Interpretable Reinforcement Learning with Multilevel Subgoal Discovery

Alexander Demin, Denis Ponomaryov

Ershov Institute of Informatics Systems, Novosibirsk, Russia
alexandredemin @yandex.ru, ponom@iis.nsk.su

Abstract

We propose a novel Reinforcement Learning model for dis-
crete environments, which is inherently interpretable and sup-
ports the discovery of arbitrary deep subgoal hierarchies. In
the model, an agent learns information about environment in
the form of probabilistic rules, while policies for (sub)goals
are learned as combinations thereof. No reward function is re-
quired for learning; an agent only needs to be given a primary
goal to achieve. Subgoals of a goal G from the hierarchy
are computed as descriptions of states, which if previously
achieved increase the total efficiency of the available policies
for G. These state descriptions are introduced as new sensor
predicates into the rule language of the agent, which allows
for sensing important intermediate states and for updating en-
vironment rules and policies accordingly.

1 Introduction

Hierarchical Reinforcement Learning (HRL) provides a so-
lution to the problem of sample efficiency by the employ-
ment of hierarchical policy learning, which gives a clear ad-
vantage in comparison to “flat” RL models. The ability to
discover subgoal hierarchies allows the agent for interacting
with the environment in a more targeted way, which gives an
increased learning speed and performance.

Most of the modern end-to-end HRL approaches support
the discovery of subgoal hierarchies of a fixed depth. Only
some of them do not have this limitation (see Table 2 in (Pa-
teria et al. 2021)), but they provide models, which are not
inherently interpretable.

The development of the Deep Learning has greatly broad-
ened the variety of environments and tasks approached by
RL, but the problem of interpretabilty of the novel RL mod-
els became evident. Typically a subsymbolic RL model is
augmented with semantic entities, which make the model
behavior more transparent, or it is provided with a glass-box
symbolic model, which approximates its behavior. In the re-
cent years, quite a few novel RL approaches have been pro-
posed, which are based on inherently interpretable models
(Puiutta and Veith 2020).

Less attention in the modern RL is paid to tasks for dis-
crete environments. However, many non-trivial tasks for RL
originate in business and industry, where interpretable mod-
els supporting subgoal discovery are required. For example,
a whole bunch of tasks is concerned with customer inter-

action and sales funnel operation, in which it is required to
identify the key steps (subgoals) of interaction that lead cus-
tomers to a purchase in order to guide them on relevant tra-
jectories. Although data preparation and simulation for such
environments are separate important problems, we believe
that RL technologies for discrete state and action spaces
should be further advanced and benchmarked in model en-
vironments.

In this paper, we propose a novel RL model for discrete
environments, which is inherently interpretable and supports
the discovery of arbitrary deep subgoal hierarchies. In our
model, an agent learns information about environment in
the form of probabilistic rules, while policies for (sub)goals
are learned as combinations thereof. No reward function
is required for learning; initially an agent only needs to be
given a primary goal to achieve. Subgoals of a goal G from
the hierarchy are computed as descriptions of states, which,
if previously achieved, increase the total efficiency of the
available policies for GG. These state descriptions are intro-
duced as invented sensor predicates into the rule language
of the agent, which allows for sensing important intermedi-
ate states and for updating environment rules and policies
accordingly. The model is implemented as a combination of
environment rule, policy, and subgoal learning procedures,
which are executed online in an interleaving fashion.

We evaluate our model on a Item Picking Task for grid
world environments, in which items of types 1, ..., k, for
k > 1, are randomly distributed, with k& being a parame-
ter of the environment. An agent navigating in the envi-
ronment can pick up an item of each type only once. An
item of type 4, for 1 < ¢ < k, can be picked up if either
1 = 1, or the agent has previously picked up some item of
type ¢ — 1. The primary goal set to the agent is to pick up
an item of type k. This setting is an abstraction of several
prominent subgoal discovery tasks for grid world domains
(e.g., the Taxi Domain, in which an agent must first pick
up a passenger and then reach a certain destination, or the
Multiple-Room Domain, in which an agent must pass a se-
quence of rooms/doorways in order to access a goal room)
and it is general enough for testing the discovery of subgoals
of various depths.

In order to provide a ground for examples in the paper,
we begin the exposition with a description of a particular
instance of the Item Picking Task. Then in Section 3 we de-

Figure 1: Agent’s sensor field

scribe the general architecture of our RL model and consider
its components in detail. We provide preliminary experi-
mental results on the performance of the model in Section 4
and we compare our work with the most relevant approaches
known in the literature in Section 5. We conclude with a
discussion of our approach and topics for future research in
Section 6.

2 Example Environment

Reinforcement Learning models for discrete environments
are typically benchmarked on grid world domains, in which
an agent must learn how to achieve a certain goal state.
As an example environment in the paper we consider a 2-
dimensional grid of a fixed size, on which items of types
1,...,k, for K > 1, are randomly distributed. Every time
an agent has a choice of three possible actions: turn —
left, turn—right, move. While moving in the environment
the agent picks up items according to the linear order on
their types: an item of type i, for 1 < ¢ < k, is picked up iff
the agent has reached the position of this item and it has not
previously picked up an item of type ¢, and either ¢ = 1, or
the agent has previously picked up an item of type ¢ — 1. The
primary goal set to the agent is to pick up an item of type k.
Thus, the item types 1, ..., K — 1 correspond to the (sub)goals
that the agent must consequently achieve on the way to the
primary goal.

The agent has ten sensors in total. Nine of them inform
about the types of the items located in the cells near the
agent (e.g., Right(type3), see Figure 1), or they indicate
empty, if the corresponding cells are not occupied by any
item (e.g., Right(empty)), or wall, respectively, if there is
a grid boundary. One more sensor named PickedUp indi-
cates whether the agent has picked up some item at current
position. Thus, the agent is able to sense the fact of pick-
ing up something, but it cannot detect the type of an item it
has just picked up, which in general makes the Item Picking
Task more complex for the agent.

3 Model Architecture

Our model is based on a combination of four modules, which
are depicted on Figure 2. Initially, an agent is given a pri-
mary goal as a state description in terms of sensor predicates.
For example, Center(type3), PickedUp describes states,
in which the agent has reached an picked up an item of type

3. After initialization, the agent performs a number N of
random actions in the environment. State transitions made
by the agent are recorded in a replay buffer. Every round of
N actions is followed by the activation of the Environment
Learning module, which learns the effects of agent’s actions
in the form of (probabilistic) rules. For instance, a typical
rule for our example environment could look like

Right(typel), turn—right — Front(typel) e

which means that turning right in the situation when an item
of type 1 is located to the right of the agent results in the
situation when the item is in front of it.

Environment Learning is followed by the activation
of the Policy Learning module, which learns policies
for all (sub)goal states as (probabilistic) rule-like expres-
sions that represent state-action-state trajectories leading
to (sub)goals. Policies and environment rules are ranked
by the estimation of their probability on the replay buffer.
For example, one of the highly ranked policies for a goal
state Center(type3), PickedUp in our example environ-
ment would look as

Right(type3), HasType2 {turn—right}
Front(type3), HasType2 {move} (2)
Center(type3), PickedUp

where HasType?2 is a sensor predicate, which is true when-
ever the agent has previously picked up an item of type 2.
These auxiliary predicates are “invented” by the Subgoal
Discovery Module launched after each round of M actions
(where M > N). For example, HasType2 would indicate
that the agent has previously achieved the (subgoal) state
Center(type2), PickedUp. Note that a variant of the pol-
icy above without this predicate would look as

Right(type3), {turn—right} Front(type3) {move}
Center(type3), PickedUp

Intuitively, this policy would have a low rank, since the
agent is not able to pick up an item of type 3 with-
out having previously picked up one of type 2. Thus,
many instances of the trajectory Right(type3){turn —
right } Front(type3){move} would not result in the state
Center(type3), PickedUp. The idea behind the subgoal
discovery in our model is that updating policies with pred-
icates for important intermediate states should give policies
with an increased rank on average. Subgoal Discovery is
followed by the activation of the above mentioned learning
modules, which recompute environmental rules and policies
in the language with the invented predicates.

Finally, the Action Planning Module is used to decide on
the next action depending on the policies applicable in the
current situation and on the previously achieved subgoals.
The module selects one of the highly ranked policies for the
lowest non-achieved (sub)goal in the hierarchy, which is ap-
plicable in the current state (Figure 3). If there is no such
policy, a random action is performed. Otherwise, the pri-
mary action from the policy is executed and the action plan-
ning process repeats. Thus, the agent does not have to make
a complete sequence of actions from a single policy suitable
in the current state; instead it can dynamically combine ac-
tions from different policies.

In the next subsections we describe the components of our
model in detail.

3

Replay Buffer
/ ﬂ Frequency
Fitness-based

selection
Environment : ; MaxFqFitness
Policy Learning)
Learning Y £ Policies
Fitness-
ﬂ / ﬂ based
selection
Environment MaxFitness Subgoal
Rules Policies Discovery
Action Planning Subgoal
Hierarchy
& J

Figure 2: Data flow flow between modules of the model

3.1 Environment Learning

In our model, an agent learns the effects of actions in the
form of probabilistic rules given in the following language.
The alphabet of the language is defined as the disjoint union
of sets SensUUg UAct, where Sens is a set of sensor predi-
cate names, one for each combination of a sensor and a valid
indication, Ug is an infinite set of names for (sub)goal pred-
icates, and Act a set of action predicate names, one for each
agent’s possible action. Although the set Uy is infinite, each
time the agent has only a finite subset of (sub)goal predi-
cates SubGoals C Ug at its disposal. Initially SubGoals is
a singleton set, which consists of a predicate name Gprime,
a notation for the primary goal.

All predicates are nullary and the rule language is inher-
ently propositional. However, in our examples we use short-
cuts like P(c) (e.g., Right(type3)), where P is a sensor
name and c is one of valid indications of the sensor. An
agent’s state is a finite subset of Sens U SubGoals. We de-
note the primary goal state as Spime. In the following, we
identify a state { Py, ..., P,}, n > 0, with its syntactic rep-
resentation as a (possibly empty) string P, ..., P, and for a
state S, we denote by |.S| the number of predicates in S.

Definition 1 (Environment Rule). An environment rule is an
expression of the form

Sl,A — Sg (4)

where S1, Sy are non-empty states and A € Act.

For a rule R of the form above we call S; and S5 the
premise and conclusion of R, respectively, and we use no-
tations pre(R) and con(R). A refinement of a rule R is an
environment rule R’ such that con(R’) = con(R), pre(R) C
pre(R’), and |pre(R’)| = |pre(R)| + 1.

Let (2, <) be a linearly ordered set. We slightly abuse
the standard mathematical terminology an call a subset
{71, ..e;Tn} Of Q, where n > 1, a chain if for all i =
1,...,n — 1 it holds that 7, < 7;41 and for any 7 € Q if
T; 2T =< Ti41 then 7 = 75, for some j € {7, + 1}.
Definition 2 (Replay Buffer). A replay buffer is a triple
(Q,C,), where C is a partial order on SubGoals, with

N
e‘*{\osw%
@ﬁ \}»“‘\
Q e
S G NO
&,]
N4
3
e Gy
g/ s ul NO

NO

YES Primary goal

achieved?

Primary Action
of a Policy

Random
Action

N random
actions

Init

Figure 3: Control flow between modules of the model. Here G C
... £ Gy is an example subgoal hierarchy and “R&P Learning”
stands for Environment Rule and Policy Learning

Gprime being the supremum, m : SubGoals 28ens j¢
a mapping such that 7(Gprime) = Sprime, and Q is a fi-
nite linearly ordered (wrt a relation <) set of tuples of the
form (Spre, A, Spost), where A € Act and Spre, Spost are
non-empty states, such that for any chain {r,7'} of tuples
T = (Spres A, Spost)s T = (Spres A's Spost) from it holds
that Spost = S,

Intuitively, a replay buffer serves as a history of agent’s
transitions provided with the actual subgoal hierarchy C and
an intepretation of subgoal predicates (in terms of states) via
the mapping 7. In the following, we omit references to the
set {2 and say simply that a tuple 7 is from a replay buffer
B. We note that the notion of replay buffer could be refor-
mulated in more strict mathematical terms as a many-sorted
algebra.

A predicate S C Sens U Act is true on a tuple T =
(Spre, A, Spost) from a replay buffer B if S € Sy U {A}.
A subgoal predicate G € SubGoals is true on 7 if there is a

re*

tuple 77 = (S, AT, S] ;) from B such that
e

« 7(G)C 8]

ost
o AY,SY) and subgoal G, if
<7t <7and G C G then n(G') € S

post

« for any tuple 7+ = (S

Informally, the last condition means that the state corre-
sponding to G is achieved in some previous situation 77 < 7
in the history and the achievement of subgoals is reset by
higher goals.

A set S C Sens U SubGoals U Act holds on a tuple T
from B (in symbols 7 |= S) if every predicate from S is true
on7. Arule R = 51, A — Sy holds on a replay buffer
B with probability p if prmconc/prm = p, where prm is
the number of tuples from B, on which S; U { A} holds, and

prmconc is the number of tuples 7 = (Spre, A, Spost) from
B such that S; U {A} holds on 7, S2 N Sens C Sy, and
m(G) C Spost, for all G € Sy N SubGoals. Intuitively,
p is the frequency probability of the event con(R) condi-
tioned on the event pre(R) in the history given by B pro-
vided that every subgoal predicate G from the conclusion of
R is viewed as the event of the achievement of 7(G). In the
paper, we use the partial function p, which for a rule R and
a replay buffer B gives the probability of R on B as above,
provided prm # 0.

Definition 3 (Probabilistic Law). A rule R is a probabilis-
tic law wrt a replay buffer B if p(R,B) is defined and
p(R',B) < p(R,B), for any rule R' such that pre(R') C
pre(R).

For the example environment from Section 2, the rule
R = Right(type3), turn — right — Front(type3) has
probability 1 on any replay buffer B, whenever p(R, B) is
defined. The value of p(R, B) is undefined in case the agent
did not experience the state Right(type3), or did not make
a turn to the right from this state. Otherwise p(R,B) = 1,
because the environment is non-stochastic and thus, turning
right in the situation, when an item is located to the right of
the agent always brings it to the situation, in which the item
is located in front of it. If p(R, B) = 1 then it holds that R
is a probabilistic law.

By definition, probabilistic laws with a probability value
p are exactly those rules, which by inclusion of premises, are
the shortest ones among all the rules having a probability at
least p. Thus, the concept of a probabilistic law in our model
captures the balance between the size and “informativeness”
of environment descriptions, the topic discussed broadly in
AL It is known that searching for the shortest implications
true (with probability 1) on a given data is a computation-
ally hard problem. There may exist exponentially many such
shortest implications (Theorem 1 in (Kuznetsov 2004)) and
the problem to decide whether there is one of a given size is
NP-complete (Gunopulos et al. 2003).

The environment learning procedure in our model is im-
plemented as a heuristic-based enumeration of rules by re-
finement, with the selection of those ones, which satisfy the
properties of a probabilistic law. The procedure is given by
Algorithm 1.

The heuristic in the algorithm implies that after base enu-
meration up to depth d (which is one of the hyperparameters
of our model) a rule is selected as an additional candidate
member for the resulting set of laws only if it refines one of
the probabilistic laws R obtained by base enumeration and
has a strictly higher probability than R. Monotonicity in this
sense does not hold in general. It can be the case that every
refinement of a rule R has a lower probability than R, but
there is a rule R’ obtained by extending the premise of R,
e.g., with two predicates, such that R’ is a probabilistic law.
Our algorithm can find the law R’ only if the parameter d is
greater than |pre(R')|.

The assumption behind the heuristic is that state descrip-
tions, which are most informative for learning the environ-
ment, usually involve a moderate number of sensor predi-
cates. Hence, the majority of probabilistic laws could be

Algorithm 1: Environment Rule Learning

Input : Replay buffer B, a non-empty state .S
Parameter: Base enumeration depth d > 1
Output : A set of prob. laws wrt 5 with conclusion S
begin
1 RULES :=
{R | Risarule, with con(R) = S, |pre(R)| < d}
/* environment rule enumeration x/
2 LWS := {R € RULES | R is a probabilistic law}
3 2Refine :=
{R € LWS | =3R’' € LWS s.t. pre(R) C pre(R’)}
4 while 2Re fine # & do

5 Let R€2Refine; 2Refine := 2Refine\{R}
6 foreach refinement R’ of R do
if R’ is a probabilistic law then
7 2Refine := 2Refine U{R'}
8 L LWS :=LWSU{R'}

9 return LWS

found by the algorithm with a small parameter d. By relying
further on monotonicity, the algorithm tries to find proba-
bilistic laws with higher probabilities. This is implemented
by computing refinements of probabilistic laws obtained by
base enumeration incrementally as long as this gives new
laws.

Besides d, an implementation of Algorithm 1 employs
the following hyperparameters for fine tuning. To exclude
laws from the output, which have a low probability or sta-
tistical significance (on the replay buffer), the parameters
Probability-Threshold and Confidence-Threshold are used,
respectively. Probability-Gain-Threshold is used to exclude
those laws from further refinement, for which the last re-
finement step has given a low probability gain. Finally, the
Max-Sensor-Predicates parameter restricts the search to the
rules with a given maximal number of sensor predicates in
the premise. We comment on the hyperparameter settings
for experiments in Section 4.

3.2 Policy Learning

Definition 4 (Policy). A policy P for a non-empty state G
is an expression of the form

S1{4:1}...5, {4} G)

where n > 1 and for all i = 1,...n, A; € Act is
an action predicate and S; a non-empty state such that
S; N SubGoals = S, for a (possibly empty) set S.

Intuitively, the policy gives a state-action-state trajectory
leading to state G. The last condition in the definition im-
plies that subgoals are never lost along the way to GG and they
cannot be suddenly achieved at some point of the trajectory.
Thus, the policy describes only how the target state G could
be achieved, while the ways of how all the required subgoals
could be achieved are to be given by separate policies.

For a policy P of the form above the set S; is called the
policy premise (we abuse notation and write pre(P) to de-
note the premise of P) and A; is called the primary action

of P. The number n is called the length of the policy and it
is denoted as len(P).

Definition 5 (Policy Fitness). Given a replay buffer B, the
fitness of a policy P = Sy {A1}...Sn {An} Sny1 wrt B
(in symbols fitness(P,B)) is the product of probabilities
p(Si, A = Sit1, B), foralli = 1,...,n, if each of them is
defined. Otherwise the fitness of P is undefined.

Let P = S {A1}...S, {4,} G be a policy
and R = Sp,Ap — Si1 an environment rule such
that Sy N SubGoals = S; N SubGoals. A refine-

ment of P with R denoted as REFN(P, R) is the policy
So {Ao} S1 {A1}... S, {An} G. If P and P’ are poli-
cies for the same state then P’ is called a variant of P if
pre(P’) C pre(P) and P # P’. That is, a variant policy
provides an alternative trajectory to achieve the same target
state from the same or a more general situation.

For a replay buffer 5 and a state S, let Algo!(B, S) denote
the set of probabilistic laws obtained by Algorithm 1 on the
input' B,S. We now describe a procedure for computing
a set of policies for a given state G. The procedure builds
every policy expression backwards, starting from G, by in-
cremental refinement with probabilistic laws computed by
Algorithm 1. A policy obtained this way may thus represent
a trajectory that has not been seen as a whole by the agent
before. Only particular transitions (given by probabilistic
laws) could have been experienced by the agent. This en-
ables the agent to “reason” about unseen trajectories, which
contributes to the sample efficiency of our model.

The policy learning algorithm is given below. By the def-
inition of the fitness function, longer policies get lower fit-
ness values, therefore the algorithm computes strong poli-
cies, i.e. those, which have the greatest fitness value among
all variants.

Algorithm 2: Policy Learning

Input : Replay buffer B, non-empty state G
Output : A set of policies for G
begin
1 LWS :=Algol(B, G)
2 Let POL := {Spre {A} G | Spre, A — G €LWS }
/* initialize a set of policies x/

3 Let 2Process := POL; RPol := @

4 while 2 Process # @ do
5 for policy € 2Process do
6 LWS := filterbyGoals(Algo! (B, pre(policy)))
7 RPol := RPol U

{REFN(policy, R) | R € LWS}

8 2Process := getStrong(RPol, POL,)
9 POL :=POL U 2Process

10 return POL

An implementation of Algorithm 2 employs two hyper-
parameters for fine-tuning: the Maximal-Policy-Length pa-
rameter is used to restrict the search only to policies of a

!we assume that all hyperparameters for algorithms are fixed
globally.

Function filterbyGoals(rules)

1 forall R €rules do
2 if pre(R) N SubGoals # con(R) N SubGoals then
3 | rules := rules\{ R}

4 return rules

Function getStrong(policies, writpolicies, r Buf fer)

1 foreach P € policies do

2 if I variant P’ € wrtpolicies of P s.t.
fitness(P, rBuffer) < fitness(P’, rBuffer) and
len(P') < len(P) then

3 | policies := policies \ { P}

4 return policies

fixed maximal length and Fitness-Gain-Threshold prevents
further refinement of those policies, whose fitness is below
a given value.

3.3 Subgoal Discovery

Recall policy (3) for our example environment,
which is composed of probabilistic laws R; =
Right(type3), turn—right — Front(type3) and Ry =
Front(type3), move — Center(type3), PickedUp.
Let us denote this policy as P. Even if the rule R; has
probability 1 (on a replay buffer B), the fitness of P may
be quite low if so is the probability of Ry (i.e., if only in
few situations in the history the agent was able to pick up
an item of type 3 in front of it). However, if we consider
only those situations, when it is known that the agent has
previously picked up an item of type 2 then the picture
becomes different. If an item of type 3 happens to be in
front of the agent in one of these situations and the action
move is made, then with high probability the agent picks
up this item.

If the alphabet SubGoals is extended with
a predicate named, e.g., HasType2, which is
true whenever the agent has previously achieved
the state Center(type2), PickedUp, then we
can consider an wupdate of the rule Rs as
R} = Front(typed), HasType2, move —
Center(type3), PickedUp, which is now (by an argument
as in Section 3.1) a candidate for being a probabilistic law.

Similarly, we can consider an update of R; as
R| = Right(type3d), HasType2, turn — right —
Front(type3), HasType2 obtained by adding the “in-
vented” predicate to the premise and conclusion of R?;.

Finally, consider an update P’ of the policy P as (2) in
Section 3. If the probability of the both rules R} and Rj is
1, then so is the fitness of P, i.e., P gives the most plausible
trajectory to achieve the goal state G = {Center(type3),
PickedUp} from the state {Right(type3), HasType2},
where HasType2 is a predicate for the subgoal state
{Center(type2), PickedUp} of G.

The idea behind the subgoal discovery in our model is that
updating policies for a goal G with the “invented” subgoal

predicates as above should provide policies, which more
probably lead to G, than the original ones. Given a re-
play buffer B, the subgoal states for a state G are searched
as combinations of sensor predicates, which are subsets of
states visited by the agent. A discovered subgoal state S gets
a fresh predicate name P from U \ SubGoals as a shortcut,
the set SubGoals is extended with P, and the value of the
interpretation function 7 for P is defined as S.

Let us note however that the policy P (and hence,
P’ in our example) may represent a trajectory that the
agent has never experienced, i.e., there may exist separate
tuples 7 = ({Right(type3), HasType2}, turn —
right, {Front(type3), HasType2}) and 71’ =
({Front(type3), HasType2}, move, {Center(type3),
PickedUp}) in the replay buffer, but no chain {r,7'}.
Therefore, to estimate the potential increase of the efficiency
of policies after an update with a candidate subgoal, we
take into account only those policies, which correspond
to trajectories passed by the agent. For this, we introduce
a frequency probability measure, called frequency fitness,
which indicates for a policy S1{A1}...S.,{4.} G,
n > 1, how often the agent achieved the goal state G by
following the trajectory S1{A1}...Sn, {An}.

Let B be areplay bufferand P = Sy {41}...5, {A,} G
apolicy, where n > 1. A tuple 7y is called a (possible) start-
ing point of P in B if there is a chain of tuples {71,..,7,}
from B such that 7; = S; U{A;}, foralli =1,..,n. A tuple
Tn, = {Spre, An, Spost) from B is called a (possible) ending
point of P in B if there is a chain {1, ..,7,} in B, which
satisfies the above condition, where 7, = (Spre, An, Spost)
is a tuple such that GNSens C Sy and 7(S) C Spost, for
any S € G N SubGoals.

Definition 6 (Frequency Fitness). For a policy P and a re-
play buffer B, the frequency fitness of P wrt B (denoted as
fqfitness(P, B)) is defined as E/S if S # 0, where E
and S is the number of ending and starting points of P in B,
respectively, and it is undefined otherwise.

For a replay buffer B and a state G, let
Algo2(B,G,fqfitness) be the set of rules computed
by Algorithm 2, which employs the frequency fitness in-
stead of the original fitness measure. The procedure for the
discovery of subgoals for a state G is given by Algorithm 3.

For every tuple 7 witnessing the achievement
of (G, the algorithm selects those policies from
Algo2(B,G,fqfitness) with the highest frequency
fitness, for which 7 is an ending point. Then the family of
the best policies computed for all witness tuples is taken
as an “aggregate” policy and its frequency fitness (function
AvgFgFitness given below) is estimated before and after
an update with a candidate subgoal state. Those states, wrt
which the fitness gain is greater or equal a certain threshold
B (which is a hyperparameter), are taken as subgoals of G
and are introduced as fresh subgoal predicate names into
the language of the agent.

3.4 Action Planning

For a (subgoal) state G, let Algo2(B,G) denote the set of
policies for G computed by Algorithm 2. The action plan-

Algorithm 3: Subgoal Discovery

Input : Replay buffer B and G € SubGoals
Parameter: Base fitness gain (3
QOutput : An update of B and SubGoals
begin
1 Let POL := Algo2(B, G, fqfitness)
2 Let BESTPOL := @
3 forall 7 = (Spre, A, Spost) from B s.t. 71(G) C Spost
do
4 Let P :={p € POL | 7 is an ending point of p}
5 BESTPOL:=BESTPOLU{pe P, | -3p'€
P: s.t fqfitness(p,B) <fqfitness(p’,B)}

6 if BESTPOL = & then
7 return 3, SubGoals
be found =/

8 forall S C Sens s.t. S holds on a tuple from B do

/+ no subgoal can

9 if —3Ps € SubGoals s.t. w(Ps) = S and
Ps C G then
10 Let Ps € Ug \ SubGoals; 7(Ps) :=S;
SubGoals := SubGoals U {Ps}
/* invented predicate for S */
11 Let UPDPOL := o
12 forall S1{A.}...S.{An} G € BESTPOL
do
13 UPDPOL :=UPDPOL U
L {S1,Ps {A1}...5n, Ps {An} G}
14 if AvgFqFitness(UPDPOL,B)-
AvgFqgFitness(BESTPOL, B) >
then
15 C:=C U{Ps,G} /x inserted Ps
L into subgoal hierarchy =/
16 else
17 SubGoals := SubGoals \ {Ps}
L /x removed useless Ps */

18 | return B, SubGoals

Function AvgFqFitness(pol, r Buf)

1 s:=no. of 7 s.t. Ip € pol (7 is a start. point of p in r Buf)
2 e:=no. of 7 s.t. Ip€ pol(7 is an end. point of p in r Buf)
3 return 0 if s = 0 or /s, otherwise

ning algorithm given as a function below essentially makes
ranking of the available policies for G depending on the cur-
rent state of the agent (the truth values of the sensor and
subgoal predicates) and the ranking of policies for subgoals
of G. The procedure either outputs a random action (in case
there is no policy applicable in the current state), or the pri-
mary action of the best policy for G if all subgoals of GG are
achieved, or the primary action of a policy for a minimal
(wrt C) non-achieved subgoal of G.

4 Preliminary Experimental Results

For experiments we used an implementation of the environ-
ment for the Item Picking task introduced in Section 2 on
a grid of dimension 25x25. The environment was provided

Function Action Planning((sub)goal state G, replay
buffer B)

1 LetisRandom :=true /*+ random action flag =/
2 Let curstate be the maximal tuple wrt < in B

/* current situation =/
3 Let BESTPOL := getBestPol(G, curstate, B)

4 while BESTPOL # @ do

5 Let P € BESTPOL /* non-deterministic
choice =/

¢ | BESTPOL:= BESTPOL\ {P}

7 if Rank(P, curstate, B) # 0 then

8 subG := pre(P) N SubGoals /x subgoals
of G in policy P x/

9 if curstate = subG then

10 | return (primary action of P, —is Random,)

1 Let S € subG s.t. curstate = S
/* non-deterministic choice x/

12 Let (a, israndm) := Action Planning(S, B)

13 if ~israndm then

14 | return (a, false)

15 return (random action from Act, isRandom) /* no

policy applicable in the curr.state =/

Function getBestPol(S, curstate, B)
1 Let POL := Algo2(B, S)
2 return {P € POL | VP’ € POL
Rank(P, curstate, B) > Rank(P’, curstate, B)}

with the feature that each time an agent picked up some item
an item of the same type appeared at a random non-occupied
position on the grid. To support continuous learning, the
“semantics” of the subgoal predicates was modified in such
a way that as soon as the agent achieved the primary goal,
i.e., picked up an item of the maximal type k, all the subgoal
predicates became false. The fact of the achievement of an
item of the maximal type was recorded in a primary-goal-
counter and then the agent was set to achieve the primary
goal again. In the experiments, the agent performance was
measured in environments with & = 1,2, 3 by the number
of the primary goals achieved in a course of 1000 actions.
The hyperparameters of the algorithms were set as follows.
For Algorithm 1: base enumeration depth d=3, Probability-
Threshold=0.1, Confidence-Threshold=0.9, Probability-
Gain-Threshold=0.1, Max-Sensor-Predicates=1. For
Algorithm 2: Maximal-Policy-Length=4, Fitness-Gain-
Threshold=0.5. For Algorithm 3, the base fitness gain
parameter [was set to 0.2.

In the experiment for £ = 1, the number N of initial ran-
dom actions was equal to 100 and for & = 2, 3 it was set to
2000. The upper bound on the number of actions was 10000
in every experiment. Each of the modules of our model (See
Figure 2) was initiated every N steps. To smooth the ef-
fects of random item distribution in the environment we av-
eraged the performance measurement on ten runs in each
experiment. Figure 4 presents experimental results for the

Function Rank(policy, curstate, B)

1 if curstate [pre(policy) \ SubGoals then
2 return 0 /* policy not applicable in
the current situation =/

3 Let subG := pre(policy) N SubGoals

4 if curstate = subG then

5 return fitness(policy, B) /+ all subgoals
from policy (if any) are achieved x/

¢ forall S € subG do
7 L Let P[S] € getBestPol(S, curstate, B)

8 return fitness(policy, B) X [cqpgRank(PLS],
curstate, B)

environment with £k = 1, in which the item type hierarchy
is degenerate. In this experiment the agent did not discover

12000
100,00
80,00
60,00
40,00
20,00

0,00
o 1 2 3 a B 6 7 8 9 10

==Model #Random walk

Figure 4: Performance in environment for k = 1

any subgoal and it showed a relatively high performance al-
ready after the first 100 steps. As subgoals were not used,
the achieved performance was only due to the work of the
Environment Learning and Policy Learning modules.

The performance rate was non-stable in experiments,
which is explained by the following fact. The sensor field
of the agent is local and allows for acting efficiently only
in the proximity of an item. Our model does not solve the
problem of efficient exploration of the environment when
the items are out of reach of agent’s sensors (this is one
of the topics for future research). As a consequence, if an
agent cleans up a certain region by picking up items, while
new items are randomly generated distantly elsewhere, then
it has to make quite a number of (random) steps to reach
them, which yields a decreased performance. The perfor-
mance change is even more radical in the environments with
several item types (Figures 5, 6), since items of a required
type may happen to be located even more distantly on aver-
age from the current agent’s position than in the environment
with a single item type. In each of the experiments the lo-
cal performance maxima correspond to the “islands” in the
environment, in which there was enough items of required
types and thus, the agent was able to use its sensor field effi-
ciently.

For the environment with £ = 3, Figure 6 shows the rela-
tive performance of an agent with unlimited subgoal capac-
ity to that of an agent, which is able to discover a single sub-
goal. The result shows that the environment is inherently dif-

co0.00
50,00
40,00
30,00
20,00

!
10,00 /
o0

==Model

#-Random walk

Figure 5: Performance in environment for k = 2

40,00
35,00
30,00
25,00
20,00
15,00
10,00
5,00

0,00 o
o 1 2 3 a B 6 7 8 ° 10

=<=Model (unlimited) <#Random walk Model (1 subgoal)

Figure 6: Performance in environment for k = 3

ficult for the latter agent. On the other hand, the agent capa-
ble of discovering deeper subgoal hierarchies could achieve
high performance already after the first round of learning.

A video demonstrating agent’s behavior in the above men-
tioned environments and a listing of policies learned in the
experiments are available at shorturl.at/deB24

5 Related Work

In most of the HRL models with subgoal discovery known
in the literature the depth of the subgoal hierarchy or the
total maximal number of subgoals is restricted by a hyper-
parameter. There are approaches, in which the problem of
hierarchical policy learning is solved with subgoal discov-
ery in a unified fashion, and there are proposals focused on
the subgoal discovery as the central problem, without any re-
lation to concrete RL models. To the best of our knowledge,
there are only two approaches in the first category, in which
arbitrarily deep subgoal hierarchies are supported. First, we
comment on each of them.

In (Konidaris and Barto 2009) a method for skill chaining
based on the Options Framework (Sutton, Precup, and Singh
1999) is proposed, in which tree-like sequences of options
(skills) are built by a backward chaining algorithm, from a
goal to subgoals. The initiation states for each option are de-
termined by a state classifier, which discovers those states,
from which the achievement of the corresponding (sub)goal
state is most likely. The initiation states are then taken as
subgoal states and the backward chaining procedure is ap-
plied recursively to each of them, thus producing a tree-like
option hierarchy. In our model, the policy learning proce-
dure is conceptually similar to the backward skill chaining
and each environment rule used in the formulation of a pol-

icy could in principle be viewed as a representation of a par-
ticular skill (of making a one-step transition between two
states). The environment rule learning module could then be
seen as an analogue of a state classifier that gives the most
probable states, from which a given state is one-step acces-
sible. In our approach however, subgoals differ from skills
in that they are learned on top of the previously computed
policies and correspond to the descriptions of states, which,
if previously achieved, increase the total efficiency of the
available policies. Importantly, these state descriptions are
introduced as new predicates into the language of the agent,
which allows for adapting environment rules and policies
accordingly.

In (Vezhnevets et al. 2017) the ideas of Feudal Reinforce-
ment Learning (Dayan and Hinton 1993) are implemented in
a two-level model, in which the higher level (manager) sets
subgoals to the lower one (worker) as learned abstractions
of important intermediate states on the way to the primary
goal. The manager communicates the next subgoal to the
worker, but it does not specify how to achieve it. The man-
ager and the worker learn independently of each other and
operate at different temporal resolutions, which allows for
solving tasks involving long-term credit assignment. This
way the model is able to support more abstract (automati-
cally learned) subgoals, e.g., “obtain X in comparison to
“obtain X at location Y”. We note that these features are
present in our approach too. Action Planning in our model
can be viewed as a procedure, which communicates tasks
between the control levels corresponding to the learned sub-
goal hierarchy (see Figure 3). Abstract tasks (such as, e.g.,
“obtain an item of type ") are supported. An important fea-
ture of our approach, when formulated in the terms of Feudal
RL, is that the model makes a choice of the most appropriate
next worker dynamically depending on the current state of
the agent and the achieved subgoals.

In most of the approaches to solving the subgoal discov-
ery as a standalone problem subgoals are searched as bottle-
neck nodes in the State Transition Graph (built for the com-
plete environment or its approximation) by using centrality
measures, clustering, or spectral analysis (Mendonga, Zi-
viani, and Barreto 2019). There are several approaches how-
ever, which rely solely on the transition history of an agent
instead of the State Transition Graph. For example, (Mc-
Govern and Barto 2001) employs the Options Framework
(Sutton, Precup, and Singh 1999) and the concept of diverse
density for discovering bottleneck regions in the agent’s ob-
servation space. Agent’s trajectories are divided into pos-
itive (which bring the agent to a goal) and negative ones.
Those states are taken as candidate options, which are often
present in positive trajectories and never in negative ones.
Initiation states for an option (a subgoal) G are defined as
those states, which have been visited some n steps before
G, where n is a hyperparameter. An additional parameter
is used to exclude candidate options, which are too close to
the previously discovered subgoals or their initiation states.
(Chen et al. 2007) employs the same idea for subgoal discov-
ery, but it uses a different filtering mechanism for candidate
subgoal states, which leaves only those ones that correspond
to local and global visitation maxima. The idea of interpret-

http://shorturl.at/deB24

ing subgoals as bottleneck states in the sense above is simi-
lar to how we view subgoals in our paper. For subgoal dis-
covery, we analyze trajectories that correspond to the most
efficient policies. The difference is that we consider them
as an aggregate policy and we compare its efficiency before
and after adding the fact of the achievement of a candidate
subgoal, which facilitates finding only the most significant
subgoals.

From the point of view of interpretability in RL, in the
recent couple of years quite a few models have been pro-
posed in the literature, which are transparent and inherently
explainable. Many approaches in interpretable RL are based
on a post-hoc analysis and explanation of pretrained black-
box models with the help of more simple glass-box mod-
els. A slightly different way is followed in (Verma et al.
2018), which employs a pretrained black-box NN model for
learning a declarative model, in which policies are given by
functional programs. The declarative model is learned to ap-
proximate the output of the NN model and it gives human-
readable policies, which provide more smooth control in ex-
periments. An important point in this approach is that only
those policies are learned that comply with a given syntactic
template, the form of which is essentially a hyperparameter
dependent on the environment. As in (Verma et al. 2018),
the policies in our approach are declarative: they can be
viewed as probabilistic rules stating that a sequence of tran-
sitions implies the achievement of a (sub)goal with a certain
probability. The general form of the rules is not restricted
by any domain dependent template, but there are hyperpa-
rameters, which allow for fine-tuning the properties of the
learned policies.

In (Hein et al. 2017) a rule-based approach is used for the
development of fuzzy controllers, which learn via interac-
tion with a NN-simulated environment. Policies are defined
as instantiations of fuzzy rule templates, the parameters of
which are learned by particle swarm optimization, although
evolutionary algorithms or gradient descend are equally ap-
plicable. For instance, in the earlier work (Juang, Lin, and
Lin 2000) evolutionary algorithms have been used for com-
puting both, rule templates and their parameters. It would
be useful to apply these algorithms for environment rule and
policy learning in our approach and we leave this for fu-
ture research. Our work however is conceptually different
from (Hein et al. 2017), (Juang, Lin, and Lin 2000), and
similar approaches in an important aspect. In the named
approaches, in each round of learning the complete set of
policies is generated in a top-down fashion and it is then
evaluated in the environment. In case performance is un-
satisfactory, the whole process repeats. In contrast, our ap-
proach is based on goal directed policy generation and sup-
ports continuous learning on agent’s history consisting of
random actions and policy guided transitions. Each policy
is built upon probabilistic laws, which are environment rules
with balanced size and informativeness. This facilitates the
readability of the learned policies and contributes to the sam-
ple efficiency of our model.

6 Discussion and Outlook

The proposed model uniquely combines the ability to gen-
erate human-readable policies and to discover subgoals, for
which an agent does not initially have sensors. Unlike the
common RL approaches, the model does not require a re-
ward function to be specified. We believe that the model
deserves further development and it can be used as a frame-
work for testing the limits of HRL based on rule learning.
Some ideas of hierarchical learning in our model could be
employed in the general RL, also for tasks in continuous en-
vironments.

The current version of our model supports only incremen-
tal achievement of subgoals: an agent can not lose a previ-
ously achieved subgoal (e.g., an item it has picked up) and
subgoals can not be conflicting (e.g., picking up an item of
one type cannot make picking up an item of another type
impossible). In general, the subgoal discovery mechanism
should be enhanced in order to support different logical con-
straints between subgoals imposed by environment.

In complex scenarios it can be the case that a particular
subgoal is rarely accessible (compared to another subgoal
S), but once achieved it allows the agent to reach the pri-
mary goal faster. The ability to reason about subgoals this
way needs to be integrated into the model, because in the
current implementation, an agent will tend to prefer S as a
subgoal, as most of the trajectories go through S. In our
model, an agent learns how to act efficiently in situations
when a (sub)goal is located in the scope of its sensor field,
but the model does not help in exploring the environment in
other situations; thus, the exploration problem should fur-
ther be addressed.

Some policies learned by the agent may happen to be
faulty if it starts learning in some “atypical” part of environ-
ment. For example, if an agent is initialized in a specific area
of our model environment, in which the distribution of items
is atypically dense, then it could learn probabilistic laws,
which would not generalize well. If their probability de-
grades slowly during exploration then these faulty rules will
be for a long time preferred for building policies. In general,
it is important to develop mechanisms that could help the
agent to recognize significant changes in the environment in
order to recalculate rules and policies accordingly.

In this paper, we did not discuss the question of optimality
of policies. As policies in our model are human-readable, we
could confirm in each of our experiments that the agent ob-
tained optimal policies already after the first round of learn-
ing. However, this property obviously needs a theoretical
investigation. Finally, it is important to note that several
components in our model employ hyperparameters for fine-
tuning. Much study could be devoted to the influence of
these parameters on agent’s performance in various environ-
ments. However, it would be more interesting to investigate
whether the model architecture could live without (at least
some of) the hyperparameters, which is also a part of our
further research.

References

Chen, F.; Chen, S.; Gao, Y.; and Ma, Z. 2007. Connect-
based subgoal discovery for options in hierarchical rein-
forcement learning. In Proceedings - Third International
Conference on Natural Computation, ICNC 2007, volume 4.

Dayan, P., and Hinton, G. E. 1993. Feudal reinforcement
learning. In Hanson, S.; Cowan, J.; and Giles, C., eds., Ad-
vances in Neural Information Processing Systems, volume 5.
Morgan-Kaufmann.

Gunopulos, D.; Khardon, R.; Mannila, H.; Saluja, S.; Toivo-
nen, H.; and Sharma, R. S. 2003. Discovering All Most
Specific Sentences. ACM Transactions on Database Sys-
tems 28(2).

Hein, D.; Hentschel, A.; Runkler, T.; and Udluft, S. 2017.
Particle swarm optimization for generating interpretable
fuzzy reinforcement learning policies. Engineering Appli-
cations of Artificial Intelligence 65.

Juang, C. F; Lin, J. Y.; and Lin, C. T. 2000. Genetic re-
inforcement learning through symbiotic evolution for fuzzy
controller design. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 30(2).

Konidaris, G., and Barto, A. 2009. Skill discovery in contin-
uous reinforcement learning domains using skill chaining.
In Advances in Neural Information Processing Systems 22 -
Proceedings of the 2009 Conference.

Kuznetsov, S. O. 2004. On the intractability of computing
the duquenne-guigues base. In Journal of Universal Com-
puter Science, volume 10.

McGovern, A., and Barto, A. G. 2001. Automatic Discovery
of Subgoals in Reinforcement Learning using Diverse Den-
sity. In Proceedings of the 18th International Conference on
Machine Learning, 361-368. Morgan Kaufmann.

Mendonga, M. R.; Ziviani, A.; and Barreto, A. M. 2019.
Graph-based skill acquisition for reinforcement learning.
ACM Computing Surveys 52(1).

Pateria, S.; Subagdja, B.; Tan, A. H.; and Quek, C. 2021. Hi-
erarchical Reinforcement Learning: A Comprehensive Sur-
vey.

Puiutta, E., and Veith, E. M. 2020. Explainable Reinforce-
ment Learning: A Survey. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), volume 12279
LNCS.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1).
Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaud-
huri, S. 2018. Programmatically interpretable reinforce-

ment learning. In 35th International Conference on Machine
Learning, ICML 2018, volume 11.

Vezhnevets, A. S.; Osindero, S.; Schaul, T.; Heess, N.;
Jaderberg, M.; Silver, D.; and Kavukcuoglu, K. 2017. FeU-
dal networks for hierarchical reinforcement learning. In
34th International Conference on Machine Learning, ICML
2017, volume 7.

	Introduction
	Example Environment
	Model Architecture
	Environment Learning
	Policy Learning
	Subgoal Discovery
	Action Planning

	Preliminary Experimental Results
	Related Work
	Discussion and Outlook

