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λaMa Programming Language

λaMa — educational programming language:
Functional: every program is expression, has first-class functions
Imperative: expressions evaluate in strictly defined order, function calls can produce side
effects, data structures mutation allowed
Native-compiled: programs must be compiled before running, target platform is Intel x86
Modular: programs can be composed from several modules, that are compiled separately
Untyped: there aren’t statical and runtime type checks
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λaMa: Simple Program
This program calculates the
Ackermann function of 0 ≤ m ≤ 3
and 0 ≤ n ≤ 8 by definition:

Here we may notice:
variable definition, using and
assignment
function definition and calls
(including recursive)
conditional and loop
expressions
infix operators (including “;”
standing for sequential
evaluation operator)

var x, m, n ;

fun ack (m, n) {
if m == 0 then n + 1
elif m > 0 && n == 0 then ack (m - 1, 1)
else ack (m - 1, ack (m, n - 1))
fi

}

x := read () ;
for m := 0, m <= 3, m := m + 1 do
for n := 0, n <= 8, n := n + 1 do
write (ack (m, n))

od
od
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λaMa: Complex Data Structures

The following program generates
list of 1000 integers and sorts it
using bubble sort:

Here we may notice:
arrays and linked lists
pattern matching
subvalues accessing by index

Linked list is the special case of
more general construction, that in
λaMa named S-expression

fun compare (x, y) { x - y }
fun bubbleSort (l) {
fun inner (l) {
case l of
x : z@(y : tl) ->
if compare (x, y) > 0
then [true, y : inner (x : tl) [1]]
else case inner (z) of [f, z] -> [f, x : z] esac
fi

| _ -> [false, l]
esac

}
fun rec (l) {
case inner (l) of
[true , l] -> rec (l)

| [false, l] -> l
esac

}
rec (l)

}
fun generate (n) { if n then n : generate (n - 1) else {} fi }
bubbleSort (generate (1000))
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λaMa: S-expressions and First-Class Functions

The next example is simple
λ-calculus interpreter:

We may notice:
module importing
first-class functions
strings
S-expressions

S-expressions acts like tagged arrays
and provides convenient ADT-style
data manipulation (like in
HASKELL, OCAML, etc)

import Data ;

fun emptyContext () { fun (v) {
failure (”No variable %s in current scope!\n”, v.string)

} }
fun extendContext (ctx, v, x) {
fun (u) { if v === u then x else ctx (u) fi }

}

fun eval (ctx, expr) {
case expr of
Val (x) -> x

| Var (v) -> ctx (v)
| App (f, x) -> eval (ctx, f) (eval (ctx, x))
| Lam (v, b) ->

fun (x) { eval (extendContext (ctx, v, x), b) }
esac

}
fun eval0 (expr) { eval (emptyContext (), expr) }

var test = App (Lam (”x”, Var (”x”)), Val (”Hello!”)) ;
printf (”%s\n”, eval0 (test))
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λaMa: Functional Programming, State Monad

Since we have in λaMa first-class functions
support, sometimes it’s convenient to use FP
idioms like monads
For example, to implement backtracking in parser
it is convenient to use the state monad
So, there is an implementation of this monad in
the λaMa standard library1:
Also, we may notice utilization of the user-defined
infix operators feature of λaMa

import Fun ;

infix >>= before $ (m, k) {
fun (state) {

case m (state) of
[state, x] -> k (x) (state)

esac
}

}

fun pure (x) {
fun (state) { [state, x] }

}

1The code is slightly changed for a reader convenience
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Defects in λaMa Programs
fun size (xs) {

case xs of
{} -> 0

| _ : xs -> 1 + size (xs)
esac

}

-- ...

size (”123”)
(a) Simple defect

fun nextStep (x) { x + 1 }

-- ...

var myComputation = pure (1) >>= nextStep ;

-- ...

var initialState = 0 ;
myComputation (initialState) [1]

(b) Difficult defect

a) A string is passed instead of a list in “size”:
 Match failures are detected as soon as possible with detailed error messages
 The cause of a crash is located immediately next to the crash location

b) A programmer forgot to wrap a result of “nextStep” in “pure”:
 Calling non-callable values crashes with the “Segmentation fault” error
 The cause of a crash may be “across the code” from the crash location
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Static Analysis and Static Typing

Static analysis is a method to prevent some classes of
program defects before running the program (ahead-of-time)
A classical way to deal with defects like (b) is static typing
In various modern programming languages, optional explicit
type annotations were invented to allow static analysis
through static typing (PYTHON, TYPESCRiPT, etc.)
 Provides additional documentation
 Simplifies static analyzers
 Requires to change an existing code to use static analyzer on
 Complicates language syntax
 Distracts programmer

 Instead, we study static typing through full type inference,
that allows to analyze programs without changing them

Static Analisys

Static Typing

Type Inference
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Constraint-based Type Inference

Expression Constraint Inference Constraint Solver

Apply Substitution Type

Constraint

Type with holes
Substitution

Figure: Constraint-based type inference

Modern programming languages that support full type inference uses constraint-based
type inference
Currently, there are many frameworks that provides unified way to implement
constraint-based type inference algorithm for given type system and constraint solver
Thus, we need to develop the type system and the constraint solver
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λaMa: Data Shapes Classification

Value

Integer Reference

Container Closure

String Array S-expression
(a) Shapes of data in λaMa

The shapes of data:
Integer — integral value in bounds
[−230, 230 − 1]

String — array of ASCII characters
Array — array of arbitrary values
S-expression — array with associated
literal tag
Closure — first-order function
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Type System

T ::= Z | S | [T] | X (T, ..., T) t ... t X (T, ..., T)
| X | ∀X , ...,X . C ⇒ (T, ..., T) → T | µX . T

Legend:
X — type variables
and literal tags
T — types
C — constraints

Figure: Syntax of types

The forms of types:
Integer, String
Array , S-expression
Type variable , Function
Recursive type

S-expression types are composition of product and sum
types
Function types are generic (by “X , ...,X ”) and possible
specializations are constrained (by “C”)
We need to allow explicit recursive types to support
recursive data structures, since there aren’t any type
declarations in source code
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Type System: Examples
Obvious:

0 : Z
123 : Z
”123” : S
[] : [T] for any T
[1, 2, 3] : [Z]
One (Two, Three) : One(Two, Three)

One (Two, Three) : One(Two tA, Three tB t C) tD,
since S-expression types may include more that one constructor

But:
0 : T for any T, since “0” is used as null value in many cases
{} : T for any T, since “{}” is a syntactic sugar for “0”
{1, 2, 3} : cons(Z, cons(Z, cons(Z, T))) for any T, as in previous case
{1, 2, 3} : µα. cons(Z, α), since this is a general type of all lists of integers
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Constraint System

C ::= > | C ∧ C | Ind(T, T) | Call(T, T, ..., T, T) | SexpX (T, T, ..., T) | ...
Figure: Syntax of constraints

The forms of constraints:
>, C1 ∧ C2 — conjunction of constraints
Ind(T, S) — values of type T contains elements of type S; i. e. given x : T and idx : Z,
x [idx] : S
Call(T, S1, ..., Sn, S) — values of type T callable with arguments of types Si and result
have type S; i. e. given f : T and xi : Si, f (x1, ..., xn) : S
SexpX (T, S1, ..., Sn) — type T is S-expression type and one of it’s constructors have form
X (S1, ..., Sn); i. e. given xi : Si, X (x1, ..., xn) : T
... — other constraints that we don’t mention
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Constraint System: Examples

fun (x) { x } : ∀α. > ⇒ (α) → α

fun (xs, i, x) { xs [i] := x ; xs } : ∀α, β. Ind(α, β) ⇒ (α,Z, β) → α

fun (f, x) { f (x) } : ∀α, β, γ. Call(α, β, γ) ⇒ (α, β) → γ

fun (x) { Some (x) } : ∀α, β. SexpSome(α, β) ⇒ (β) → α
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Constraint Solver

We define binary relation “C1 ⊩ C2” that means “C1 implies C2”, in terms of natural
deduction
The job of constraint solver is to suggest for the given “C” a type substitution “σ” so that
“> ⊩ Cσ” satisfied, or state that it doesn’t exist

 Any constraint “C” has form “C1 ∧ C2 ∧ ... ∧ Cn”, where Ci is an atomic constraint
(constraint without conjunctions)

 If we consider atomic constraints as predicates over types, any constraint is just CNF in
first-order logic
So, we need a tool that could solve that CNF or state that there aren’t solutions
Here we meet relational programming
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Relational Programming

Relational programming (especially, MiNiKANREN):
a special case of logic programming without side effects
minimalistic embedded programming language (implementing as DSL library for existing
programming languages)
presented in The Reasoned Schemer [1]
implemented for many popular programming languages: SCHEME, OCAML, KOTLiN, etc.
have proven search completeness [2]
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MiNiKANREN: Terms
Term in logic programming is an expression of the following syntax:

t ::= X | C(t, ..., t),

where X — variable, C — tag

Examples of term:
α

None
Some(α)
Z — Peano number “0”
S(S(S(Z))) — Peano number “3”
Node(Leaf, α, Node(β, Z, Leaf))

Node

Leaf α Node

β Z Leaf
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MiNiKANREN: Goals

Goal in MiNiKANREN is a special case of logical expression:

g ::= > | ⊥ | t = t | P(t, ..., t) | g ∧ g | g ∨ g | ∃X . g,

where P — predicate, so we haven’t implication, negation and forall quantifier

Examples of goal:
α = β

α = A ∨ α = B
P (α) ∧Q(α, β)

α = None ∨ ∃β. α = Some(β)
∃β. α = S(β) — predicate “α ≥ 1” on Peano numbers
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MiNiKANREN: Definitions

Definition in MiNiKANREN is like definition in logic programming but with a goal on the
right-hand side:

P(X , ...,X ) ≡ g,

and the goal mustn’t has free variables except listed on the left-hand side

Examples of definition:
P ≡ >
Q(α, β) ≡ α = β ∨ ∃γ. β = S(γ) ∧Q(α, γ)

addo(α, β, γ) ≡ α = Z ∧ β = γ ∨ ∃α′, γ′. α = S(α′) ∧ γ = S(γ′) ∧ addo(α′, β, γ′) —
relation “α+ β = γ” on Peano numbers
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MiNiKANREN: Program

MiNiKANREN program is a list of relation definitions and a query (just a goal)
Unlike logic programming languages like PROLOG, definitions must be distinct by name
Program evaluation results in all possible substitutions of the query’s free variables, that
satisfy the query

Consider the program:
addo(α, β, γ) ≡ α = Z ∧ β = γ ∨ ∃α′, γ′. α = S(α′) ∧ γ = S(γ′) ∧ addo(α′, β, γ′)

Query: addo(S(Z), S(S(S(Z))), ξ)
1 S(Z) = Z ∧ S(S(S(Z))) = ξ ∨ ∃α′, γ′. S(Z) = S(α′) ∧ ξ = S(γ′) ∧ addo(α′, S(S(S(Z))), γ′)
2 S(Z) = S(α′) ∧ ξ = S(γ′) ∧ addo(α′, S(S(S(Z))), γ′)
3 addo(Z, S(S(S(Z))), γ′); ξ 7→ S(γ′)
4 Z = Z ∧ S(S(S(Z))) = γ′ ∨ ∃α′, γ′′. Z = S(α′) ∧ γ′ = S(γ′′) ∧ addo(α′, S(S(S(Z))), γ′′); ξ 7→

S(γ′)
5 S(S(S(Z))) = γ′; ξ 7→ S(γ′)
6 >; ξ 7→ S(S(S(S(Z))))
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Program evaluation results in all possible substitutions of the query’s free variables, that
satisfy the query
Consider the program:
addo(α, β, γ) ≡ α = Z ∧ β = γ ∨ ∃α′, γ′. α = S(α′) ∧ γ = S(γ′) ∧ addo(α′, β, γ′)

Query: addo(S(Z), S(S(S(Z))), ξ)
1 S(Z) = Z ∧ S(S(S(Z))) = ξ ∨ ∃α′, γ′. S(Z) = S(α′) ∧ ξ = S(γ′) ∧ addo(α′, S(S(S(Z))), γ′)
2 S(Z) = S(α′) ∧ ξ = S(γ′) ∧ addo(α′, S(S(S(Z))), γ′)
3 addo(Z, S(S(S(Z))), γ′); ξ 7→ S(γ′)
4 Z = Z ∧ S(S(S(Z))) = γ′ ∨ ∃α′, γ′′. Z = S(α′) ∧ γ′ = S(γ′′) ∧ addo(α′, S(S(S(Z))), γ′′); ξ 7→

S(γ′)
5 S(S(S(Z))) = γ′; ξ 7→ S(γ′)
6 >; ξ 7→ S(S(S(S(Z))))
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Verifier-to-Solver Approach

Given problem:
We can implement relational program “P (x)” that verifies problem solution “x” — verifier

 Running relational verifier “P (ξ)” on free variable “ξ” gives solution “ξ 7→ x” — solver
 Moreover, it gives the all possible solutions due to search completeness

 Unfortunately, relational program evaluation may hangs in practice due to exponential
search complexity
...or simply, due to specific problem undecidability
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Verifier-to-Solver: Application

 We may implement relational verifier for “⊩”
 “⊩” implemented directly in MiNiKANREN works slowly and don’t answer at all when

proper substitution isn’t exists
 Also, vanilla MiNiKANREN implementations doesn’t allow to deal with recursive terms,

that are needed to deal with recursive types
 Wildcard logic variables [3]:

Most of MiNiKANREN implementations supports inequality as a primitive
Wildcard variables allows to say “∀ψ. ξ 6= Cons(ψ)” instead of “∃ψ. ξ 6= Cons(ψ)”

 Non-relational optimizations to specialize relational implementation in the constraint
solving problem:

Term shape check — non-relational primitives that give an ability to introspect current
evaluation state and direct evaluator manually
Occurs hooks — an ability to hook an occurs check to permit unnatural recursive equations
solving while unification
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Term Shape Check

let rec contains x xs = ocanren {
fresh x’, xs’ in xs == x’::xs’ &

{ x == x’
| x =/= x’ & contains x xs’
}

}

let rec contains x xs = ocanren
{ is_var xs &
{ fresh xs’ in xs == x::xs’ }

| is_not_var xs &
fresh x’, xs’ in xs == x’::xs’ &

{ x == x’
| x =/= x’ & contains x xs’
}

}

? How to implement containso for sets encoded as lists?
 Trivial implementation will generate a lot of syntactically different, but semantically

identical lists
 With the shape checking we are able to enforce a single solution in the case when the tail

of list is free
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Search Space of Function Types

? How to solve a constraint of the form “Call(T, S1, ..., Sn, S)” when “T” is a free logic
variable?
The only form that “T” could be is: ∀X1, ...,Xm. C ⇒ (T1, ..., Tn) → T′
In the implementation: TArrow (fxs, fc, fts, ft)

 A straightforward implementation will generate the variety of function types with all
possible values of “fxs” and “fc”

 Assumption: all needed function types come from relational query, i. e. we don’t need to
generate them

 Just enforce the simplest possible type in the case when “T” is free:
∀. > ⇒ (S1, ..., Sn) → S

 This approach may cut off some solutions when “Call” is being solved too early
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Solving Ordering

Solving constraints left-to-right works poorly
 Let’s support all planned to solve constraints and pick them one-by-one in a good order

As a good order, we use picking a minimum by relational heuristic comparator, that
inspects shapes (using “is_var”) of constraint arguments
For example, constraints of form “Call(T, S1, ..., Sn, S)” with logic variable in place of “T”
are being picked last

 In addition to performance gain, we have fixed a problem with early solution that was
mentioned before
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Occurs Hooks

Unify

Extend substitution

Failure

Equation

Solution

Recursion

(a) Without occurs hooks

Unify

Extend substitution

Occurs hook

Equation

Solution

Recursion

Alternative
solution

(b) With occurs hooks

Occurs hook is a callback that called when a recursive equation occurred in unification:
ξ = Term(ξ)

A hook returns an alternative right side of equation, so the new equation will be:
ξ = hook(ξ, Term(ξ))
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Evaluation

We used the λaMa compiler tests
 The majority of tests were successfully typechecked
 S-expression types are slowing down performance exponentionally of the number of Sexp

constraints
 Other constraints aren’t so slow
 Occurs hooks gives an ability to deal with recursive types, but results not as good as
possible, e.g.:

Good type: µα. Nil t Cons(Z, α)
Produced type: Nil t Cons(Z, µα. Nil t Cons(Z, α))
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Evaluation

12345678 10 1315171921 26 30 34 46 495153 61

0.015

0.032

0.063
0.11
0.2
0.3
0.56

1.67

20.4

Figure: Elapsed time by the number of constraints
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Evaluation: S-expression Types

Example:
SexpA(x,Z)∧ SexpB(y, S)∧ SexpA(z,Z)
We have m = 3 different S-expression
types x, y, z and n = 2 different
constructors A(Z), B(S)
Number of branches is O(nm)

As a result, we have about 8 branches
only from this constraints
It explains the high time consumption on
the previous slide

σ0 ∅

SexpA(x,Z)

σ1 x 7→ A(Z) x 7→ A(Z) t x′

SexpB(y, S)

σ2 y 7→ B(S) y 7→ B(S) t y′

SexpA(z,Z)

σ3 z 7→ A(Z) z 7→ A(Z) t z′
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Evaluation: S-expression Types
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Figure: Elapsed time by the number of Sexp branches
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Results

 Relational programming is applicable to constraint-based type inference
 To specialize relational solvers we may inspect current state (is_var/is_not_var)
 Recursive terms may be partially emulated using non-relational hooks over “occurs check”
 This results are preliminary that need more research

Questions?

More technical details are available in [4]
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