A Relational Solver for Constraint-based Type Inference J

Eridan Domoratskiy, Dmitry Boulytchev
St. Petersburg State University, Russia

Tue 10 Dec 2024

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 1/32

XMA Programming Language

XME — educational programming language:
@ Functional: every program is expression, has first-class functions

o Imperative: expressions evaluate in strictly defined order, function calls can produce side
effects, data structures mutation allowed

@ Native-compiled: programs must be compiled before running, target platform is Intel x86
@ Modular: programs can be composed from several modules, that are compiled separately

@ Untyped: there aren't statical and runtime type checks

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 2/32

XAA: Simple Program

This program calculates the
Ackermann function of 0 < m < 3
and 0 < n < 8 by definition:

Here we may notice:

@ variable definition, using and
assignment

e function definition and calls
(including recursive)

@ conditional and loop
expressions

e infix operators (including *;
standing for sequential
evaluation operator)

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference

var x, m, n ;

fun ack (m, n) {
if m == 0 then n + 1

elif m > 0 86 n == 0 then ack (m - 1, 1)

else ack (m - 1, ack (m, n - 1))
fi

x := read () ;
form := 0, m<=3, m:=m+ 1 do
for n := 0, n<=8, n :=n+ 1 do
write (ack (m, n))
od
od

Tue 10 Dec 2024

3/32

XAMA: Complex Data Structures

fun compare (x, y) { x - y }
fun bubbleSort (1) {
The following program generates fun inner (1) {

. . . case 1 of
list of 1000 integers and sorts it Xt zaly : tl) ->

using bubble sort: if compare (x, y) > 0
then [true, y : inner (x : tl) [1]]
else case inner (z) of [f, z] -> [f, x : z] esac

Here we may notice: fi

@ arrays and linked lists lsgc_> [false, 1]

@ pattern matching }

fun rec (1) {
@ subvalues accessing by index case inner (1) of
[true , 1] -> rec (1)
| [false, 1] -> 1

Linked list is the special case of) esac
more general construction, that in rec (1)
XAME named S-expression }

fun generate (n) { if n then n : generate (n - 1) else {} fi }
bubbleSort (generate (1000))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 4/32

XAMA: S-expressions and First-Class Functions

import Data ;
The next example is simple

i fun emptyContext () { fun (v
A-calculus interpreter: pty {) {

failure (”No variable %s in current scope!\n”, v.string)

P}
F A fun extendContext (ctx, v, x) {
We may notice: fun (u) { if v === u then x else ctx (u) fi }

@ module importing t

o first-class functions fun eval (ctx, expr) {

. case expr of
o strlngs val (x) -> x
@ S-expressions | var (v) -> ctx (v)

| App (f, x) -> eval (ctx, f) (eval (ctx, x))
| Lam (v, b) ->

. . fun (x) { eval (extendContext (ctx, v, x), b) }
S-expressions acts like tagged arrays

esac

and provides convenient ADT-style }

data nnanipulation (er in fun evalo (expr) { eval (emptyContext (), expr) }
I{}\SI(EHQL, ()(j}\hlL, etc) var test = App (Lam ("x”, Var (”"x"”)), Val ("Hello!”)) ;

printf ("%s\n”, eval® (test))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 5/32

XAM@: Functional Programming, State Monad

@ Since we have in XXMQ first-class functions
support, sometimes it's convenient to use FP
idioms like monads

o For example, to implement backtracking in parser
it is convenient to use the state monad

@ So, there is an implementation of this monad in
the MA@ standard library:

@ Also, we may notice utilization of the user-defined
infix operators feature of XAAMO

!The code is slightly changed for a reader convenience

import Fun ;

infix >>= before $ (m, k) {
fun (state) {
case m (state) of
[state, x] -> k (x) (state)
esac
}
}

fun pure (x) {
fun (state) { [state, x] }
}

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 6/32

Defects in XXA@ Programs

fun size (xs) { fun nextStep (x) { x + 1}
case xs of
{} >0 --
| _ : xs ->1 + size (xs)
esac var myComputation = pure (1) >>= nextStep ;
}

var initialState = 0 ;
size ("123") myComputation (initialState) [1]

(a) Simple defect (b) Difficult defect

a) A string is passed instead of a list in “size™
s Match failures are detected as soon as possible with detailed error messages
s The cause of a crash is located immediately next to the crash location
b) A programmer forgot to wrap a result of “nextStep” in “pure”™
€3 Calling non-callable values crashes with the “Segmentation fault” error
©) The cause of a crash may be “across the code” from the crash location

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 7/32

Static Analysis and Static Typing

o Static analysis is a method to prevent some classes of
program defects before running the program (ahead-of-time)

@ A classical way to deal with defects like (b) is static typing

@ In various modern programming languages, optional explicit
type annotations were invented to allow static analysis
through static typing (PYTHON, TYPESCRIPT, etc.)

s Provides additional documentation

s Simplifies static analyzers ~
) Requires to change an existing code to use static analyzer on
L) Complicates language syntax

©) Distracts programmer

s Instead, we study static typing through full type inference,
that allows to analyze programs without changing them

Static Analisys
N

Static Typing

Type Inference

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 8/32

Constraint-based Type Inference

\ Constraint

Expression *ﬁ Constraint Inference |

Type with holes

>]] Constraint Solver ‘

Substitution

{ Apply Substitution }% Type

Figure: Constraint-based type inference

@ Modern programming languages that support full type inference uses constraint-based

type inference

@ Currently, there are many frameworks that provides unified way to implement
constraint-based type inference algorithm for given type system and constraint solver

@ Thus, we need to develop the type system and the constraint solver

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference

Tue 10 Dec 2024 9/32

XAMA: Data Shapes Classification

The shapes of data:

@ Integer — integral value in bounds
[_230’ 230 _ 1]
String — array of ASCII characters

Reference

Integer

Container

Closure @ Array — array of arbitrary values

String Array S-expression ° S—expre55|on — array with associated
literal tag
Sh f data in AAMO . .
(2) Shapes of data in XM @ Closure — first-order function

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 10/32

Type System

Legend:

e X — type variables
and literal tags

| X | VX,.., X.C=(T,...T)=>T | pX. T o T — types
@ C — constraints

Ta=Z[S | [T] X (T ..TU..UX (T,..,T)

Figure: Syntax of types

The forms of types: @ S-expression types are composition of product and sum
types

e Function types are generic (by “X, ..., X"") and possible
specializations are constrained (by “C")

o Integer, String
o Array, S-expression

@ Type variable , Function @ We need to allow explicit recursive types to support
recursive data structures, since there aren't any type
declarations in source code

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 11/32

@ Recursive type

Type System: Examples

Obvious:
e 0:%Z
e 123:7Z
e "123":S
o []:[T]forany T
e [1, 2, 3]:[Z]
e One (Two, Three) : One(Two,Three)
e One (Two, Three) : One(Twol A,Three U B C)U D,

since S-expression types may include more that one constructor

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 12/32

Type System: Examples

Obvious:
e 0:%Z
e 123:7Z
e "123":S
o []:[T]forany T
o [1, 2, 3]:[Z
e One (Two, Three) : One(Two,Three)
e One (Two, Three) : One(Twol A,Three UBLIC)U D,

But:

since S-expression types may include more that one constructor

0 : T for any T, since “0" is used as null value in many cases

{} : T for any T, since “{}" is a syntactic sugar for “0"

{1, 2, 3}:cons(Z,cons(Z,cons(Z,T))) for any T, as in previous case

{1, 2, 3}: pa. cons(Z,a), since this is a general type of all lists of integers

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024

12/32

Constraint System

Co=T|CANC|Ind(T,T) | Call(T,T,...,T,T) | Sexpx(T,T,...,T) | ...

Figure: Syntax of constraints

The forms of constraints:
@ T,Cy N Cy — conjunction of constraints

@ Ind(T,S) — values of type T contains elements of type S; i. e. given x : T and idx : Z,
x [idx]:S

e Call(T,Sy,...,Sn,S) — values of type T callable with arguments of types S; and result
have type S; i. e. given f: Tand x; : S;, f (X1, ..., Xu):S

e Sexpx(T,Sy,...,Sn) — type T is S-expression type and one of it's constructors have form
X (51,...,Sn); i. e given X; : S;, X (Xl, ey Xn) : T

@ ... — other constraints that we don't mention

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 13/32

Constraint System: Examples

e fun (x) { x }:Va. T = (a) > «

o fun (xs, i, x) { xs [i] := x ; xs }:Va,B. Ind(a,) = (a, Z,B) = «
e fun (f, x) { f (x) }:Va,B,v. Call(e, B,7) = (o, B) = v

e fun (x) { Some (x) }:Va,B. Sexpsome(a, 8) = (8) = «

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 14 /32

Constraint Solver

@ We define binary relation “Cy IF C5" that means “C; implies Cs", in terms of natural
deduction

@ The job of constraint solver is to suggest for the given “C" a type substitution “o” so that
“T IF Co" satisfied, or state that it doesn't exist

! Any constraint “C"” has form “C; A Cy A ... A C,,”", where C; is an atomic constraint
(constraint without conjunctions)

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 15/32

Constraint Solver

@ We define binary relation “Cy IF C5" that means “C; implies Cs", in terms of natural
deduction

@ The job of constraint solver is to suggest for the given “C" a type substitution “o” so that
“T IF Co" satisfied, or state that it doesn't exist

Any constraint “C"” has form “C; A Cy A ... A C},", where C; is an atomic constraint
(constraint without conjunctions)

If we consider atomic constraints as predicates over types, any constraint is just CNF in
first-order logic

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 15/32

Constraint Solver

@ We define binary relation “Cy IF C5" that means “C; implies Cs", in terms of natural
deduction

@ The job of constraint solver is to suggest for the given “C" a type substitution “o” so that
“T IF Co" satisfied, or state that it doesn't exist

Any constraint “C"” has form “C; A Cy A ... A C},", where C; is an atomic constraint
(constraint without conjunctions)

If we consider atomic constraints as predicates over types, any constraint is just CNF in
first-order logic

@ So, we need a tool that could solve that CNF or state that there aren't solutions

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 15/32

Constraint Solver

@ We define binary relation “Cy IF C5" that means “C; implies Cs", in terms of natural
deduction

@ The job of constraint solver is to suggest for the given “C" a type substitution “o” so that
“T IF Co" satisfied, or state that it doesn't exist

Any constraint “C"” has form “C; A Cy A ... A C},", where C; is an atomic constraint
(constraint without conjunctions)

If we consider atomic constraints as predicates over types, any constraint is just CNF in
first-order logic

@ So, we need a tool that could solve that CNF or state that there aren't solutions

@ Here we meet relational programming

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 15/32

Relational Programming

Relational programming (especially, MINIKANREN):
@ a special case of logic programming without side effects

@ minimalistic embedded programming language (implementing as DSL library for existing
programming languages)

@ presented in The Reasoned Schemer [1]

@ implemented for many popular programming languages: SCHEME, OCAML, KOTLIN, etc.
@ have proven search completeness [2]

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 16 /32

MINIKANREN: Terms

Term in logic programming is an expression of the following syntax:
tu=X|C(t,..., 1),

where X' — variable, C — tag

Examples of term:
° «
@ None
e Some(a) @ @
@ Z — Peano number “0"

@ S(S(S(2))) — Peano number “3"
e Node(Leaf,a,Node(53,Z, Leaf))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 17/32

MINIKANREN: Goals

Goal in MINIKANREN is a special case of logical expression:
gu=T|L|t=t[PEt...t)|ghglgVgl|IX. g,
where P — predicate, so we haven't implication, negation and forall quantifier

Examples of goal:
ea=_,
e a=AVa=8B
o Pa)AQ(a,B)
e a = None V 3[. a = Some(p)
e J5. a = S(f) — predicate “a > 1" on Peano numbers

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 18/32

MINIKANREN: Definitions

Definition in MINIKANREN is like definition in logic programming but with a goal on the
right-hand side:
PX,....X) =g,

and the goal mustn't has free variables except listed on the left-hand side

Examples of definition:
e P=T
@ Q(aaﬂ) =a= szh/ B = S<7) /\Q(O‘77)
e add’(a,B,y)=a=ZAB=~vV3d,y. a=S)ANy=S")Aadd’(,3,7) —
relation “a + 8 = " on Peano numbers

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 19/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

o Consider the program:
add®(a, B,y) =a=2ZAB=~VId,¥. a=S)ANy=S(")Aadd’(, 5,7

Query: add’(S(Z),5(S(S(2))),€)

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

o Consider the program:
add®(a, B,y) =a=ZAB =V, ¥. a=S)ANy=S")Aadd’(, 5,7
Query: add®(S(2),5(S(5(2))).¢)
Q S(2)=ZAS(S(5(2)) =¢vad,y.S(Z2) =S(a/) NE=S() Aadd®(a/,S(S(5(2))),v)

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

o Consider the program:
add®(a, B,y) =a=2ZAB=~VId,¥. a=S)ANy=S(")Aadd’(, 5,7

Query: add’(S(2),5(5(5(2))),€)
Q S(2) =ZAS(5(5(2))) =& v 3,y S(Z) = S(a') AN =S(7) Nadd®(a,S(S(S(2))),7)
Q 5(2) =S(&) A& =S(Y) Aadd?(a',5(S(5(2))),7)

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

o Consider the program:
add®(a, B,y) =a=2ZAB=~VId,¥. a=S)ANy=S(")Aadd’(, 5,7

Query: add’(S(2),5(5(5(2))),€)

Q S(2) =ZAS(5(5(2))) =& v 3,y S(Z) = S(a') AN =S(7) Nadd®(a,S(S(S(2))),7)
Q 5(2) = S(&) A& =S(v') Aadd®(a',5(S(5(2))),7)

Q add?(2,5(5(5(2))),7"); € = S(v')

S
S

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

o Consider the program:
add®(a, B,y) =a=2ZAB=~VId,¥. a=S)ANy=S(")Aadd’(, 5,7

Query: add®(5(2),5(S(5(2))),€)

);S
Q S(2) =ZAS(5(5(2))) =& v 3,y S(Z) = S(a') AN =S(7) Nadd®(a,S(S(S(2))),7)

Q 5(2) =s(a) A& =S(v) Nadd®(a’,S(5(S(2))),7)
© add®(2,5(5(5(2))),7'); € = S(v')
Q@ Z=7/5(5(5(2))) =7 V37" Z=5S(a') Ay = S(v") Aadd?(a',S(S(S(2))),7"); § =

S(v)

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

MINIKANREN program is a list of relation definitions and a query (just a goal)
Unlike logic programming languages like PROLOG, definitions must be distinct by name

Program evaluation results in all possible substitutions of the query’s free variables, that

satisfy the query

o Consider the program:

add’(a, B,y) =a=ZAB =V, v. a=S)ANy=S")Aadd’(

Query: add®(S(Z

),S
@ S(2)=ZAS(S(S

(S(5(2))),€)

Q 5(2) = S(&) A& =S(v') Aadd®(a',5(S(5(2))),7)
© add®(Z,5(5(5(2))),7'); € = S(7)
Q 2=215(5(5(2)) =

S(v)
Q S(5(5(2))) =756 = S(v)

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference

(5(2))) =& V3,7 S(2) = S(a) A § = S(7) Aadd®(a’,S(S(S(2))),7)

Tue 10 Dec 2024

B

YV 3y Z=S() Ny =S(Y") Aadd®(a,S(S(S(2))),7"); € =

20/32

MINIKANREN: Program

MINIKANREN program is a list of relation definitions and a query (just a goal)
Unlike logic programming languages like PROLOG, definitions must be distinct by name

Program evaluation results in all possible substitutions of the query’s free variables, that

satisfy the query

o Consider the program:

add’(a, B,y) =a=ZAB =V, v. a=S)ANy=S")Aadd’(

Query: add®(S(Z

),S
@ S(2)=ZAS(S(S

(S(5(2))),€)

Q 5(2) = S(&) A& =S(v') Aadd®(a',5(S(5(2))),7)
© add®(Z,5(5(5(2))),7'); € = S(7)
Q 2=215(5(5(2)) =

S(v)
Q 5(s(5(2))) =
o T;fHS(S(S(())))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference

(5(2))) =& V3,7 S(2) = S(a) A § = S(7) Aadd®(a’,S(S(S(2))),7)

Tue 10 Dec 2024

B

YV 3y Z=S() Ny =S(Y") Aadd®(a,S(S(S(2))),7"); € =

20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

@ Consider the program:
add®(a, B,y) =a=ZAB =V, v. a=S)ANy=S")Aadd(,,v")

Query: add’(¢,v,S(S(S(S(2)))))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

@ Consider the program:
add®(a, B,y) =a=ZAB =V, v. a=S)ANy=S")Aadd(,,v")

Query: add’(&, v, S(S(S(S(2)))))
° £ 2,9 = S(S(S(5(2))))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

@ Consider the program:
add®(a, B,y) =a=ZAB =V, v. a=S)ANy=S")Aadd(,,v")

Query: add’(&, v, S(S(S(S(2)))))
° {1 7,9 S(S(5(5(2))))
° £ 5(2),¢ = S(5(5(2)))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

MINIKANREN: Program

@ MINIKANREN program is a list of relation definitions and a query (just a goal)
@ Unlike logic programming languages like PROLOG, definitions must be distinct by name

@ Program evaluation results in all possible substitutions of the query's free variables, that
satisfy the query

@ Consider the program:
add®(a, B,y) =a=ZAB =V, v. a=S)ANy=S")Aadd(,,v")

Query: add®(£,1,5(S(5(5(2)))))
° £ 2,9 = S(S(S(5(2))))
()))
Z))
)

o £ S(

e £— S(S
e £— S(S
e £— S(S

Z),% — S(S
(2)),9 —
(5(2))), we

(5(s(2)))), ¢ — Z

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 20/32

Verifier-to-Solver Approach

Given problem:
@ We can implement relational program “P(z)" that verifies problem solution “z" — verifier
Running relational verifier “P(£)" on free variable “¢" gives solution “¢ — a2 — solver

s Moreover, it gives the all possible solutions due to search completeness

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 21/32

Verifier-to-Solver Approach

Given problem:
@ We can implement relational program “P(z)" that verifies problem solution “z" — verifier
Running relational verifier “P(£)" on free variable “¢" gives solution “¢ — a2 — solver
s Moreover, it gives the all possible solutions due to search completeness

) Unfortunately, relational program evaluation may hangs in practice due to exponential
search complexity

@ ...or simply, due to specific problem undecidability

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 21/32

Verifier-to-Solver: Application

We may implement relational verifier for “IF"

3 “IF" implemented directly in MINIKANREN works slowly and don't answer at all when
proper substitution isn't exists

) Also, vanilla MINIKANREN implementations doesn't allow to deal with recursive terms,
that are needed to deal with recursive types
s Wildcard logic variables [3]:
e Most of MINIKANREN implementations supports inequality as a primitive
o Wildcard variables allows to say “Vi. £ £ Cons(v)" instead of "J¢. £ # Cons ()"
s Non-relational optimizations to specialize relational implementation in the constraint
solving problem:

e Term shape check — non-relational primitives that give an ability to introspect current
evaluation state and direct evaluator manually

e Occurs hooks — an ability to hook an occurs check to permit unnatural recursive equations
solving while unification

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 22/32

Term Shape Check

let rec contalns X XS = ocanren

. { is_var xs §
let rec contains x xs = ocanren { -

. fresh xs’' in xs == x::xs'
fresh x’', xs' in xs == x'::xs' & { }
{ x == x' | is_not_var xs &
, . , fresh x’, xs' in xs == x'::xs' &
| x =/= x" & contains x xs ,
} {X::X
x =/= x' & contains x xs'’

I
}
}

? How to implement contains® for sets encoded as lists?

@) Trivial implementation will generate a lot of syntactically different, but semantically
identical lists

s With the shape checking we are able to enforce a single solution in the case when the tail
of list is free

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 23/32

Search Space of Function Types

? How to solve a constraint of the form “Call(T, Sy, ...,S,,S)" when “T" is a free logic
variable?

@ The only form that “T" could be is: VA1, ..., Xp. C = (T1,....Ty) = T

@ In the implementation: TArrow (fxs, fc, fts, ft)

) A straightforward implementation will generate the variety of function types with all
possible values of “fxs" and “fc”

! Assumption: all needed function types come from relational query, i. e. we don't need to

generate them

s Just enforce the simplest possible type in the case when “T" is free:

V. T = (S1,..,5,) =& S

This approach may cut off some solutions when “Call” is being solved too early

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 24 /32

Solving Ordering

@ Solving constraints left-to-right works poorly
Let's support all planned to solve constraints and pick them one-by-one in a good order

@ As a good order, we use picking a minimum by relational heuristic comparator, that
inspects shapes (using “is_var") of constraint arguments

@ For example, constraints of form “Call(T, S, ...,S,,S)" with logic variable in place of “T"
are being picked last

s In addition to performance gain, we have fixed a problem with early solution that was
mentioned before

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 25/32

Occurs Hooks

Equation Equation

Recursion Recursion

Solution Solution
’ Extend substitution ‘ ’ Extend substitution]
Alternative
l solution
(a) Without occurs hooks (b) With occurs hooks

@ Occurs hook is a callback that called when a recursive equation occurred in unification:
£ = Term(€)

@ A hook returns an alternative right side of equation, so the new equation will be:
& = hook(§, Term(§))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 26 /32

Evaluation

@ We used the MA@ compiler tests
s The majority of tests were successfully typechecked

L) S-expression types are slowing down performance exponentionally of the number of Sexp
constraints

s Other constraints aren't so slow

! Occurs hooks gives an ability to deal with recursive types, but results not as good as
possible, e.g.:
o Good type: pa. Nil U Cons(Z,)
o Produced type: Nil U Cons(Z, uc. Nil U Cons(Z, «))

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 27/32

Evaluation

204 ° -

1.67 ° 2

0.56 o
03 [[o
0.2 oo
0.11 - ° ° |
0.063 e ° oo oo ° 'Y N
0.032 |ecccceee ¢ o o o o B

0.015 |eeeeeee [=
I - | | | I |

12345678 10 1315171921 26 30 34 46 495153 61

Figure: Elapsed time by the number of constraints

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 28/32

Evaluation: S-expression Types

o) %]
@ Example:
Sexpa(x,Z) N Sexpp(y,S) A Sexpa(z,Z)

@ We have m = 3 different S-expression
types x,y, z and n = 2 different
constructors A(Z), B(S)

@ Number of branches is O(n™)

@ As a result, we have about 8 branches o2y B(S) y s B(S)Uy/
only from this constraints

Sexpa(z,2)
o1 xz— AZ) x— A(Z)ux

Sexpp(y,S)

@ It explains the high time consumption on Sexpa(z,Z)
the previous slide

o3z A(Z) 2z A(Z)U 2

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 29/32

Evaluation: S-expression Types

I
20.4 | Ju—
167 4 |
0.56 | s .
031 4 .
02f 4
0.11 | s s |
0.063 4 4 .
0.032) 4 4 |
0015 4 |
| | | | | | |
1248 64 256 1,680,000

Figure: Elapsed time by the number of Sexp branches

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 30/32

Results

« Relational programming is applicable to constraint-based type inference
« To specialize relational solvers we may inspect current state (is_var/is_not_var)
« Recursive terms may be partially emulated using non-relational hooks over “occurs check’

2'* This results are preliminary that need more research

More technical details are available in [4]

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 31/32

Results

« Relational programming is applicable to constraint-based type inference
« To specialize relational solvers we may inspect current state (is_var/is_not_var)
« Recursive terms may be partially emulated using non-relational hooks over “occurs check’

2'* This results are preliminary that need more research

Questions?

More technical details are available in [4]

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 31/32

References

[@ Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov.
The Reasoned Schemer.
The MIT Press. MIT Press, 2005.

[@ Dmitry Rozplokhas, Andrey Vyatkin, and Dmitry Boulytchev.
Certified semantics for relational programming.
In Asian Symposium on Programming Languages and Systems, pages 167-185. Springer,
2020.

ﬁ Dmitry Kosarev, Daniil Berezun, and Peter Lozov.
Wildcard logic variables.
In miniKanren and Relational Programming Workshop, 2022.

[@ Eridan Domoratskiy and Dmitry Boulytchev.
A relational solver for constraint-based type inference.
arXiv preprint arXiv:2408.17138, 2024.

Eridan Domoratskiy, Dmitry Boulytchev A Relational Solver for Constraint-based Type Inference Tue 10 Dec 2024 32/32

