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Abstract. We suggest a three-level integrated approach to design, spec-
ification and verification of distributed system. The approach is based
on a newly designed specification language Basic-REAL (bREAL) and
comprises (I) translation of a high-level design of distributed systems
to executional specifications of bREAL, (II) presentation of high-level
properties of distributed systems as logical specifications of bREAL, (III)
problem-oriented compositional deductive reasoning coupled with model-
checking. The paper presents syntax and semantics of bREAL in for-
mal and informal levels, some meta-properties of this language (namely,
stuttering invariance and interleaving concurrency), proof-principles and
model-checking for progress properties. An illustrative example (Passen-
ger and Vending Machine) is also presented.

1 Introduction

The standard formal description techniques (FDT) such as SDL are widely used
in practice for design of distributed systems. Verification of FDT specifications,
i.e., proving their safety, progress and other properties, is an actual research
problem. Verification approaches are based on formal semantics of FDT specifi-
cations, suitable language for properties presentation and on feasible and sound
verification techniques.

Concise formal semantics has been suggested for some particular fragments
of SDL [5, 11, 12, 19, 22], though a complete formal semantics of SDL-96 has
more than 500 pages. Due to lack of feasible formal semantics of SDL, a popular
approach to verification of properties of SDL specifications comprises a property-
conservative translation/simulation of the specifications to another intermediate
formalism, and formal verification of the translated specifications against the
desired properties [3, 4], but soundness of this simulation is usually justified by
informal or quasi-formal arguments.

Temporal logic is a popular formalism for presentation of the properties of
SDL specifications. Different temporal logics have been suggested for represen-
tation of safety and progress properties: linear temporal logic LTL [3], branching



temporal logic CTL [7, 19], metric temporal logic MTL [16], temporal logic of ac-
tions TLA+ [13], etc. We would like to remark that these formalisms are external
for SDL lead to complicated formulae for presentation of real-time properties.

Two techniques are mainly used for proving properties of the formal models
of distributed systems, namely, model-checking and deductive reasoning. The
standard model-checking has been successfully used for finite systems, while de-
ductive reasoning is oriented to parameterized and infinite state systems. The
automatic nature is the main advantage of the model-checking, while deductive
reasoning implies a manual design of proof-outlines and the level of automatiza-
tion is limited by proof-checking.

As follows from the above arguments, the intermediate formalism is a very
critical issue for sound verification of SDL specifications. We suppose that a
proper intermediate formalism should meet certain requirements, some of which
are enumerated below:
1. SDL-like syntax and semantics,
2. modest blow up in size against SDL specifications,
3. integration with presentation of properties,
4. verification-oriented and human-friendly formal semantics,
5. opportunity for proving meta-level properties and reasoning,
6. support for a variety of verification techniques and their integration.

Let us discuss from viewpoint of these requirements some intermediate for-
malisms which have been used for SDL. A formal language ϕ−SDL [1] is a limited
version of SDL. Its semantics is based on process algebras [1]. This language does
not cover all structural aspects of SDL, and it is not integrated with presenta-
tion of properties. Another intermediate language IF [4] is used for modeling
static SDL specifications. It has a considerable expressive power and formal op-
erational semantics, but its meta-level reasoning remains quasi-formal. Although
the input language Promela of model-checker SPIN is a convenient formalism for
presentation of static SDL specifications [3], and it is well-integrated with linear
temporal logic, its complex semantics is not oriented to meta-level reasoning
and it has been designed for model-checking temporal properties of finite-state
systems only. Thus we can summarize that none of the discussed intermediate
formalisms simultaneously meets the constraints listed above.

The aim of the paper is to present our approach to verification of distributed
systems specified in SDL-like style. The approach is based on a new intermediate
high-level specification language Basic-REAL (bREAL) and meets the require-
ments listed above. The rest of the paper consists of six sections. The main con-
structs of bREAL are informally explained in Section 2, while formal context-free
syntax is presented in Appendix 1. Section 2 also presents an illustrative example
“Passenger and Vending Machine”, while the corresponding SDL specification
and executional bREAL specification are presented in Appendices 2 and 3. The
structural operational semantics of bREAL is sketched in Sections 3, 4 and 5.
Two theorems about important meta-properties of bREAL semantics are given
in Section 6. Verification techniques based on finite-state model-checking and
deductive-like reasoning are discussed in Section 7. Logical specification and



verification of the example “Passenger and Vending Machine” are presented in
Section 8. In Conclusion the results and prospects of our approach are discussed.

2 Outline of Basic-REAL

Informal1 introduction of syntax and semantics. bREAL has executional
and logical specifications. Logical specifications are used for properties presenta-
tion. They have hierarchical structure based on predicates. The predicates can
be grouped into formulae. Formulae, in turn, make up higher level formulae. Dis-
tributed systems are presented as executional specifications. They have a hier-
archical structure based on processes. The processes can be grouped into blocks.
Blocks, in turn, make up higher level blocks. Channels are used for communi-
cation between such entities as processes, blocks, and the external environment.
From the viewpoint of a process, each of its channels is external (input or output
one). From the viewpoint of a block, each of its channels is inner if the channel
connects its subblocks. A channel is external (input or output one) for a block
if it connects a subblock with outside environment (for example, other blocks).

In general, a specification (executional or logical) consists of a head, a scale,
a context, a scheme, and subspecification(s). The head defines the specification
name and kind: an executional specification is either a process or a block, and
a logical one is either a predicate or a formula. Processes and predicates are
elementary specifications, blocks and formulae are composite specifications.

Every activity in bREAL has an associated time interval. Time intervals
are expressed in terms of time units. Every time unit is a tick of a special
clock. A collection of special clocks is a multiple clock. A scale is a finite set
of linear integer (in)equalities where time units are variables. A priory, ticks of
all clocks are asynchronous and have uninterpreted values, but scales introduce
some synchronization. For example, a scale { 60 sec = 1 min; 60 min =
1 hour; 24 hour = 1 day; } does not define any particular value for time units
sec, min, hour and day, but impose the standard relation between them.

A context of a specification consists of type definitions, variable and channel
declarations. Let us note that every variable can be declared as a program or a
quantifier variable but not both. The values of the quantifier variables can not be
changed in executional specifications, they can be varied by the (universal and
existential) quantifiers in logical specifications. The values of program variables
can be changed by assignments and parameter passing in executional specifica-
tions. Channels are intended for passing signals with possible parameters. They
can have different inner structures, viz., queues, stacks, bags.

A scheme of a logical specification consists of a diagram and a system list.
The system list consists of the name(s) of the executional (sub)specification(s)
whose properties are described by the logical specification. There are four kinds
of predicate diagrams: relations between values, locators of the control flow,
emptiness/overflow controllers for channels, checkers for signals in channels. A

1 Formal definition of bREAL syntax can be found in [21]. The context-free syntax is
given in Appendix 1. Please refer for syntax details if necessary.



diagram of a formula is constructed from name(s) of (sub)specification(s) by
propositional combinations, quantification over quantifier variables, and special
dynamic/temporal expressions. Dynamic/temporal expressions are bREAL for-
malism for reasoning about every/some fair behaviours of distributed systems
and every/some time moment in temporal intervals. This formalism expands the
branching temporal logic CTL [9] by means of explicit time intervals in terms of
time units in temporal modalities and explicit references to executional specifica-
tions in action modalities in style of dynamic logic [14]. There are several reasons
why we prefer the explicit style of dynamic logic instead of the implicit style of
CTL. The main ones are opportunities for explicit transformations, optimiza-
tions, (bi)simulation and compositional reasoning for executional specifications
to be verified.

A scheme of an executional specification consists of a diagram and a finite set
of fairness conditions. Fairness conditions restrict a set of behaviours: bREAL
considers only the “fair behaviours”, i.e., the behaviours where every fairness
condition holds infinitely often.

A block diagram consists of channel routes. A route connects a subblock with
another subblock or (exclusively) with the (external) environment. In the last
case the channel is called an input or output channel. Otherwise, the channel
is called an inner channel. All sub-blocks of a block work in parallel, and they
interact with each other and with the external environment by sending/reading
signals with parameters via channels.

A process diagram consists of transitions. Every transition consists of a con-
trol state, a body, a time interval, and a (non-deterministic, maybe) jump to
next control states. The body of a transition determines the following actions:
to read a signal from an input channel (and to assign the values of the pa-
rameters to program variables); to write a signal into an output channel (with
parameter passing by value); to clean an input or output channel; to execute a
(non-deterministic, maybe) sequential program. Each of the actions is atomic,
but it can happen only within the time interval specified for the transition. Each
process is sequential. A process communicates with the other processes and the
environment by means of input/output channels.

An illustrative example: “Passenger and Vending machine”. Let us
consider the following example: a protocol Σ of serving a passenger by a vending-
machine. The vending-machine keeps the money received from the passenger and
has the following features: a keyboard with stations, return, and request buttons;
a slot for coins; an indicator for showing a sum; a tray for change; a booking
window. The passenger knows a desired destination, has enough money and
can: press buttons on the keyboard; drop coins into the slot; see readings of the
indicator; get coins from the change tray; get a ticket from the booking window.
We consider a good passenger who has enough money to pay for the ticket and
requests the ticket only when enough money has been paid. Vending machine and
passenger can be time-independent (time-free case) or time-dependent (timed
case). In the former case no time constraints are imposed on any activity or



event, in the later case stricture constraints are imposed on every activity and
event. Thus in timed case a slow passenger may not get the ticket after all.

An SDL specification of the time-free protocol is presented in Appendix 2.
The top-level view is presented below:

Passenger Machine
-

Buttons

-
Slot

�
Booking

�
Change

�
Indicator

This top-level view is also a block diagram for the corresponding bREAL specifi-
cation. Appendix 3 presents other fragments of the corresponding bREAL speci-
fication. A complete bREAL specification can be assembled from these fragments
and the block diagram by adding context and fairness conditions to the machine
diagram and a context to the block diagram.

A protocol Σ is specified as a block which consists of two processes, namely,
the process passenger and the process machine. These processes are connected
by five channels. Two of them (buttons and slot) are directed from the passen-
ger to the machine. The other three channels (indicator, change, and booking)
are from the machine to the passenger. A behaviour of the process machine is
fair if the process cannot stay forever in a state other than waiting for input
signals. A behaviour of the process passenger is fair if the process cannot stay
forever in a state other than waiting for input signals. It should be noted also
that there are two different cases for Σ – Σfin and Σpar: in the former case of
Σfin, ticket price is fixed; in the later case of Σpar, ticket price is a parameter.
The specification of the time-free protocol has explicit time intervals FROM NOW

TILL FOREVER. This case is presented in [21]. The specification of timed protocol
is a variation of time-free specification where time intervals are parameterized
as FROM const′ TILL const′′.

3 Foundations of semantics of Basic-REAL

Data domains and channel structures. A model with channel structures
is a triple M = (DOM, INT, CHS), where a non-empty set is the domain
DOM of the model, INT is an interpretation of relation and operation symbols
over DOM , and CHS is a collection of available data structures for channels.
Moreover, DOM includes integers and INT provides the standard interpretation
for integer arithmetic operations and relations. DOM includes arrays and INT
provides the standard interpretation for array operations UpDate and Apply.
A data structure of a channel is a mapping which binds every channel with a
set of possible contents. Every content is a finite oriented graph whose vertices
are marked by signals with vectors of parameter values. For every particular
channel structure DAT ∈ CHS, two monadic relations (EMP and FUL), two
partial non-deterministic operations (PUT and GET ) and one constant (INI)
are defined. Let DOMPAR be a set of parameter value vectors from DOM , dom
and rng be the domain and range of the operations, and SIG be a finite set of
all signals admissible for the channel. Then



EMP = {INI}, PUT : (DAT × SIG×DOMPAR)→ DAT,

dom(PUT ) = (DAT \ FUL)× SIG×DOMPAR, rng(PUT ) = DAT \EMP,

GET : DAT → (DAT × SIG×DOMPAR), dom(GET ) = DAT \EMP,

rng(GET ) = ((DAT \ FUL)× SIG×DOMPAR).
If graph ∈ DAT \ FUL, signal ∈ SIG and vector ∈ DOMPAR, then
the graph PUT (graph, signal, vector) is constructed by adding a new ver-
tex with several adjacent edges and by marking the new vertex by the pair
(signal, vector). If graph ∈ DAT \ EMP , then the triple (graph′, signal,
vector) is in GET (graph) iff graph′ results from removing some vertex with all
adjacent edges. Standard (un)bounded queues, stacks, and multisets (bags) are
compatible with this notion of CHS. For example, let us consider a channel with
stack access discipline to data for three admissible signals {a, b, c} with a single
integer parameter. A particular structure DAT ∈ CHS for this channel is the
set of finite chains (including the empty chain Λ) sig1(int1) ←− ...sign(intn),
where n ≥ 0, and sigi ∈ {a, b, c}, inti ∈ Int for all i ∈ [1..n]. Relation EMP
holds on the empty chain only, while another relation FUL does not hold at all.
PUT and GET operations are illustrated below:

(

sig1(int1) ←− ... sign(intn) , sig(int)
)

GET ↑ ↓ PUT

sig1(int1) ←− ... sign(intn) ←− sig(int)

Time and Clocks. Informally speaking, every time unit is a tact of a special
clock. All clocks are used for measuring time after some fixed moment in the past.
A scale is a set of linear (in)equalities with time units as variables. Scales are used
for synchronization of speed of clocks. Formally speaking, a time measure is a
positive integer solution of the scale as a system of (in)equalities. We will identify
a time measure MSR with a mapping which associates each time unit with its
value MSR(unit). With a fixed time measure MSR, an indication of a multiple
clock T is a mapping of time units into integer numbers so that there exists an
integer t such that for every time unit, we have: T (unit) = [ t

MSR(unit) ]. Just for

example let us consider a scale { 60 sec = 1 min; 60 min = 1 hour; 24 hour =
1 day; }. A possible time measure MSR is { sec 7→ 2, min 7→ 120, hour 7→
7200, day 7→ 172800 }. Then T = { sec 7→ 325, min 7→ 5, hour 7→ 0, day 7→
0 } is a possible indication of the multiple clock (sec, min, hour, day), since
there exists an integer t (ex., 651) such that T (sec) = 325 = [ t

2 ] = [ t
MSR(sec) ],

T (min) = 5 = [ t
120 ] = [ t

MSR(min) ], T (hour) = 0 = [ t
7200 ] = [ t

MSR(hour) ],

T (day) = 325 = [ t
172800 ] = [ t

MSR(day) ]. In contrast, another mapping T =

{ sec 7→ 0, min 7→ 0, hour 7→ 5, day 7→ 325 } can not be an indication for the
time measure MSR.

Configurations. Let SY S be an executional specification the of bREAL lan-
guage. Let us fix a model with structures for channels M = (DOM, INT, CHS)
and a time measure MSR. Let PR1, ... PRk be all processes of SY S. An ex-
tended name (of a variable, a state or a channel) is the name itself preceded by
the “path” of sub-block names in accordance with the nesting. A configuration



CNF of SY S is a quadruple (T, V, C, S), where T is the indication of the mul-
tiple clock, V is the evaluation of variables, C is the contents of the channels,
S is the control flow. The evaluation of variables is a mapping that maps every
extended name of every variable of the processes PR1, ..., PRk to its value from
DOM . The current flow is a pair (ACT, DEL) where ACT is a set of extended
names of active states and DEL is a mapping that maps extended names of
states of the processes PR1, ..., PRk to delays (the indication of a special local
multiple clocks associated with states). For every individual process there is a
single active state.

A merge operation M(CNF 1, ..., CNF k) is said to be possible for the con-
figurations CNF 1 = (T 1, V 1, C1, S1) , ..., CNF k = (T k, V k, Ck, Sk) of the
processes PR1, ..., PRk iff T 1 = . . . = T k and for every channel and
for all processes PRi and PRj , which shared it as an input/output channel,
Ci(channel) = Cj(channel). If the merge is possible, then the result of the
merge is a configuration CNF = (T, V, C, S) of the executional specification
SY S such that for every 0 ≤ i ≤ k: T = T i; the values V i of the variables
of the process PRi coincides with the values V of their extended names; the
contents Ci of the channels of the process PRi coincides with the contents C
of their extended names; the active state and the delays Si for the states of
the process PRi coincides with the active states and delays for their extended
name. When the sub-blocks are considered instead of the processes, the merge
is defined in a similar way. If BLK is a sub-block of an executional specification
SYS, and CNF = (T, V, C, S) is the configuration of SYS, then the projection
of CNF to BLK (denoted by CNF/BLK) is a configuration CNF ′ = (T ′, V ′,
C ′, S′) of the sub-block BLK such that T ′ = T ; for every variable V ′(variable)
= V (BLK.variable); for every channel C ′(channel) = C(BLK.channel); for
every state state ∈ S ′.ACT = BLK.state ∈ S.ACT and S ′DEL(state) =
S.DEL(BLK.state. It is easy to prove by induction over the specification struc-
ture that a configuration of an executional specification is the merge of its pro-
jections to all its processes, i.e., CNF =M(CNF/PR1, ..., CNF/PRk).

4 The semantics of executional specifications

Step rules and semantics of blocks. The semantics of the executional speci-
fications is defined in terms of events (EV N) and step rules. There are six kinds
of events:

1. writing a signal with parameters into a channel (WRiTing),
2. reading a signal with parameters from a channel (ReaDiNg),
3. cleaning an input channel (CLeaNing INput),
4. cleaning an output channel (CLeaNing OUTput),
5. program execution (EXEcution),
6. invisible event (INVisible).
A firing is a triple CNF1 < EV N > CNF2. If EV N 6= INV , then the

firing is said to be active. Otherwise, it is called passive. A step rule has the form
CND |= CNF1 < EV N > CNF2, where CNF1 < EV N > CNF2 is a firing



while CND is a condition on the configurations CNF1, CNF2 and the event
EV N . An intuitive semantics of the step rule is as follows: if the condition
CND holds, then the executional specification can transform the configuration
CNF1 into the configuration CNF2 by means of the event EV N . In total,
there exist twelve step rules for executional specifications. A countable sequence
of configurations is a behaviour of a specification iff, for every successive pair of
configurations CNF1 and CNF2 of this sequence, there exists an event EV N
and a condition CND, such that CND |= CNF1 < EV N > CNF2 is an instance
of a corresponding step rule. Below are presented some steps rules2. A behaviour
of an executional specification is said to be fair iff each of the fairness conditions
of the specification holds infinitely often in the configurations of this behaviour.
Semantics of blocks For blocks there is a single step rule, namely, the composition
rule. Informally, a behaviour of a block is an interleaving merge of consistent
behaviours of its sub-blocks. Let us fix a model with channel structures M , a
scale MSR, and a block B, consisting of the sub-blocks B1, ..., Bk.
RULE 0 (Composition)
(

∀i ∈ [1..k] :
CNF1/Bi < EV N/Bi > CNF2/Bi

)

|= CNF1 < EV N > CNF2.

Semantics of processes. The other eleven step rules deal with individual pro-
cesses and the environment. For simplicity of presentation, let us fix a process and
the two configurations, CNF1 = (T1, V 1, C1, S1) and CNF2 = (T2, V 2, C2,
S2). Let us use meta-variables state, state′, nextstate, signal, variable, variable′ ,
channel, channel′, interval, program and jumpset (for sets of states). Let us fix
values of state, nextstate, signal, variable, channel, program and jumpset so that
nextstate ∈ jumpset.
Process stuttering and stabilization. The first rule for a process is a stutter rule.
Informally, it concerns the case when nothing changes in the process. This rule
is essential for the interleaving merge of consistent behaviours of some processes
with shared channels into a behaviour of a block.

The second rule deals with stabilization and it means that a process is in
a state which does not mark any transition on the process diagram. Thus, the
process stabilizes forever, and the configuration of the process cannot change
and is called a stable configuration.
Signal reading and writing. The third and fourth rules deal with a process read-
ing a signal with a parameter from an input channel and writing a signal with
a parameter into an output channel, respectively. For simplicity let us present
and discuss the rule for writing a signal with a single implicit parameter.
RULE 4 (Writing a signal)
















The diagram has the transition
state WRITE signal(variable)INTO channel intervalJUMP jumpset,
state ∈ ACT1, nextstate ∈ ACT2, DEL1(state) ∈ interval,
T1 = T2, (∀state′ : DEL2(state′) = 0), V 1 = V 2,
PUT (C1(channel), signal, V 1(variable)) = C2(channel),
(∀channel′ 6= channel : C1(channel′) = C2(channel′))

















|= CNF1 < WRT (channel, signal, variable) > CNF2.

2 The complete semantics is given in [21].



This rule can be commented as follows. The process can write the signal, if
it has a corresponding transition, and a control state of this transition is active
(state ∈ ACT1) for a time which is the range of the time interval of the transition
(DEL1(state) ∈ interval). Writing is an instant action (T1 = T2) which resets
delays for all states of the process (∀state′ : DEL2(state′) = 0). This action
does not change values of variables and content of channels other than a channel
to which it writes (V 1 = V 2 and ∀channel′ 6= channel : C1(channel′) =
C2(channel′)). In contrast, the content of this channel absorbs the signal with
a value of a variable as the parameter value in accordance with structure of the
channel (C2(channel) = PUT (C1(channel), signal, V 1(variable))). The action
passes control to some next state (nextstate ∈ ACT2).

Impact of external environment. The fifth and the sixth rules deal with appear-
ance of a new signal with a parameter in an input channel and with disappear-
ance of a signal with a parameter from an output channel. The environment ENV
is responsible for those actions. The process itself can only observe the appear-
ance of a new signal in an input channel or that some signal disappears from an
output channel. Signal and parameter are legal for an input (output) channel if
there is a transition with body READ signal(parameter) FROM channel (resp. WRITE
signal(parameter) INTO channel). In accordance with the composition rule, if a
process is combined with other process(es) into a block, then appearance of a new
signal in its input channel corresponds to writing this signal into this channel
by the partner process. Similarly, if a process is combined with other process(es)
into a block, then disappearance of a signal from its output channel corresponds
to reading this signal from this channel by the partner process. For simplicity, let
us present the rule for appearance of a signal with a single implicit parameter.

RULE 5 (Appearance of a signal in an input channel)








Signal and parameter are legal for an input channel,
T1 = T2, V 1 = V 2, ACT1 = ACT2, DEL1 = DEL2,
PUT (C1(channel), signal, parameter) = C2(channel),
(∀channel′ 6= channel : C1(channel′) = C2(channel′))









|= CNF1 < INV > CNF2.

Channel cleaning and program execution. The seventh and the eighth rules are
the rules of cleaning the input and the output channels. The ninth rule for a
process is the rule of program execution.

Time progress and starvation. The tenth rule deals with time progress. It con-
cerns the case when nothing has changed except the value of the multiple clock
and the synchronous local multiple clock of every current delay, and there is a
transition marked by the active state such that its current delay has not exceeded
the right bound of the corresponding time interval.

RULE 10 (Time progress)












T1 < T2, V 1 = V 2, C1 = C2, ACT1 = ACT2,
(∀state ∈ ACT1 : DEL2(state) = DEL1(state) + T2 − T1),
(∀state 6∈ ACT1 : DEL2(state) = 0),
(∀state ∈ ACT1 : ∃transition : transition is marked by state, and
DEL1(state) does not exceed the right bound of time interval of transition)













|= CNF1 < INV > CNF2.



The eleventh rule deals with a starvation. It is similar to the time-progress
rule, but in this case a current delay of an active state surpasses the right bounds
of time intervals of all transitions marked by the active state. It means that the
process failed to read or write a signal during the specified time interval.

RULE 11 (Starvation)












T1 < T2, V 1 = V 2, C1 = C2, ACT1 = ACT2,
(∀state ∈ ACT1 : DEL2(state) = DEL1(state) + T2 − T1),
(∀state 6∈ ACT1 : DEL2(state) = 0),
(∀state ∈ ACT1 : ∀transition : state marks transition ⇒
DEL1(state) exceeds the right bound of time interval of transition)













|= CNF1 < INV > CNF2.

5 The semantics of logical specifications

The semantics of logical specifications is defined in terms of validity in the con-
figurations. For every configuration CNF and every logical specification SPC,
CNF |= SPC means that the configuration belongs to the truth set of the logi-
cal specification, and CNF 6|= SPC means the negation of this fact. In order to
shorten the description of the semantics, let us fix a model with channel struc-
tures M , a scale MSR, and a configuration CNF = (T, V, C, S). Let the relation
CNF |= SPC be defined by induction on structure of the diagram of a logical
specification SPC.

Semantics of predicates. A predicate3 can be a relation,a locator, a controller,
or a checker. If SPC is a relation, then its diagram has the form R(t1, . . . , t2),
where R is a relation symbol, and t1, . . . , t2 are terms constructed from the
operation symbols, variables and parameters of channels and CNF |= SPC ⇔
(V ALCNF (t1), . . . , V ALCNF (t2)) ∈ INT (R), where evaluation V ALCNF for
terms is defined by the ordinary rules. If SPC is a locator, then its diagram has
the form AT state and CNF |= SPC ⇔ state ∈ S.ACT . If SPC is a controller,
then its diagram has the form EMP channel or FUL channel and CNF |=
SPC ⇔ EMP(C(channel)), CNF |= SPC ⇔ FUL(C(channel)), respectively. If
SPC is a checker, then its diagram has the form signal IN channel or signal RD
channel. In the former case, CNF |= SPC iff there exists a value from DOM ,
such that there exists a pair (signal, value) in C(channel). In the latter case,
CNF |= SPC iff there exists a graph from DAT and a value from DOM , such
that GET (C(channel)) = (graph, signal, value).

Semantics of formulae. The diagram of a formula3 can be a name of a predi-
cate, a propositional combination of subformulae, a quantified subformula, or a
dynamic expression.

If the diagram of SPC is a name of a predicate, then CNF |= SPC ⇔
CNF |= PRD, where PRD is the predicate with this name. If the diagram of
SPC is a propositional combination, then its value is determined in a natural
way.

3 Please refer the syntax definition in Appendix 1.



If the diagram of SPC is ∀ variable DGR or ∃ variable DGR, where DGR
is a formula diagram, then CNF |= SPC iff for every/some configuration CNF ′

which agrees with CNF everywhere but variable, the following holds: CNF ′ |=
SPDGR, where SPDGR is a formula with diagram DGR.

If the diagram of SPC is MB SY S MT IT DGR, where MB is a modality
AB or EB, SY S is an executional specification, MT is a modality AT or ET, IT is a
time interval, and DGR is a formula diagram, then we have the following. Prefix
“AB/EB SY S” means “for every/some fair behaviour of SY S”. Prefix “AT/ET
IT ” means “for every/some time moment in IT ”.

6 Some meta-properties of Basic-REAL semantics

In [15] a property of invariance under stuttering was introduced. It means that
expressible properties are not affected by duplication of some configurations.
The following definitions, Theorem 1 and Corollary 1 state that bREAL enjoys
the invariance under stuttering.

Let us fix the model M with structures for channels and the time measure
MSR. For all behaviours SEQA and SEQB, SEQB is said to be obtained from
SEQA by copying (configurations) (or SEQB is a copy-extension of SEQA) iff
some configurations in SEQA are duplicated in SEQB, i.e.,
SEQA = CNF0 ... CNFi ..., SEQB = CNF0...CNF0 ... CNFi...CNFi ... .
For all sets of behaviours SETA and SETB, SETB is said to be obtained from
SETA by copying configurations (or SETB is a copy-extension of SETA) iff
• every behaviour in SETB is a copy-extension of a behaviour in SETA,
• for every behaviour in SETA has a copy-extension in SETB.

Theorem 1. Let SY S be an executional bREAL specifications. For all beha-
viours SEQA and SEQB, if SEQB is a copy-extension of SEQA, then SEQB
is a (fair) behaviour of SY S iff SEQA is.

Corollary 1. For every set of configurations PRP and every interval IT , for
all sets of behaviours SETA and SETB, if SETB is a copy-extension of SETA,
then dynamic/temporal expressions (MB SETB MT IT PRP ) and
(MB SETA MT IT PRP ) are equivalent.

An interleaving character of bREAL concurrency is stated in the following
Theorem 2 and Corollary 2. It implies (in particular) an interleaving access to
shared channels, i.e. impossibility of synchronous access to them.

Theorem 2. Let SY S be an executional bREAL specification, let CNF1 and
CNF2 be its configurations, and PR1,... PRk be all its subprocesses, and EV N
be an event.
(2.1) CNF1 < INV > CNF2 is a firing of SYS iff CNF1/PRi < INV >
CNF2/PRi is a firing of PRi for every i in 1..k.
(2.2) CNF1 < EV N > CNF2 is an active firing of SYS iff there exists a single
j in 1..k such that CNF1/PRj < INV > CNF2/PRj an active firing of PRj.



Corollary 2. Let SY S be an executional bREAL specification and PR1,... PRk

be all its subprocesses. The set of all behaviours of SY S is equal to the set of
behaviours CNF0 ... CNFn ... ... ... such that for every i in 1..k and for every
n ≥ 0 there exists an event EV N i

n for which
(1) CNFn/PRi < EV N i

n > CNFn+1/PRi is a firing of PRi,
(2) EV N i

n 6= INV ⇒ EV N j
n = INV for every j 6= i.

Proofs of Theorems 1 and 2 can be found in [21].

7 Verification techniques

Problem-oriented deduction for Basic-REAL. Our deductive approach is
inspirited by the problem-oriented approach adopted in [8, 17, 18]. This approach
assumes

– classification properties into classes of problems with respect to their seman-
tics and syntax;

– formulation and justification of problem-oriented proof principles for every
problem class.

We would like to point out that in general the proof-principles are not inference
rules, since they exploit some higher order notions like sets, partitions, well-
foundness, etc.

Let us explain our problem-oriented approach to deductive reasoning by a
class of time-free progress properties, i.e., the class of the properties which can be
presented in the bREAL logical specification by means of formulae with diagrams
(A ⇒ AB SY S ET FROM NOW TILL FOREVER B), where A and B are subdia-
grams and SY S is a fixed name of an executional specification. Let us denote dia-
grams of this kind by A 7→ B. That is, for every configuration CNF |= (A 7→ B)
iff CNF |= A implies that for every fair behaviour of SY S that starts from CNF ,
there exists a configuration CNF ′ from this behaviour such that CNF ′ |= B.

To formulate the proof principles, let us fix the executional specification SY S.
Let SET ′ and SET ′′ (with possible subscripts) denote sets of configurations of
SY S. The semantics of the expression SET ′ 7→ SET ′′ is as follows: for every
fair behaviour of SY S, if this behaviour begins in SET ′, then it contains a
configuration in SET ′′. Thus, if SET ′ and SET ′′ are the truth sets of logical
specifications with the diagrams A and B, respectively, then SET ′ 7→ SET ′′ is
equivalent to A 7→ B. Note that the following concept of a fair firing is used: a
fair firing is a firing that begins a fair behaviour.

1. Subset principle
SET ′ ⊆ SET ′′ ` SET ′ 7→ SET ′′ or in the logical form A→ B ` A7→B.

2. Partition/Union principle
For every set of indices I
{SET ′

i 7→ SET ′′

i : i ∈ I} ` (Ui∈ISET ′

i ) 7→ (Ui∈ISET ′′

i )
or in the logical form ∀i ∈ I.(Ai 7→ Bi) ` (∃i ∈ I : Ai) 7→ (∃i ∈ I : Bi).

3. Single step principle
` {CNF ′} 7→ {CNF ′′ : there exists a fair firing CNF ′ < EV N > CNF ′′}.



4. Transitivity principle
SET ′ 7→ SET, SET 7→ SET ′′ ` SET ′ 7→ SET ′′

or in the logical form A 7→ B, B 7→ C ` A 7→ C.
5. Principle of mapping to a well-founded set

Let SET be a set of configurations. Let WFS be a well-founded set (i.e., a
partially ordered set without infinite descending chains) and let MIN be the

set of minimal elements of the set WFS. Let f : SET
partial

−→ WFS be a partial

function and let f− : WFS
partial

−→ P(SET ) be the inverse function such that
f−(w) = {CNF ∈ SET : f(CNF ) = w} for every v ∈ WFS. Then the
principle of mapping to a well-founded set is as follows:
(

∀ v ∈ WFS \MIN : f−(v) 7→ ∪u<vf−(u)
)

` f−(WFS) 7→ f−(MIN).
Model-checking for Basic-REAL. There are many opportunities to exploit
model-checking for verification of bREAL specifications. Let us enumerate some
of them:

1. overall verification of finite-space time-free specifications;
2. overall verification of infinite-space time-bounded specifications;
3. validation of conditions of above two types in deductive proofs.

The first case is classical problem domain for model-checking. In the second case,
when we would like to verify the time-bounded properties (e.g., that nothing
bad happens in, say, first ten hours), the model may be safely cut off when the
specification clock exceeds a time limit. It is done by detecting that a special
"time" variable reaches a given value.

In the last case, a proof is designed manually in terms of problem-oriented
proof-principles with extensive finite-space/time-free or infinite-space/time-
bounded conditions and then their correctness is model-checked. Thus we in-
tegrate model-checking and deductive reasoning neither as a tactics, nor as a
decision procedure, but as a checker for applicability of proof principles (see
example in the next section).

Our model-checking tool is implemented as an application programming in-
terface (API) and consists of the following three modules: a model-constructor
for executional specifications, a translator from logical specifications, a kernel
model-checker. Let us note that the model is an extended finite automaton whose
states are configurations of the executional specification, and whose transitions
are the firings of the transitions of the executional specification. It should be
noted also that the kernel model-checker has been developed on the base of
the faster model-checking algorithm for the µ-Calculus in finite models [10]. A
preliminary tool version for time-free properties only has been presented in [2].

8 Verification of the example

Logical specification. We would like to discuss both time-free and timed prop-
erties of the system ”Passenger and Vending Machine” presented in Section 2.
Let us give at first a logical specification of the following time-free property: a
good passenger will eventually get the ticket to the desired station. Or, more
formally, for all ticket prices, for every station, the condition A leads to the



condition B where A is the conjunction of the five conditions: the machine is
ready, the passenger wants to buy a ticket, no button is stuck, the indicator
shows no information, the booking is empty, and B is the conjunction of the two
conditions: there is a ticket in the booking window, and a station on the ticket
is the needed one. Let us use the abbreviations “p” for “passenger” and “m” for
“machine”, respectively. The predicates for these (seven) conditions are st mach,
st pass, no comm, no info, no tick, tick in, and prop st, respectively. Let us
denote the conjunction of the first five predicates by init: st mach & st pass

& no comm & no info & no tick. In this notation the time-free property can be
expressed as a logical specification SPEC1 with diagram
∀ m.expenses : ∀ p.station :

(

init7→tick in & prop st
)

.

Let us turn to timed property, namely: a quick passenger will eventually
get the ticket to the desired station, a sluggish passenger either will never get
the ticket to the desired station or may get it sometimes. Let RushT ime and
SlowT ime be (parameterized) integers
RushT ime = Const1 ∗MaxPrice/MinCoin + Const2,
SlowT ime = Const3 ∗MaxPrice/MinCoin + Const4,
with MaxPrice for the maximal possible expenses, MinCoin for the smallest coin
in use, const1–4 for parameters. Let pFAST express the fact that the passenger
is fast enough to drop coins in time, let pSLOWEST mean that the passenger
can’t drop even the first coin because of a slow speed, and let pSLOW express
the intermediate case where the passenger may fail and may succeed. For each
particular case only one of these predicates is true. Then let SPEC2 be a logical
specification with the following diagram :

∀ m.expenses : ∀ p.station :
((init & pFAST⇒ AB Σ ET FROM NOW TILL RushT ime(tick in & prop st))&
(init & pSLOWEST⇒ AB Σ ET FROM NOW TILL SlowT ime(AT m.retcoin))&
(init & pSLOW⇒ EB Σ ET FROM NOW TILL SlowT ime(tick in & prop st))&
(init & pSLOW⇒ EB Σ ET FROM NOW TILL SlowT ime (AT m.retcoin)).

Coupling deduction and model-checking. For the case Σfin (when expenses
are fixed integers) the model-checking technique has been applied to both time-
free and timed variants. For example, the µ-formula corresponding to the SPEC1
is:
(st mach & st pass & no comm & no info & no tick

⇒ µ x. ((tick in & prop st) & (〈a〉true & [a]x ) ) ).

For the time-free case Σpar (when expenses are parameters), coupling model-
checking with deductive technique from Section 7 has been applied. In this case a
proof of progress property init 7→ (tick in & prop st) has been decomposed in
[21] (according to the transitivity principle) onto proofs of some “local” progress
properties: init ≡ P 7→ P1 7→ P2 7→ P3 7→ Q ≡ (tick in&prop st). The last
local property P3 7→ Q is due to the subset principle. The properties P 7→ P1
and P2 7→ P3 have been proved using the model-checking. But the step P1 7→ P2
is essentially inductive, since it has an uninterpreted parameter, viz., the price of
the required ticket. Details of a proof of this progress property using the principle
of mapping to a well-founded set with aid of model-checking are given in [21].



9 Conclusion

We presented the distributed systems specification language Basic-REAL as a
formalism for the description of asynchronous systems. It has not been designed
with the aim to replace formal description techniques such as SDL, but as a
intermediate representation for them (in particular, for SDL).

The bREAL meets constraints 1–6 mentioned in Section 1. Indeed, a static
subset of SDL (i.e., without dynamic process generation) can be translated into
executional bREAL specifications in a property- and structure-conservative man-
ner [23]. We implemented a prototype SDL2REAL translator which generates
operationally equivalent REAL specifications from SDL ones. Given the static
nature of bREAL, this translation does not cover the dynamical features of SDL
(e.g., creation of process instances). An optimization is also performed to re-
duce the state space size: the unreachable generated state are removed from the
bREAL specification. Due to these reasons, the equivalent specifications have
approximately the same size and the same safety/progress properties. A presen-
tation of this translation is a subject of a forthcoming publication. The formal
semantics of bREAL described in Sections 3, 4 and 5 is simple, and it can be used
to derive the important meta-properties like properties formulated in Section 6.
Automatic proof of these and some other meta-properties of bREAL (e.g., bisim-
ulation of synchronous communication between processes, i.e., rendezvous) is a
topic for forthcoming research. The verification techniques discussed in Section
7, demonstrate that bREAL is a language suitable for representation and ver-
ification of properties. Study of problem classes other than progress properties
and corresponding problem-oriented proof-principles is also a topic for further
research.

The bREAL has the following advanced features for specifying distributed
systems and their properties:

– The new time concept based on uninterpreted time units extends expres-
siveness of the language, and the time intervals associated with transitions
allow the shortcoming of the timer concept in SDL [3, 6] to be overcome.

– The logical specification language is rather expressive due to the extension
of real-time variants of CTL by time intervals and first order dynamic logic
constructs.

– The expressive power of executional specifications is essentially increased
by using fairness conditions and communication via channels with different
structures (i.e., (un)bounded queues, stacks, bags, etc.).

– The formal semantics of bREAL provides the interaction of processes with
the external environment, which simplifies specification and verification of
distributed systems.

The project REAL is under development since 1991. Initial presentation of
the project is in [20] where a sketch of formal semantics of language REAL was
given. A complete definition of bREAL is presented in a technical report [21].
We intend to extend the bREAL language by dynamic process generation. The
new REAL version — Dynamic-REAL — will increase the expressive power of



bREAL and essentially extend the SDL subset which can be naturally translated
to REAL.
Acknowledgements. The authors would like to thank the anonymous reviewers
for valuable comments and suggestions.
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Appendix 1. Formal syntax of Basic-REAL

specification:: executional-specification | logical-specification
executional-specification:: process | block
logical-specification:: predicate| formula
process:: process-head scale context fairness-conditions process-diagram
block:: block-head scale context fairness-conditions block-diagram subblocks
predicate:: predicate-head scale context systems predicate-diagram
formula:: formula-head scale context systems formula-diagram subformulae
process-head:: name : PROCESS
block-head:: name : BLOCK
predicate-head:: name : PREDICATE
formula-head:: name : FORMULA
scale:: {linear-equality-over-time-units | linear-inequality-over-time-units }∗

context:: {type-definition | object-declaration }∗

type-definition:: TYPE type IS type-expression
type-expression:: predefined-type | enumerated-type |

type-expression ARRAY OF type-expression |
type-expression QUEUE OF type-expression |
type-expression STACK OF type-expression |
type-expression BAG OF type-expression

predefined-type:: INT | STR
enumerated-type::name | name, enumerated-type | name; enumerated-type
subblocks:: { executional-specification }∗

subformulae:: { logical-specification }∗

object-declaration:: variable-declaration | channel-declaration
variable-declaration:: location appointment VAR variable OF type
appointment:: QU | PR
channel-declaration:: location role organization CHN channel FOR signal {WITH PAR

parameter OF type-expression }∗



role:: INP | OUT | INN

organization:: capacity structure | ELEMENTARY

capacity:: number-ELM | UNB

structure:: QUE | STACK | BAG

process-diagram:: { transition }∗

transition:: state [:] body interval jump

body:: EXE program | READ signal-with-parameters-1 FROM channel |

WRITE signal-with-parameters-2 INTO channel | CLEAN channel

program:: operator {; operator }∗

operator:: variable :=expression | SKIP | ABRT | IF condition THEN program [ ELSE
program ] FI | WHILE condition DO program OD | CASE program [ ALT program ]
ESAC | LOOP program POOL

signal-with-parameters-1:: signal [ ( variable-list )

variable-list:: variable {, variable }∗

signal-with-parameters-2:: signal [ ( value-list )

value-list:: expression {, expression }∗

expression :: constant | variable | ( expression ) |expression operation-sign expres-
sion

operation-sign:: + | - | ∗ | / | APPLY | UPDATE

interval:: left-bound linear-time-expression right-bound linear-time-expression

left-bound:: AFTER | FROM

right-bound:: UNTIL | UPTO

jump:: JUMP state-list.

state-list:: state {, state }∗.

block-diagram:: { route }∗

route:: source CHN channel destination

source:: name | ENV

destination:: name | ENV

predicate-diagram:: relation | locator | controller | checker

relation:: expression relation-sign expression

locator:: AT state

controller:: EMP channel | channel IS EMPTY | FUL channel | channel IS OVERFULL

checker:: signal IN channel | signal RD channel

formula-diagram:: name | ( propositional-combination ) |

( quantifier variable formula-diagram) |

( behavioural-modality system temporal-modality interval formula-diagram)

quantifier:: ∀ | ∃

behavioural-modality:: EACH | SOME | AB | EB

temporal-modality 2 | 3 | AT | ET

state:: name

channel:: name

parameter:: name



Appendix 2. SDL-specification

of “Passenger and Vending machine”

SYSTEM All;

BLOCK Passenger_and_Machine;

SIGNAL coin (integer), light (integer), sigchange (integer),

ticket (integer), sigstation (integer), request, return;

SIGNALROUTE buttons FROM Passenger TO Machine

WITH sigstation, return, request;

SIGNALROUTE slot FROM Passenger TO Machine WITH coin;

SIGNALROUTE indicator FROM Machine TO Passenger WITH light;

SIGNALROUTE change FROM Machine TO Passenger WITH sigchange;

SIGNALROUTE booking FROM Machine TO Passenger WITH ticket;

PROCESS Passenger;

DCL sum, nominal, station, gotstation, gotsum integer;

START; ’Initialize (constant) station’;

TASK decision := station;

OUTPUT sigstation(decision); NEXTSTATE look;

STATE look; INPUT light(sum); DECISION sum;

(<=0): OUTPUT request; NEXTSTATE get;

ELSE: /* choose a random coin from range 1..10 */

TASK nominal := RANDOM(10);

OUTPUT coin(nominal); NEXTSTATE look; ENDDECISION;

ENDSTATE;

STATE get; INPUT ticket(gotstation); INPUT sigchange(gotsum);

STOP; ENDSTATE; ENDPROCESS;

PROCESS Machine;

NEWTYPE price ARRAY (integer, integer) ENDNEWTYPE;

DCL sum, nominal, station integer, expenses price;

START; ’Initialize the (constant) expenses array’;

NEXTSTATE get_station;

STATE get_station;

INPUT sigstation(station); TASK sum := expenses(station);

NEXTSTATE showcount;

STATE showcount; OUTPUT light(sum); NEXTSTATE getcoin;

STATE getcoin;

INPUT coin(nominal); TASK sum := sum - nominal;

NEXTSTATE showcount;

INPUT return; OUTPUT sigchange(expenses(station) - sum); STOP;

INPUT request; DECISION sum;

(>0): OUTPUT light(sum); NEXTSTATE showcount;

ELSE: OUTPUT ticket(station); OUTPUT sigchange( - sum );

STOP; ENDDECISION;

ENDSTATE; ENDPROCESS;

ENDBLOCK;

ENDSYSTEM;



Appendix 3. Basic-REAL specification

of “Passenger and Vending machine”

Specification of the process “passenger”

passenger : PROCESS

OUT CHN buttons FOR sigstation WITH PAR name OF 1..100,

FOR return, FOR request ;

OUT CHN slot FOR coin WITH PAR nominal OF integer ;

INP CHN indicator FOR light WITH PAR sum OF integer ;

INP CHN change FOR sigchange WITH PAR value OF integer ;

INP CHN booking FOR ticket WITH PAR name OF 1..100’ ;

PR VAR sum, nominal OF integer,

PR VAR decision, gottenstation, station OF 1..100 ;

{ Fairness conditions}
¬AT start ; ¬AT press ; ¬AT continue ;

¬AT request ; ¬AT chcoin ; ¬AT drop ;

start EXE decision := station JUMP press.

press WRITE sigstation(decision) INTO buttons JUMP look.

look READ light(sum) FROM indicator JUMP continue.

continue EXE (sum <= 0)? JUMP request.

continue EXE (sum > 0)? JUMP chcoin.

chcoin EXE nominal := RANDOM(10) ; JUMP drop.

drop WRITE coin(nominal) INTO slot JUMP look.

request WRITE request INTO buttons JUMP get.

get READ ticket(gottenstation) FROM booking JUMP getchange.

getchange READ sigchange(sum) FROM change JUMP satisfaction.

Diagram of the process “machine”

start READ sigstation(station) FROM buttons JUMP defcount.

defcount EXE sum := expenses[station] JUMP showcount.

showcount WRITE light(sum) INTO indicator JUMP getcoin.

getcoin READ coin(nominal) FROM slot JUMP add.

getcoin READ return FROM buttons JUMP retcoin.

getcoin READ request FROM buttons JUMP check.

add EXE sum := sum - nominal ; JUMP showcount.

retcoin WRITE sigchange(expenses[station] - sum) INTO change

JUMP finish.

check EXE (sum <= 0)? ; JUMP give.

check EXE (sum > 0)? JUMP showcount.

give WRITE ticket(station) INTO booking JUMP givechange.

givechange WRITE sigchange( - sum ) INTO change JUMP finish.


