (note that
second-order logic has PIP). For the case when σ is a signature, forget (T , σ) is
known as sig (T) \ σ–uniform interpolant of T wrt the language L and second-
order queries, that is wrt the pair (L, second-order logic), see Definition 13 in [10]
and Lemma 39 in [19] for a justification. In other words, T and forget (T , σ)
semantically entail the same second-order formulas in signature T \ σ.

If σ is a ground atom P (t̄) then, by definition, for any model M |= T ,
forget (T , σ) must have two “copies” of M: a model with the value of P (t̄)
false and a model where this value is true. Let L be first-order logic. In contrast
to forgetting a signature, for any recursively axiomatizable theory T in L and a
ground atom σ, one can effectively construct the set of formulas forget (T , σ)
in L such that forget (T , σ) is finitely axiomatizable iff T is. This follows from
Theorem 4 in [14], where it is shown that forgetting a ground atom P (t̄) in a
theory T can be computed by simple syntactic manipulations:

– for an axiom ϕ ∈ T , denote by ϕ[P (t̄)] the result of replacing every occur-
rence of atom P (t̄′) (with t̄′ a term) by formula [t̄ = t̄′∧P (t̄)]∨ [t̄ 6= t̄′∧P (t̄′)]

– denote by ϕ+[P (t̄)] the formula ϕ[P (t̄)] with every occurrence of the ground
atom P (t̄) replaced with true and similarly, denote by ϕ−[P (t̄)] the formula
ϕ[P (t̄)] with P (t̄) replaced with false

– then forget (T , P (t̄)) is equivalent to (
∧
ϕ∈T ϕ

+[P (t̄)])
∨

(
∧
ϕ∈T ϕ

−[P (t̄)]).

The disjunction corresponds to the union of two classes of models obtained
from models of T : with the ground atom P (t̄) interpreted as true and false,
respectively. This fact is important for effective computation of progression for
local-effect BAT s mentioned in Section 4. Note that in case a theory T is finitely
axiomatizable, computing forget (T , P (t̄)) in the way above doubles the size of
theory in the worst case. It is sometimes necessary to consider forgetting of some
set S of ground atoms in a theory T . This is equivalent to iterative computation
of forgetting of atoms from S starting from the theory T (the order on atoms
can be chosen arbitrary as noted in Fact 4). However, it is important to note
that the size of the resulting theory is O(2|S| × |T |), where |S| is the number of
atoms in S and |T | is the size of T .

Proposition 3 (Interplay of forgetting and entailment) Let T and T1 be
two sets of formulas in L with T |= T1 and σ be a signature or a ground atom.
Then the following holds:

Proof. By definition of forgetting, every model of T is a model of forget (T , σ),
so we have T |= forget (T , σ) and similarly, T1 |= forget (T1, σ). Now let M′
be an arbitrary model of forget (T , σ). Then there is a model M |= T such
that M ∼σ M′. Since T |= T1, we have M |= T1, so we conclude that M′ |=
forget (T1, σ), because M is a model satisfying the conditions of Definition 7
for T1 and M′. �

Proposition 4 (Preservation of consequences under forgetting) Let T be
a theory in L and σ be either a signature or a ground atom. Let ϕ be a for-
mula such that either sig (ϕ) ∩ σ = ∅ (in case σ is a signature), or which
does not contain the predicate from σ (if σ is a ground atom). Then T |= ϕ iff
forget (T , σ) |= ϕ.

Proof. From Proposition 3, we have T |= forget (T , σ), thus forget (T , σ) |= ϕ
yields T |= ϕ. Now let T |= ϕ and assume there is a modelM′ of forget (T , σ)
such thatM′ 6|= ϕ. By definition of forgetting, there exists a modelM of T such
that M∼σ M′, i.e. M and M′ have the same universe and may differ only on
interpretation of signature σ (ground atom σ). By the condition on signature of
ϕ, then M is not a model of ϕ, which contradicts T |= ϕ. �

Now we provide results on preservation of inseparability under forgetting.
By Proposition 4, when studying preservation of ∆–inseparability of two sets of

formulas for a signature ∆, it is sufficient to consider the case of forgetting a
subset of ∆ or a ground atom with the predicate from ∆, respectively.

Proposition 5 (Preservation of ∆–insep. under signature forgetting)
Let L have PIP and T1 and T2 be two ∆–inseparable sets of formulas in L with
sig (T1) ∩ sig (T2) = ∆ for a signature ∆. Let σ be a subsignature of ∆ and
forget (T1, σ) and forget (T2, σ) be sets of formulas of L. Then forget (T1, σ)
and forget (T2, σ) are ∆–inseparable.

Proof. Let ϕ be a formula with sig (ϕ) ⊆ ∆ such that forget (T1, σ) |= ϕ. By
Proposition 2, we may assume that for i = 1, 2 the signature of forget (Ti, σ) is
a subset of sig (Ti) \ σ.

As forget (T1, σ) |= ϕ, by PIP, there is a set of formulas T ′1 with sig (T ′1) ⊆
sig (forget (T1, σ))∩sig (ϕ) ⊆ ∆\σ such that forget (T1, σ) |= T ′1 and T ′1 |= ϕ.
Therefore, by Proposition 4, we have T1 |= T ′1 . Since T1 and T2 are ∆–inseparable
and sig (T ′1) ⊆ ∆, we obtain T2 |= T ′1 . Again, since sig (T ′1) ∩ σ = ∅, by
Proposition 4, we conclude that forget (T2, σ) |= T ′1 and thus, forget (T2, σ) |=
ϕ. �

The following example demonstrates that a similar result does not hold under
forgetting a ground atom with the predicate from ∆.

Example 2 (∆–inseparability lost under forgetting a ground atom). We give an
example of a logic L, sets of formulas T1, T2 in L, and a signature ∆ = sig (T1)∩
sig (T2) such that T1 and T2 are ∆–inseparable, but forget (T1, P (c, c)) and
forget (T2, P (c, c)) are not, for a ground atom P (c, c) with a predicate P ∈ ∆.
Let L be Description Logic ELO⊥, i.e. the sub-boolean logic EL augmented with
nominals and the bottom concept ⊥. Let Σ = {P, a, c} be signature, where P is a
role name (binary predicate) and a, c are nominals (i.e. constants). Define the set
of formulas T1 in the signature Σ as {{a}u{c} v ⊥, {c} v ∃P.{a}, > v ∃P.>}.
Set ∆ = {P, c} and consider the set of formulas T2 = {> v ∃P.>, Taut(c)},
where Taut(c) is a tautology with the nominal c (for instance, the formula
{c} v >). We have sig (T1) ∩ sig (T2) = ∆ and it is easy to check that T2 is
equivalent to Cons (T1, ∆) in the logic ELO⊥; thus, T1 and T2 are ∆–inseparable.
Now consider forget (T1, P (c, c)) and forget (T2, P (c, c)) as sets of formulas in
second-order logic (we assume the standard translation of formulas of ELO⊥ into
the language of second-order logic). We verify that they are not ∆–inseparable
and the formula > v ∃P.> is the witness for this. By definition of T1, we have
forget (T1, P (c, c)) |= T1, since any model of T1 with a changed truth value
of the predicate P on the pair 〈c, c〉 is still a model of T1. On the other hand,
forget (T2, P (c, c)) 6|= > v ∃P.>, because T2 has the one–element model M,

where P is reflexive (on the sole element corresponding to c). Hence, by defi-
nition of forgetting, the one–element model M′ with P false on the pair 〈c, c〉
must be a model of forget (T2, P (c, c)), but obviously, M′ 6|= > v ∃P.>.

It turns out that preservation of inseparability under forgetting a ground
atom requires rather strong model–theoretic conditions like (*) in Proposition 6
below. Specialists might notice that (*) is equivalent to semantic ∆–inseparability
of the initial sets of formulas (see Definition 11 in [10]) which is far from being
decided effectively from the computational point of view (see Theorem 3 in [17],
Lemma 40 in [19]). Semantic ∆–inseparability is strictly stronger than (syntac-
tic) inseparability from Definition 1. On the other hand, Proposition 6 says that
whenever there is a chance to satisfy (*) for two given sets of formulas, one does
not need to check it again after forgetting something in their common signature.
To compare condition (*) with Example 2, note that the mentioned one–element
model of T2 does not expand to a model of T1 ∪ T2.

Proposition 6 (Preservation of ∆–inseparability under forgetting) Let
T1 and T2 be two sets of formulas in L with sig (T1) ∩ sig (T2) = ∆ for a sig-
nature ∆ which satisfy the following condition (*): for i = 1, 2, any model of Ti
can be expanded to a model of T1 ∪ T2. Then:

– T1 and T2 are ∆–inseparable;
– for σ a signature or a ground atom, forget (T1, σ) and forget (T2, σ) satisfy

(*) as well.

Proof. ∆–inseparability is the immediate consequence of (*): if ϕ is a formula
with sig (ϕ) ⊆ ∆, T1 |= ϕ, but T2 6|= ϕ, then there is a model M2 of T2
such that M2 6|= ϕ. Then there is an expansion M of M2 such that M |=
T1 ∪ T2, M |sig (T1)|= T1, but M |sig (T1) 6|= ϕ, a contradiction. Now let us verify
that for i = 1, 2, any model of forget (Ti, σ) can be expanded to a model of
forget (T1, σ)∪forget (T2, σ). For instance, letM′2 be a model of forget (T2, σ).
Consider a model M2 of T2 such that M2 ∼σ M′2 and expand it to a model
M of T1 ∪ T2. Then, by definition of forgetting, there must be a model M′ |=
forget (T1, σ) with M′ ∼σM which agrees with M′2 on σ (if σ is a signature),
or on the predicate of σ (if σ is a ground atom). By construction, M′ is an
expansion of M′2 and thus a model for forget (T1, σ) ∪ forget (T2, σ). �

Let T1 and T2 be two sets of formulas in L with sig (T1) ∩ sig (T2) = ∆
for a signature ∆ and let σ be either a subsignature of ∆ or a ground atom
with the predicate from ∆. It is known that in general, forgetting σ may not be
distributive over union of sets of formulas. The entailment forget (T1∪T2, σ) |=
forget (T1, σ) ∪ forget (T2, σ) holds by Proposition 3, but Example 3 below
easily shows that even strong semantic conditions related to modularity do not
guarantee the reverse entailment. On the other hand, forgetting something out-
side of the common signature of T1 and T2 is distributive over union, as for-
mulated in Corollary 2 which is a consequence of the criterion in Proposition
7.

Example 3 (Failure of componentwise forgetting in ∆). Let L be first-order logic
and ∆ = {P, c} be the signature consisting of a unary predicate P and a constant
c. Define theories T1 and T2 as: T1 = {A → P (c)}, T2 = {P (c) → B}, where
A,B are nullary predicate symbols. We have sig (T1) ∩ sig (T2) = ∆ and for
i = 1, 2, any model of Ti can be expanded to a model of T1 ∪ T2. Clearly, T1 and
T2 are ∆–inseparable and for i = 1, 2, Cons (Ti, ∆) is the set of tautologies in ∆.
By definition of forgetting, for i = 1, 2, forget (Ti, P (c)) is a set of tautologies
and thus, forget (T1, P (c))∪forget (T2, P (c)) 6|= forget (T1∪T2, P (c)), because
forget (T1 ∪T2, P (c)) |= A→ B (by Proposition 4). For the case of forgetting a
signature, say a nullary predicate P , it suffices to consider ∆ = {P} and theories
T1 = {A→ P}, T2 = {P → B}, where A,B are nullary predicates.

Proposition 7 (A criterion for componentwise forgetting) Let T1 and T2
be two sets of formulas and σ be either a signature or a ground atom. Then the
following statements are equivalent:

– forget (T1, σ) ∪ forget (T2, σ) |= forget (T1 ∪ T2, σ)
– for any two models M1 |= T1 and M2 |= T2, with M1 ∼σ M2, there exists

a model M |= T1 ∪ T2 such that M∼σMi for some i = 1, 2.

Proof. Note that in the second condition, the requirement M ∼σ Mi for some
i = 1, 2 is equivalent to M ∼σ Mi for all i = 1, 2, by transitivity of ∼σ. (⇒):
LetM1 |= T1 andM2 |= T2 be models withM1 ∼σM2. Then there are models
M′1 and M′2 such that for i = 1, 2, M′i |= forget (Ti, σ) and M′i ∼σ Mi.
Then, by transitivity of ∼σ, for all i, j = 1, 2 we have M′i ∼σ Mj and thus,
M′i |= forget (Tj , σ). Then M′1 |= forget (T1 ∪ T2, σ), so there exists a model
M |= T1 ∪ T2 such that M ∼σ M′1 and hence, M ∼σ M1. (⇐):Let M′ be a
model of forget (T1, σ) ∪ forget (T2, σ). There exist models M1 and M2 such
that for i = 1, 2, Mi |= Ti and Mi ∼σ M′. Then M1 ∼σ M2, hence, there
must be a model M of T1 ∪ T2 with M ∼σ Mi for some i = 1, 2. Then we
obtain that M ∼σ M′ and thus, by definition of forgetting, M′ is a model of
forget (T1 ∪ T2, σ). �

To compare this criterion with Example 3, observe that there exist models
M1 |= T1 and M2 |= T2 with common domain such that M1 |= A ∧ P (c) ∧ ¬B
andM2 |= A∧¬P (c)∧¬B. Thus,M1 ∼P (c) M2, however, there does not exist
a model M of T1 ∪ T2 such that M ∼P (c) Mi for some i = 1, 2. Neither M1,
nor M2 is a model for T1 ∪ T2.

Corollary 2 (Forgetting in the scope of one component) Let T1 and T2
be two sets of formulas with sig (T1) ∩ sig (T2) = ∆ for a signature ∆ and σ
be either a subsignature of sig (T1) \ ∆ or a ground atom with the predicate
from sig (T1) \∆. Then forget (T1 ∪ T2, σ) is equivalent to forget (T1, σ)∪ T2.
Moreover, if T1 and T2 are ∆–inseparable, then so are forget (T1, σ) and T2.

Proof. Note that by the choice of σ, T2 is equivalent to forget (T2, σ) and thus, by
Proposition 3, it suffices to verify the entailment forget (T1, σ)∪forget (T2, σ) |=
forget (T1 ∪ T2, σ). If there are models M1 |= T1 and M2 |= T2, with M1 ∼σ

M2, then in fact, M1 |= T1 ∪ T2, by the choice of σ and definition of ∼σ. Thus,
the criterion from Proposition 7 obviously yields the required entailment. It only
remains to note that ∆–inseparability of forget (T1, σ) and forget (T2, σ) fol-
lows from the choice of σ, Proposition 4, and ∆–inseparability of T1 and T2.
�

In general, the results of this section prove that the operation of forgetting
does not behave well wrt syntactic modularity properties of the input. Stronger
model-theoretic conditions on the input are needed due to the model-theoretic
nature of forgetting.

4 Properties of Progression

We have considered some component properties of forgetting. It turns out
that the operation of progression is closely related to forgetting in initial theories.
However, in case of progression, we can not restrict ourselves to working with
initial theories only; we need also to take into account information from suc-
cessor state axioms. The aim of this section is to demonstrate some component
properties of progression wrt different forms of SSAs and common signatures
∆’s (deltas) of components of initial theories. We will consider local-effect SSAs
discussed in [16] and deltas, which do not contain fluents.

We use the following notations further in this paper. For a ground action
term α in the language of the situation calculus, we denote by Sα the situation
term do(α, S0). To define progression, we introduce an equivalence relation on
many-sorted structures in the situation calculus signature. For two structures
M, M′ and a ground action α, we set M∼Sα M′ if:

– M and M′ have the same sorts for action and object;
– M and M′ interpret all situation-independent predicate and function sym-

bols identically;
– M and M′ agree on interpretation of all fluents at Sα, i.e. for every fluent
F and every variable assignment θ, we have M, θ |= F (x̄, Sα) iff M′, θ |=
F (x̄, Sα).

Definition 8 (Progression, modified Definition 9.1.1 in [25]) Let D be a
basic action theory with unique name axioms Duna and the initial theory DS0 and
let α be a ground action term. A set DSα

of formulas in a fragment of second-
order logic is called progression of DS0 wrt α if it is uniform in the situation
term Sα and for any structure M, M is a model of Σ ∪Dss ∪Dap ∪Duna ∪DSα

iff there is a model M′ of D such that M∼Sα M′.

Below, we use DSα to denote progression of the initial theory wrt the action
term α, if the context of BAT is clear. We sometimes abuse terminology and call
progression not only the theory DSα

, but also the operation of computing this
theory (when existence of an effective operation is implicitly assumed). It can
be seen (Theorem 2 in [15] and Theorem 2.10 in [16]) that progression always
exists, i.e. is second-order definable, if the signature of BAT is finite and the

initial theory DS0 is finitely axiomatizable. On the other hand, by the definition,
for any BAT D, we have D |= DSα

and, similarly to the operation of forgetting,
it is possible to provide an example (see Definition 2, Conjecture 1, and Theorem
2 in [26]), when the progression DSα is not definable (even by an infinite set of
formulas) in the logic in which D is formulated.

To understand the notion of progression intuitively, note the following. The
progression DSα is a set of consequences of BAT which are uniform in the sit-
uation term Sα, thus informally, DSα

is an information about the situation Sα
implied by BAT . Moreover, it contains all information from BAT about the
situation Sα, as guaranteed by the model-theoretic property with the relation
∼Sα in the definition. Recall that the initial theory of BAT describes informa-
tion in the initial situation S0 and SSAs are essentially the rules for obtaining
new definitions of fluents after performing actions. Thus, progression DSα

can
be viewed as “modification” of the initial theory obtained after executing the ac-
tion α. In particular, the initial theory of BAT can be replaced with DSα

(S0/Sα)
(recall the notation from Section 2.2) which gives a new BAT , with Sα as the
initial situation. To check whether a certain property, a formula ϕ(s) uniform
in a situation variable s, holds in the situation Sα wrt BAT D, one may try to
compute the progression DSα

and check whether Duna∪DSα
|= ϕ(Sα) (or equiv-

alently, Duna ∪DSα
(S0/Sα) |= ϕ(S0)) holds. By Proposition 1, this is equivalent

to D |= ϕ(Sα).

Of interest are cases when progression can be computed effectively as a theory
in the same logic which is used to formulate underlying DS0 , independently of
the fact whether satisfiability in this logic is decidable. The well-known approach
is to consider the local-effect BAT s (recall Definition 6) in which progression
can be obtained by just a syntactic modification of the initial theory DS0 with
respect to SSAs. The approach is based on effective forgetting of a certain set
of ground atoms (extracted from SSAs) in the initial theory of BAT . Recall the
well–known observation from Section 3 that, given a theory T (in an appropriate
logic L), forgetting a set of ground atoms in T can be computed effectively by
straightforward syntactic manipulations with the axioms of T . Thus, the essence
of computing progression in the local-effect case is to extract effectively the set
of ground atoms from SSAs that need to be forgotten. Subsequently, in DSα

,
they are replaced with new values of fluents; the new values are computed from
SSAs. An interested reader may consult the whole paper [16], while here we only
introduce necessary notations from Definition 3.4 of [16] which will be used in
Theorem 2.

Let D be a BAT with a set Dss of SSAs, an initial theory DS0 , and a unique
name assumption theory Duna, and let α be a ground action term. Denote

∆F = {t̄ | x̄ = t̄ appears in γ+
F (x̄, α, s) or γ−F (x̄, α, s) from an SSA ϕ ∈ Dss

instantiated with α and equivalently rewritten wrt Duna},
Ω(s) = {F (t̄, s) | t̄ ∈ ∆F }

Note that Ω(S0) is a finite set of ground atoms to be forgotten. According to
Fact 4, forgetting several ground atoms can be accomplished consecutively in
any order.

An instantiation of Dss wrt Ω(S0), denoted by Dss[Ω(S0)], is the set of
formulas of the form:

F (t̄, do(α, S0))↔ γ+
F (t̄, α, S0) ∨ F (t̄, S0) ∧ ¬γ−F (t̄, α, S0).

Observe that Dss[Ω(S0)] effectively defines new values for those fluents, which
are affected by the action α. However, these definitions use fluents wrt S0, which
may include fluents to be forgotten. For this reason, forgetting should be per-
formed not only in DS0 , but in Dss[Ω(S0)] as well.

Proposition 8 (Theorem 3.6 in [16]) In the notations above, the following
is a progression of DS0 wrt α in the sense of Definition 8:

DSα
= [forget(Dss[Ω(S0)] ∪ DS0 , Ω(S0))](Sα/S0).

Thus, computing a progression in a local-effect BAT is an effective syntac-
tic transformation of the initial theory, which leads to the unique form of the
updated theory DSα

. This fact will be used in Theorem 2. It is important to
realize that this transformation can lead to exponential blow-up of the initial
theory, as noted after Theorem 3.6 in [16], due to the possible exponential blow-
up after forgetting a set of ground atoms. This is not a surprise, because even in
propositional logic, forgetting a symbol in a formula is essentially elimination of
a “middle term” (introduced by Boole), which results in the disjunction of two
instances of the input formula [13]. As a consequence, forgetting may result in
a formula that is roughly twice as long as the input formula. It is important to
realize that the exponential blowup is not inevitable in the case of progression.
As shown in [16], there are practical classes of the initial theories for which there
is no blow-up and the size of progressed theory is actually linear wrt the size of
the initial theory.

Now we are ready to formulate the results on component properties of pro-
gression in terms of decomposability and inseparability. We start with negative
examples in which every BAT is local-effect and the initial theories are formu-
lated in the language of the situation calculus, i.e. in first-order logic. All free
variables in axioms of BAT s are assumed to be universally quantified. As the
progression DSα

is a set of formulas uniform in some situation term Sα which
may occur in every formula of DSα

(thus potentially spoiling decomposability),
we consider the mentioned decomposability and inseparability properties regard-
ing the theory DSα

(S0/Sα) instead of DSα
. Otherwise, in every result we would

have to speak of ∆ ∪ sig (Sα)–decomposability of progression instead of just
∆–decomposability.

Consider a BAT D with ∆–decomposable initial theory DS0 for a signature
∆. The general definition of a successor state axiom gives enough freedom to
design examples showing loss or gain of the decomposability property of DS0 or
inseparability of its components. As SSA may contain symbols that are even not
present in sig (DS0), or symbols from both components of DS0 (if decomposition
exists), this should not be a surprise for the reader. Therefore, it makes sense

to restrict our study to those BAT s, where SSAs have one of the well-studied
forms, for instance, to local-effect theories. It turns out that this form is still
general enough to easily formulate negative results showing that the mentioned
properties are not preserved without stipulations.

First, we provide a trivial example showing that the decomposability property
of the initial theory can be easily lost under progression. The example is given
rather as a simple illustration of progression for readers new to this notion. Next,
we show that ∆–inseparability of components of the initial theory DS0 can be
easily lost when fluents are present in ∆ (Example 5). The third observation
is that even if there are no fluents in ∆, some components of DS0 can split
after progression into theories which are no longer inseparable (Example 6).
All observations hold already for local-effect BAT s and follow from the fact
that after progression some new information from SSAs can be added to the
initial theory which spoils its component properties. We only need to provide a
combination of an initial theory with a set of SSAs appropriate for this purpose.
The aim of Theorem 1 following these negative examples is to prove that if∆ does
not contain fluents and the components ofDS0 do not split after progression, then
∆–inseparability is preserved after progression under a slight stipulation which
is caused only by generality of the theorem and non-uniqueness of progression
in the general case. This stipulation is avoided in Theorem 2, where we consider
the class of local-effect BAT s.

Example 4 (Decomposability lost under progression). Consider basic action the-
ory D with {F,A, c1, c2} ⊆ sig (D), where F is a ternary fluent, A is a binary
action function, and c1, c2 are object constants. Let the theory Dss consist of
the single axiom

F (x, y, do(a, s))↔ a = A(x, y) ∨ F (x, y, s)
and let the initial theory DS0 consist of two formulas Taut(c1) and Taut(c2),
which are tautological sentences in signatures {c1} and {c2}, respectively. Clearly,
DS0 is ∅–decomposable theory.

On the other hand, the progression DSα
of DS0 wrt the action α = A(c1, c2)

is equivalent to the theory consisting of the ground atom
F (c1, c2, do(α, S0)).

This can be verified following Definition 8 directly, or by Proposition 8, since D
is local-effect. Anyway, it is easy to check that DSα(S0/Sα) (and DSα , as well)
is not ∆–decomposable theory (for any ∆).

For a signature ∆, with S0 ∈ ∆, and a unary action A(c), we now give
an example of a local-effect basic action theory D with DS0 , an initial theory
∆–decomposable into finite ∆–inseparable components, such that progression
DSα

(S0/Sα) of DS0 wrt A(c) (with term Sα substituted with S0) is finitely
axiomatizable and ∆–decomposable, but the decomposition components are no
longer ∆–inseparable, unless we allow them to be infinite.

Example 5 (∆–inseparability is lost when fluents are in ∆). Consider a basic
action theory D with {F, P,Q,R,A, b} ⊆ sig (D), where F is a fluent, P,Q are

unary predicates, R is a binary predicate, A is a unary action function, and b
is an object constant. Let ∆ = {F,R, S0} and define the subtheories of D as
follows:

– Dss = {F (x, do(a, s)) ≡ (a = A(x)) ∧ P (x) ∧Q(d) ∨ F (x, s)};
– DS0 = D1 ∪ D2, with
• D1 = {Taut(F,R, S0, b), ¬F (x, S0)}, where Taut(F,R, S0, b) is a tauto-

logical formula in the signature {F,R, S0, b} which is uniform in S0,
• D2 = {P (x)→ ∃y(R(x, y) ∧ P (y)), ¬F (x, S0)}.

By the syntactic form, DS0 is ∆–decomposable: we have DS0 = D1 ∪ D2,
sig (D1)∩ sig (D2) = ∆, sig (D1) \∆ = {b}, and sig (D2) \∆ = {P}. It is also
easy to check that D1 and D2 are ∆–inseparable.

Note that Dss |= F (x, do(A(c), S0)) ≡ (x = c) ∧ P (c) ∧ Q(d) ∨ F (x, S0),
the result of substitution of the ground action α = A(c) and situation constant
S0 into SSA. As DS0 |= ¬F (x, S0), we have Dss ∪ DS0 |= F (c, do(A(c), S0)) ≡
P (c) ∧Q(d); denote the last formula by ϕ.

By Proposition 8 it is easy to verify that the union of {Taut(F,R, S0, b)} and
D′2 = (D2 \ {¬F (x, S0)}) ∪ {ϕ, x 6= c → ¬F (x, do(A(c), S0))} is a progression
(DSα

) of DS0 wrt A(c).
By the syntactic form, DSα

(S0/Sα) is ∆–decomposable theory. On the other
hand, we have ϕ |= F (c, do(A(c), S0)) → P (c), thus D′2(S0/Sα) |= {F (c, S0) →
∃yR(c, y), F (c, S0) → [∃y∃zR(c, y) ∧ R(y, z)], . . .}, and hence D′2(S0/Sα) en-
tails the same set of formulas, where c is replaced by an existentially quantified
variable. This is an infinite set of formulas in signature ∆. It follows from Fact
2 that this theory is not finitely axiomatizable by formulas of first order logic
in signature ∆ and it is not hard to verify that DSα

(S0/Sα) can not have a
decomposition into finite ∆–inseparable components.

Note that in the example above, the initial theory DS0 is in fact ∅–decompo-
sable, with one signature component being tautological in signature {b} and the
other component containing the rest of the symbols. Clearly, the progression of
DS0 wrt A(c) is ∅–decomposable as well. We use tautologies in the example just
to illustrate the idea that information from SSA can propagate to the initial
theory after progression, thus making the components lose the inseparability
property. There is a plenty of freedom to formulate similar examples with the
help of non-tautological formulas which syntactically “bind” symbols F,R, S0, b
in the theory D1. We appeal to a similar observation in Example 6.

Example 6 (Split of a component and loss ∆–inseparability). Consider BAT D
with {F1, F2, D,B,R,A, c} ⊆ sig (D), where F1, F2 are fluents, D,B are unary
predicates, R is a binary predicate, A is a unary action function, and c is an
object constant. Let ∆ = {D,R, S0} and define the subtheories of D as follows:

– Dss = {F1(x, do(a, s)) ≡ F1(x, s)∧¬(a = A(x)), F2(x, do(a, s)) ≡ F2(x, s)}
– DS0 = D1 ∪ D2, where D1 is the set of formulas:
• D(x) ∨R(x, y)→ F1(c, S0)

• D(x)→ P (x)
• P (x)→ ∃y(R(x, y) ∧ P (y))

and D2 consists of the following three formulas:
• D(x)→ B(x)
• B(x)→ ∃y(R(x, y) ∧B(y))
• Taut(F2, S0), a tautology in the signature {F2, S0}, uniform in S0.

By definition, DS0 is ∆–decomposable into ∆–inseparable components D1

and D2. Note that Dss |= ¬F1(c, do(A(c), S0)), the result of substitution of the
ground action A(c), situation constant S0, and object constant c in SSA.

Consider progression of DS0 wrt the action α = A(c). By Proposition 8, it is
equivalent to the theory DSα

= D′1∪D′′1 ∪D′2, where D′1 is the set of the following
formulas:

• ¬F1(c, do(A(c), S0))
• Taut(D,R), a tautological formula in the signature {D,R} which is uniform

in Sα

D′′1 is the set of formulas:

• D(x)→ P (x)
• P (x)→ ∃y(R(x, y) ∧ P (y))
• Taut(F2, Sα), a tautological formula in the signature {F2, do,A, c, S0} which

is uniform in Sα

and D′2 is the theory D2 with every occurrence of S0 substituted with Sα.
Clearly, DSα

(S0/Sα) is ∆–decomposable. Note that after progression the
component D1 is “splitted” into D′1(S0/Sα) and D′′1 (S0/Sα) and these theories
are not ∆–inseparable (similarly, D′1(S0/Sα) and D′2(S0/Sα)). By Fact 2, it can
be shown that they can not be made ∆–inseparable while remaining finitely
axiomatizable.

To formulate the theorems below, we let D denote a BAT with the initial the-
ory DS0 , the set of successor state axioms Dss, and the unique name assumption
theory Duna. Example 5 motivates the following definition.

Definition 9 (Fluent–free signature) A signature ∆ is called fluent–free if
no fluent (from the alphabet of situation calculus) is contained in ∆.

Theorem 1 is provided as a general theoretical result on preservation of in-
separability of components of the initial theory after progression. As we have
already seen in Example 5, the initial theory and progression may differ in
consequences involving symbols of fluents. Thus in general, preservation of ∆–
inseparability can be guaranteed only for fluent-free signatures ∆. Besides, by
the model–theoretic Definition 8, progression is not uniquely defined. There is
no restriction on occurrences of the unique–name–assumption formulas in pro-
gression which may easily lead to loss of inseparability of the components. In
other words, progression may logically imply unique–name–assumption formulas

even if the initial theory did not imply them. Some decomposition components
of progression may imply such formulas, while the others may not. For this rea-
son, we have to speak of inseparability “modulo” theory Duna in the theorem
below. In particular, we have to make the assumption that not only the compo-
nents {Di}i∈I⊆ω of the initial theory are pairwise ∆–inseparable, but so are the
theories {Duna ∪Di}i∈I . In the theorem, we do not specify how the progression
was obtained (cf. Theorem 2) and the only condition that relates the compo-
nents of progression with those of the initial theory says about containment of
∆–consequences. Thereby, we formulate the idea that components of progression
do not split ∆–consequences of the components of the initial theory (cf. Example
6).

Theorem 1 (Preservation of ∆-insep. for fluent-free ∆) Let L have PIP
and D be BAT in which DS0 and Duna are theories in L. Let σ ⊆ sig (DS0) be
a fluent–free signature and denote ∆ = sig (Duna) ∪ σ. Suppose the following:

– DS0 is σ–decomposable with some components {Di}i∈I⊆ω such that the the-
ories from {Duna ∪Di}i∈I are pairwise ∆–inseparable;

– DSα
(S0/Sα) is equivalent to the union of theories {D′j}j∈J⊆ω such that for

every j ∈ J and some i ∈ I, Cons (Duna ∪D′j , ∆) ⊇ Cons (Duna ∪Di, ∆).

Then the theories from {Duna ∪D′j}j∈J⊆ω are pairwise ∆–inseparable.

Proof. Let us demonstrate that for all j ∈ J we have Cons (Duna ∪ D′j , ∆) =
Cons (Duna ∪ DS0 , ∆), from which the statement of the theorem obviously, fol-
lows. Essentially, we prove the following inclusions (the corresponding points of
the proof are marked with circles):

Cons (Duna ∪ DSα(S0/Sα),∆) ⊆ Cons (Duna ∪ DSα ,∆) ⊆ Cons (Duna ∪ DS0 ,∆)

j2j3
j1⊆

⊇j4
Theorem conditions

⊆j4 Theorem conditions

Cons (Duna ∪ Di,∆)Cons (Duna ∪ D′
j ,∆)

1) Note that for any i ∈ I, DS0 is σ–decomposable with components Di

and
⋃
k∈I\{i}Dk. We claim that Duna ∪ Di and Duna ∪

⋃
k∈I\{i}Dk are ∆–

inseparable. Let ϕ be a formula in signature ∆. If Duna ∪Di |= ϕ then clearly,
Duna∪

⋃
k∈I\{i}Dk |= ϕ by ∆–inseparability from the condition of the theorem.

On the other hand, if Duna ∪
⋃
k∈I\{i}Dk |= ϕ then by PIP we have Tuna ∪⋃

k∈I\{i} Tk |= ϕ, where Duna |= Tuna, sig (Tuna) ⊆ sig (Duna) and Dk |= Tk
for k ∈ I \ {i}, sig (Tk) ⊆ ∆. Again, by ∆–inseparability, for each k ∈ I \ {i} we
have Duna ∪Di |= Tk and thus, Duna ∪Di |= ϕ.

Therefore, if ϕ ∈ Cons (Duna ∪ DS0 , ∆), then for every i ∈ I, [Duna ∪⋃
k∈I\{i}Dk] ∪ [Duna ∪ Di] |= ϕ and then by PIP and inseparability shown

above, Duna ∪ Di |= ϕ. Since DS0 |=
⋃
i∈I Di by decomposability, we obtain

Cons (Duna ∪ DS0 , ∆) = Cons (Duna ∪Di, ∆) for all i ∈ I.

2) Let us show that Cons (Duna∪DSα
, ∆) ⊆ Cons (Duna∪DS0 , ∆). First, take

a formula ψ ∈ Cons (Duna ∪ DSα
, ∆) which does not contain situation terms.

From the definition of progression, every model of D is a model of Duna ∪ DSα ,
so D |= Duna ∪ DSα and hence, D |= ψ. Assume Duna ∪ DS0 6|= ψ, then Duna ∪
DS0 ∪ {¬ψ} is satisfiable and since ψ is a uniform formula, by Proposition 1,
D ∪ {¬ψ} is satisfiable, which contradicts D |= ψ. Therefore, Duna ∪ DS0 |= ψ.

It remains to verify that the set Cons (Duna ∪ DSα
, ∆) is axiomatized by

sentences which do not contain situation terms. We have ∆ = sig (Duna)∪ σ ⊆
sig (Duna)∪sig (DS0), so {do,�, Poss}∩∆ = ∅, by definition of Duna and DS0 .
As σ if fluent-free by the condition of the theorem (and sig (Duna) is fluent-free
by definition of BAT), ∆ may contain only situation–independent predicates and
functions. Thus, any formula ϕ ∈ Cons (Duna ∪ DSα

, ∆) may contain situation
terms only in equalities, where each term is either the constant S0 (in case
S0 ∈ σ) or a bound variable of sort situation. Suppose that this is the case and
there is no ψ ∈ Cons (Duna ∪ DSα , ∆) such that ψ |= ϕ and ψ does not contain
situation terms. By the syntax of Lsc and the choice of ∆, then ϕ is a boolean
combination of formulas without situation terms and sentences over signature
{S0} stating that ϕ has a model with cardinality |Sit| of sort situation lying in
the interval [n,m] for n ∈ ω and m ∈ ω ∪ {∞}. Denote sentences of this form
by ∃[n,m]θ=. We may assume that ϕ is in conjunctive normal form and there is
a formula ξ, a boolean combination of ∃[n,m]θ= such that 6|= ξ, 6|= ¬ξ, either ξ or
ξ∨η is a conjunct of ϕ, and η 6∈ Cons (Duna∪DSα , ∆), sig (η) ⊆ ∆, is a formula
without situation terms. As 6|= ξ and 6|= ¬ξ, there are n,m ∈ ω such that ξ does
not have a model with |Sit| = n and ¬ξ does not have a model with |Sit| = m.
Then by Lemma 1, we conclude that Duna ∪DSα

6|= ξ and Duna ∪DSα
6|= ¬ξ. In

particular, ξ can not be a conjunct of ϕ. If ξ ∨ η is a conjunct, then there exists
a model M of Duna ∪ DSα such that M |= ξ and M 6|= η. Then, by applying
Lemma 1 again, there must be a modelM′ of Duna ∪DSα

with |Sit| = n where
the interpretation of situation–independent predicates and functions is the same
as in M. Thus, M′ 6|= ξ and since η does not contain situation terms, M′ 6|= η,
which contradicts Duna ∪ DSα

|= ϕ.

3) Now let us demonstrate that Cons (Duna∪DSα
(S0/Sα), ∆) ⊆ Cons (Duna∪

DSα
, ∆). Note that Duna ∪DSα

(S0/Sα) is uniform in S0, so, following the above
proved, assume there is a formula ϕ ∈ Cons (Duna ∪ DSα

(S0/Sα), ∆) such that
ϕ does not contain situation terms and Duna ∪ DSα 6|= ϕ. Take a model M of
Duna ∪ DSα such that M 6|= ϕ. Then, by Lemma 1, there exists a model M′ of
Duna ∪DSα

such that the domain for sort situation inM′ is a singleton set (so,
the interpretation of terms S0 and Sα coincide in M′) and the interpretation
of situation–independent symbols is the same in M and M′. Then M′ 6|= ϕ,
but clearly,M′ |= Duna∪DSα

(S0/Sα) which contradicts the assumption Duna∪
DSα 6|= ϕ.

4) Finally, by the condition of the theorem, for all j ∈ J , we have Duna ∪
D′j ⊆ Duna ∪ DSα

(S0/Sα) and from points 1–3 above we obtain Cons (Duna ∪
DSα(S0/Sα), ∆) ⊆ Cons (Duna∪DS0 , ∆). Hence, for all j ∈ J we have Cons (Duna∪
D′j , ∆) ⊆ Cons (Duna ∪ DS0 , ∆). On the other hand, we also have Cons (Duna ∪

Di, ∆) ⊆ Cons (Duna∪D′j , ∆) from the condition of the theorem. Therefore from
the inclusion ∀ i ∈ I Cons (Duna ∪ DS0 , ∆) ⊆ Cons (Duna ∪Di, ∆) of point 1 we
conclude that Cons (Duna ∪D′j , ∆) = Cons (Duna ∪ DS0 , ∆) for all j ∈ J . �

The next theorem provides a result on local-effect BAT s with initial theories
in first-order logic for which progression becomes more concrete, since it can
be computed by syntactic manipulations. In contrast to Theorem 1, this allows
us to judge about inseparability without the theory Duna in background. Es-
sentially, the conditions of the theorem are defined to guarantee componentwise
computation of progression for a decomposable initial theory. A finite set Dss
of the SSAs is considered to be syntactically divided into the union of |I| sub-
theories sharing some fluent-free signature ∆1 (that may include actions, static
predicates, and object constants), the initial theory DS0 is ∆2–decomposable, for
a fluent-free signature ∆2, into |J | components, and the subtheories of Dss are
aligned with the components of DS0 via syntactic occurrences of fluents. For the
reader’s convenience, we stress that in the formulation of the theorem, the in-
dices i and j vary over components of Dss and DS0 , respectively. The signatures
∆1 and ∆2 are the sets of allowed common symbols between the components of
Dss and DS0 , respectively. We recall that F denotes the set of fluents from the
alphabet of the language of the situation calculus.

Theorem 2 (Preservation of components in local-effect BAT) Let D be
a local-effect BAT , with DS0 an initial theory in first-order logic. Let ∆1, ∆2 be
fluent-free signatures, do 6∈ ∆1, and α = A(c̄), be a ground action term. Denote
∆ = ∆1 ∪∆2 ∪ {c1, . . . , ck}, if c̄ = 〈c1, . . . , ck〉, and suppose the following:

– sig (Dss) ∩ F ⊆ sig (DS0);
– Dss is the union of theories {Di}i∈I , with sig (Dn)∩sig (Dm) ⊆ ∆1 ∪{do}

for all n,m ∈ I 6= ∅, n 6= m;
– DS0 is ∆2–decomposable into finite components {D′j}j∈J uniform in S0;
– for every i ∈ I, there is j ∈ J such that sig (Di) ∩ sig (DS0) ⊆ sig (D′j).

Then DSα
(S0/Sα) is ∆–decomposable. If the components {D′j}j∈J are pairwise

∆–inseparable, then so are the components of DSα
(S0/Sα) in the corresponding

decomposition.

Proof. By definition of BAT , for every i ∈ I, we have sig (Di)∩F 6= ∅ and thus,
from the conditions of the theorem, sig (Di) ∩ sig (DS0) 6= ∅, sig (Dss) ∩ F =
sig (DS0) ∩ F . Hence, for every i ∈ I there is j ∈ J such that sig (Di) ∩ F ⊆
sig (D′j). Moreover, such j ∈ J is unique for every i ∈ I, because otherwise
there would exist n,m ∈ J , n 6= m, such that sig (D′n) ∩ sig (D′m) ∩ F 6= ∅,
which contradicts the condition that ∆2 is fluent-free. Therefore, there is a map
f : I → J such that for every i ∈ I, sig (Di)∩F ⊆ sig (D′f(i)). Note that there
may exist j ∈ J such that sig (D′j) ∩ F = ∅ and in this case j is the image of
no i ∈ I. Let us denote the image of f by J̃ (so, J̃ ⊆ J).

Now for every i ∈ I consider the set of formulas Di[Ω], the instantiation of
Di w.r.t. Ω(S0), and for each j ∈ J̃ denote D̃j = [

⋃
i∈f−1(j)(Di[Ω])] ∪ D′j .

Then, by Proposition 8, progression DSα
of DS0 wrt α is logically equivalent to

[forget (
⋃
j∈J̃

D̃j , Ω(S0)) ∪
⋃

j∈J\J̃

D′j] (S0/Sα).

As ∆1 and ∆2 are fluent-free, the signatures {sig (D̃j)}j∈J̃ do not have fluents
in common and thus, by Corollary 2, DSα

is equivalent to

[
⋃
j∈J̃

forget (D̃j , Ω(S0) |j) ∪
⋃

j∈J\J̃

D′j] (S0/Sα),

where for j ∈ J̃ , Ω(S0) |j is the subset of ground atoms from Ω(S0) with fluents
from sig (D′j). For all j ∈ J \ J̃ , we have sig (D′j)∩F = ∅ and D′j is uniform in
S0, so it follows that S0 6∈ sig (D′j) and thus, DSα(S0/Sα) is equivalent to the
union

[
⋃
j∈J̃

forget (D̃j , Ω(S0) |j)] (S0/Sα) ∪
⋃

j∈J\J̃

D′j .

For every j ∈ J , letD′′j be the set of formulas (forget (D̃j , Ω(S0) |j))(S0/Salpha)
(in case j ∈ J̃) or the set of formulas D′j (if j ∈ J \ J̃). So DSα

(S0/Sα) is equiva-
lent to

⋃
j∈J D

′′
j . From the syntactic definition of forgetting a set of ground atoms

and the substitution of Sα with S0 it follows that the pairwise intersection of
any signatures from {sig (D′′j)}j∈J is a subset of ∆. Then {D′′j ∪Taut(∆, j)}j∈J
is ∆–decomposition of DSα

(S0/Sα), where for each j ∈ J , Taut(∆, j) is a set of
tautologies in signature ∆ \ sig (D′′j) which are uniform in S0.

It remains to verify that the sets of formulas from {D′′j }j∈J are pairwise
∆–inseparable, if so are the components of DS0 .

1) First, consider the sets from the union⋃
j∈J̃

D̃j ∪
⋃

j∈J\J̃

D′j . (†)

The pairwise intersection of their signatures is contained in ∆ ∪ sig (Sα). We
claim that the sets from this union are pairwise ∆–inseparable.

By our definition, for all j ∈ J̃ we have D′j ⊆ D̃j and hence, Cons (D′j , ∆) ⊆
Cons (D̃j , ∆), so let us check that Cons (D̃j , ∆) ⊆ Cons (D′j , ∆) for every j ∈ J̃ .
Each formula in Di[Ω], i ∈ f−1(j), j ∈ J̃ , has the form

F (c̄, do(A(c1, . . . , ck), S0)) ≡ (ε1 ∧ φ+) ∨ (F (c̄, S0) ∧ ε2 ∧ φ−), (∗)

where F is a fluent from sig (D′j), c̄ is a vector of constants from {c1, . . . , ck},
φ+, φ− are sentences uniform in S0, and each ε1, ε2 equals true or false (the
parameters to summarize different cases of this formula). This is a definition of
ground atom F (c̄, do(A(c1, . . . , ck), S0) via fluents at situation S0 and situation–
independent predicates and functions. Therefore, since ∆ is fluent-free and for
all j ∈ J̃ , D′j is uniform in S0, every model M of D′j can be transformed into

a model M′ of D̃j which agrees with M on ∆. The model M′ is obtained
in two steps. First, we expand M with an arbitrary interpretation of func-
tion do and situation-independent predicates and functions from sig (Di[Ω]) \
sig (D′j) for every i ∈ f−1(j). Then we continue with this expanded model
and modify the truth value of each fluent F at the interpretation of the tuple
〈c̄, do(A(c1, . . . , ck), S0)〉 according to the obtained truth value of the formula in
the definition of F (c̄, do(A(c1, . . . , ck), S0) above. This gives us the model M′.
Hence, if ϕ ∈ Cons (D̃j , ∆) and ϕ 6∈ Cons (D′j , ∆), then there is a model M
of D′j such that M 6|= ϕ, but then M′ |= D̃j and M′ 6|= ϕ, a contradiction.
Therefore, we conclude that for all j ∈ J̃ , Cons (D̃j , ∆) = Cons (D′j , ∆) and, by
pairwise ∆–inseparability of the components of DS0 , the sets from the union (†)
are ∆–inseparable.

2) Since ∆ is fluent-free and Ω(S0) consists only of ground atoms with fluents,
from Corollary 2 we conclude that the sets from the following union are ∆–
inseparable: ⋃

j∈J̃

forget (D̃j , Ω(S0) |j) ∪
⋃

j∈J\J̃

D′j .

Now we are ready to prove that the sets from {D′′j }j∈J are pairwise ∆–
inseparable. For every j ∈ J̃ , let us denote Gj = forget (D̃j , Ω(S0) |j). We will
demonstrate that for every j ∈ J̃ it holds Cons (Gj(S0/Sα), ∆) = Cons (Gj , ∆),
from which the statement follows. First, let us verify that Cons (Gj (S0/Sα), ∆) ⊆
Cons (Gj , ∆). Assume that for some j ∈ J̃ (we fix this j for the following) there
is a formula ϕ ∈ Cons (Gj(S0/Sα), ∆) and a model M of Gj such that M 6|= ϕ,
and arrive at contradiction.

By the syntactic definition of forgetting a ground atom, the term Sα occurs in
Gj only in subformulas obtained from the definitions (∗), so let us consider such a
definition for a ground atom F (c̄, Sα) with some fluent F . Let us recall that Gj is
the result of forgetting a set of ground atoms with fluents having S0 as situation
argument. Since c̄ is the vector of object arguments in the definition of F (c̄, Sα)
in (∗), we have F (c̄, S0) ∈ Ω(S0) |j . Therefore, if M |= εF (c̄, S0) (ε denotes
the possible negation in front of atom), then there is a model M′ |= ¬εF (c̄, S0)
such that M′ ∼σM, with σ = F (c̄, S0), and hence, M′ 6|= ϕ (since ∆ is fluent–
free) and the truth value of F (c̄, Sα) in M and M′ is the same. Hence, either
in M or M′ the truth values of F (c̄, Sα) and F (c̄, S0) coincide. The similar
argument applies to the whole set of definitions (∗) from D̃j under forgetting
the set Ω(S0) |j . Therefore we may assume that in M or M′, for each fluent
F ∈ sig (Gj) the values of F (c̄, Sα) and F (c̄, S0) coincide. So M |= Gj(S0/Sα)
orM′ |= Gj(S0/Sα) which is a contradiction, because ϕ holds in neither of these
models.

To prove the reverse inclusion Cons (Gj , ∆) ⊆ Cons (Gj(S0/Sα), ∆), observe
that Gj(S0/Sα) is uniform in S0. Hence, by an observation similar to Lemma
1, every model M of Gj(S0/Sα) can be expanded to a model M′, where the
interpretation of function do is such that the values of terms Sα and S0 in M′

coincide. Then M′ |= Gj and thus, there is no formula ϕ ∈ Cons (Gj , ∆) such
that ϕ 6∈ Cons (Gj(S0/Sα), ∆). �

We note that a result similar to Theorem 2 can be proved in the general case,
for progression of not necessarily local-effect BAT s, by considering progression
as a set of consequences of Duna ∪ Dss ∪ DS0 uniform in Sα.

The proof of the theorem uses Proposition 8 and the component properties
of forgetting from Section 3. The important observation behind this result is
that in order to compute progression of an initial theory wrt an action having
effects only on fluents from one decomposition component, it suffices to compute
forgetting only in this component. Given a decomposition of the initial theory
into inseparable components, the rest of the conditions in the theorem are purely
syntactical, easy to check, and natural to hold, judging from experience of for-
malizing composite domains in situation calculus. SSAs can be grouped into |I|
components by drawing a graph with fluent names as vertices, and an edge from
the fluent on the left-hand-side of each SSA going to each fluent occurring on the
right-hand-side of the same SSA. Similarly, it is easy to check the last condition
of the Theorem that guarantees alignment of groups of axioms in SSAs with
decomposition components of DS0 .

In the above conditions, observe that if an action A occurs in active posi-
tion of SSAs from two different sub-theories of Dss, then computing progression
may involve forgetting in two corresponding components of DS0 and potentially
cause occurrence of common ∆1–symbols in the components of progression. A
practically important class of BAT s for which this interference can be avoided is
described in the corollary below. Note the first condition in the corollary which
yields that every action mentioned in BAT can have effect on fluents only from
one component of Dss.

Corollary 3 (Strong preservation of components in local-effect BAT s)
For every ground action term α = A(c̄), in the conditions and notations of The-
orem 2, if:
– no action function is in ∆1,
– whenever A is in active position in an SSA for a fluent F and F ∈ sig (D′j)

for some j ∈ J , we have {c1, . . . , ck} ⊆ sig (D′j),

then DSα
(S0/Sα) is ∆2–decomposable into ∆2–inseparable components.

Proof. By the first condition, action A can be in active position of SSAs of a
single subtheory Di of Dss. Then, due to the componentwise computation of
progression shown in the proof of Theorem 2, progression can affect the single
corresponding component D′f(i) of DS0 . The second condition of the corollary
guarantees that {c1, . . . , ck} ⊆ sig (D′f(i)). Thus, computing the progression
of DS0 wrt α is essentially a modification of D′f(i) which may introduce new
signature symbols from context conditions of Di only into D′f(i) under forgetting
and into no other components of DS0 . Hence, DSα

(S0/Sα) is ∆2–decomposable
into ∆2–inseparable components, just like DS0 is. �

We note that the corollary obviously remains true if the first condition is
replaced with the simple requirement: ∆1 ⊆ ∆2.

Example 1 (continuation). Note that the BAT considered in the ex-
ample satisfies the conditions of the corollary with signatures ∆1 = ∅ and
∆2 = {Block, S0}. The theory Dss is a union of two theories, with the inter-
section of signatures equal to {do}. As already noted in the example, the initial
theory DS0 is ∆2–decomposable into ∆2–inseparable components. Now, consider
the ground action α=move(A,B,C). By Corollary 2 and Proposition 8, in order
to compute the theory DSα

(S0/Sα) (the progression of DS0 wrt α, with the term
Sα substituted with S0), it suffices to forget the ground atoms On(A,B, S0) and
Clear(C, S0) in the first decomposition component of DS0 and update it with
the ground atoms On(A,C, S0) and Clear(B,S0). The second component of DS0

remains unchanged. One can check that DSα
(S0/Sα) is the union of the following

theories:
ϕ ∧ ψ ∧ (x 6= C)→ Clear(x, S0)
ψ → Block(x)
Block(B)∧Block(C)∧On(A,C,S0)∧ ¬On(A,B,S0)
Clear(A,S0) ∧ Clear(B,S0) ∧ ¬Clear(C, S0)

and
(Top(x, S0) ∨ Inheap(x, S0))→ ¬Block(x)
∃x Block(x),

where ϕ and ψ, respectively, stand for

(x 6= B) ∧ ¬∃y ((y 6= A ∨ x 6= B) ∧On(y, x, S0)),
(x = A) ∨ ∃y ((x 6= A ∨B 6= y) ∧On(x, y, S0)).

The theory DSα
(S0/Sα) is ∆2–decomposable by the syntactic form and there

is no need to compute a decomposition again after progression. Corollary 3
guarantees that the obtained components are ∆2–inseparable and that we can
compute progression for arbitrary long sequences of actions while preserving
decomposability of DSα(S0/Sα) and inseparability of its components.

5 Summary

We have considered the influence of the theory update operations, such as
forgetting and progression on preserving the component properties of theories,
such as decomposability and inseparability. The results of the paper are in a cer-
tain sense expected. Forgetting and progression have semantic nature, since the
input and the output of these transformations are related to each other by using
restrictions on the classes of models. On the contrary, the decomposability and
inseparability properties are defined using entailment in a logic. Therefore, they
have rather a syntactic origin, because logics (weaker than second-order) may
not distinguish the needed classes of models. As a consequence, the conceptual
“distance” between these two kinds of notions is potentially immense. It can be
somewhat bridged by the choice of either an appropriate logic, or appropriate

theories in the input. We have identified conditions that should be imposed on
the components of input theories to match these notions more closely. Also, the
Parallel Interpolation Property (PIP) turned out to be a relevant property of
logics in our investigations. The results can be briefly summarized in the tables
below. For brevity, we use σ to denote a signature or a ground atom. We slightly
abuse notation and consider σ as a set of symbols even in the case of a ground
atom implying that in the latter case σ consists of the single predicate symbol
from the atom. We assume that the input of operations of forgetting and pro-
gression is a union of theories T1 and T2 with sig (T1) ∩ sig (T2) = ∆, for a
signature ∆.

Property Condition Result Reference

Preservation of ∆–
inseparability of T1
and T2 under forget-
ting σ

σ ∩∆ = ∅ YES Corollary 2

σ ⊆ ∆ and σ is a
ground atom NO

Example 2

σ ⊆ ∆ and σ is a signa-
ture

YES,
if logic has PIP

Proposition 5

σ ⊆ ∆ and T1, T2
are semantically insep-
arable

YES

Proposition 6

Distributivity of for-
getting σ over union
of T1 and T2

σ ∩∆ = ∅ YES Corollary 2

σ ⊆ ∆

NO,
even if T1 and T2 are
semantically insepa-
rable

Example 3

T1 and T2 are semanti-
cally inseparable “mod-
ulo σ”

YES

Proposition 7

Property Condition Preservation Reference

∆–inseparability of
components of initial
theory under pro-
gression

at least one fluent is
present in ∆ NO

Example 5

∆ is fluent-free and some
components of initial the-
ory split under progression

NO

Example 6

∆ is fluent-free and com-
ponents of initial theory do
not split under progression

YES,
modulo the unique
name assumption
theory

Theorem 1

∆–decomposability
and preservation of
signature compo-
nents of an initial
theory under pro-
gression wrt an
action term α

Unconditionally, in partic-
ular for local-effect BAT s NO

Example 4

BAT is local–effect, ∆
is fluent-free, and compo-
nents of DS0 are aligned
with components of Dss

YES,
modulo constants in
term α

Theorem 2

Acknowledgements. The first author was supported by the German Research
Foundation within the Transregional Collaborative Research Centre SFB/ TRR
62 “Companion-Technology for Cognitive Technical Systems”, the Russian Aca-
demy of Sciences (Grant No. 15/10), and the Siberian Division of the Russian
Academy of Sciences (Integration Project No. 3). Both authors would like to
thank the Natural Sciences and Engineering Research Council of Canada and
the Dept. of Computer Science of the Ryerson University for providing partial
financial support.

References

1. Eyal Amir. (De)composition of situation calculus theories. In Henry A. Kautz and
Bruce W. Porter, editors, AAAI/IAAI, pages 456–463. AAAI Press / The MIT
Press, 2000.

2. Eyal Amir. Projection in decomposed situation calculus. In Dieter Fensel, Fausto
Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, editors, KR, pages
315–326. Morgan Kaufmann, 2002.

3. Stephen A. Cook and Yongmei Liu. A complete axiomatization for blocks world.
J. Log. Comput., 13(4):581–594, 2003.

4. William Craig. Three uses of the herbrand-gentzen theorem in relating model
theory and proof theory. J. Symb. Log., 22(3):269–285, 1957.

5. William Craig. The road to two theorems of logic. Synthese, 164(3):333–339, 2008.
6. C. Cordell Green. Application of theorem proving to problem solving. In Donald E.

Walker and Lewis M. Norton, editors, IJCAI, pages 219–240. William Kaufmann,
1969.

7. Michael Grüninger, Torsten Hahmann, Ali Hashemi, Darren Ong, and Atalay
Özgövde. Modular first-order ontologies via repositories. Applied Ontology,
7(2):169–209, 2012.

8. Yilan Gu and Mikhail Soutchanski. A description logic based situation calculus.
Ann. Math. Artif. Intell., 58(1-2):3–83, 2010.

9. Boris Konev, Carsten Lutz, Denis Ponomaryov, and Frank Wolter. Decompos-
ing description logic ontologies. In Fangzhen Lin, Ulrike Sattler, and Miroslaw
Truszczynski, editors, KR. AAAI Press, 2010.

10. Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Formal properties
of modularisation. In Heiner Stuckenschmidt, Christine Parent, and Stefano Spac-
capietra, editors, Modular Ontologies, volume 5445 of Lecture Notes in Computer
Science, pages 25–66. Springer, 2009.

11. George Kourousias and David Makinson. Parallel interpolation, splitting, and
relevance in belief change. J. Symb. Log., 72(3):994–1002, 2007.

12. Hector Levesque and Gerhard Lakemeyer. Cognitive robotics (chapter 24). In
Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of
Knowledge Representation. Elsevier, 2007.

13. Fangzhen Lin. On strongest necessary and weakest sufficient conditions. Artif.
Intell., 128(1-2):143–159, 2001.

14. Fangzhen Lin and Ray Reiter. Forget it! In Proceedings of the AAAI Fall Sympo-
sium on Relevance, pages 154–159, 1994.

15. Fangzhen Lin and Raymond Reiter. How to progress a database. Artificial Intel-
ligence, 92:131–167, 1997.

16. Yongmei Liu and Gerhard Lakemeyer. On first-order definability and computability
of progression for local-effect actions and beyond. In Craig Boutilier, editor, IJCAI,
pages 860–866, 2009.

17. Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in ex-
pressive description logics. In Manuela M. Veloso, editor, IJCAI, pages 453–458,
2007.

18. Carsten Lutz and Frank Wolter. Mathematical logic for life science ontologies. In
Hiroakira Ono, Makoto Kanazawa, and Ruy J. G. B. de Queiroz, editors, WoLLIC,
volume 5514 of Lecture Notes in Computer Science, pages 37–47. Springer, 2009.

19. Carsten Lutz and Frank Wolter. Deciding inseparability and conservative exten-
sions in the description logic el. J. Symb. Comput., 45(2):194–228, 2010.

20. John McCarthy. Situations, actions and causal laws. Memo 2, Stanford University,
Department of Computer Science, 1963. Reprinted in: “Semantic Information Pro-
cessing” (M.Minsky, ed.), The MIT Press, Cambridge (MA), 1968, pages 410-417.

21. John McCarthy. Formalization of common sense: papers by John McCarthy edited
by V. Lifschitz. Ablex, Norwood, N.J., 1990.

22. John McCarthy and Patrick Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 4, pages 463–502. Edinburgh University Press, Reprinted in
[21], 1969.

23. Fiora Pirri and Ray Reiter. Some contributions to the metatheory of the situation
calculus. Journal of the ACM, 46(3):325–364, 1999.

24. Denis Ponomaryov. On decomposibility in logical calculi. Bulletin of the Novosi-
birsk Computing Center, 28:111–120, 2008.

25. Raymond Reiter. Knowledge in Action: Logical Foundations for Describing and
Implementing Dynamical Systems. The MIT Press, 2001.

26. Stavros Vassos and Hector J. Levesque. On the progression of situation calculus
basic action theories: Resolving a 10-year-old conjecture. In Dieter Fox and Carla P.
Gomes, editors, AAAI, pages 1004–1009. AAAI Press, 2008.

27. Wael Yehia, Hongkai Liu, Marcel Lippmann, Franz Baader, and Mikhail Soutchan-
ski. Experimental results on solving the projection problem in action formalisms
based on description logics. In Yevgeny Kazakov, Domenico Lembo, and Frank
Wolter, editors, Description Logics, volume 846 of CEUR Workshop Proceedings.
CEUR-WS.org, 2012.

