
“The Theory of
Everything”:
uniform algorithm
design patterns
(backtracking, branch & bound, greedy
algorithms, divide and conquer, and dynamic
programming...)

Nikolay V. Shilov

A
lgo

rith
m

 D
esign

 P
attern

s - N
iko

lay V
. Sh

ilo
v fo

r STEP
 at In

n
o

p
o

lis

May 22 and June 19, 2024 1

Simulated Large Hadron Collider CMS particle detector data depicting a
Higgs boson produced by colliding protons decaying into hadron jets and
electrons

https://en.wikipedia.org/wiki/File:CMS_Higgs-event.jpg

Introduction
Part 1

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
2

Standard Template Library

• Story (borrowed from Standard Template Library – Wikipedia) that I
didn’t know till 2021 (and firstly learnt from Eugene Zouev lectures on
Software Systems Analysis and Design):

o In November 1993 Alexander Stepanov presented a library based on
generic programming to the ANSI/ISO committee for C++
standardization.

o The committee's response was overwhelmingly favorable and led to a
request from Andrew Koenig for a formal proposal in time for the
March 1994 meeting.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
3

https://en.wikipedia.org/wiki/Standard_Template_Library

Standard Template Library

o The prospects for early widespread dissemination of the STL were
considerably improved with Hewlett-Packard's decision to make its
implementation freely available on the Internet in August 1994.

o This implementation, developed by Stepanov, Lee, and Musser during
the standardization process, became the basis of many
implementations offered by compiler and library vendors today.

o It provides four components called algorithms, containers, functions,
and iterators.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
4

A “Must”

• Design and Analysis of Computer Algorithms is a must of
Computer Curricula.

• In particular, it covers algorithm design patterns like greedy
method, divide-and-conquer, dynamic programming,
backtracking and branch-and-bound.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
5

Undergraduate vs. Graduate levels

• All listed design patterns are taught, learned and
comprehended by examples.

• It is acceptable at undergraduate level. But is it a valid
educating approach at graduate level?

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
6

Glory of the Past

• Greedy Method

o Continues Knapsack problem

o Kruskal's algorithm

o Huffman coding

• Backtracking

o N-Queen Problem

o Discrete Knapsack problem

o Davis–Putnam–Logemann–Loveland algorithm

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
7

More Glory …

• Branch & Bound

o Discrete Knapsack problem

o Interval Methods for Global Optimization

o Towards a Tractable Exact Test for Global Multiprocessor Fixed
Priority Scheduling (Artem Burnyakov talks for STEP-2024)

• Dynamic Programming

o Dijkstra (shortest path) algorithm

o Floyd–Warshall (shortest paths) algorithm

o Cocke – Younger – Kasami algorithm

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
8

Formalize!

• But these patterns can be formalized as design templates, rigorously
specified, and mathematically verified.

• Greedy method is the only pattern that had been studied and
formalized from rigor mathematical point of view in XX century.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
9

Formalization (?) of Greedy Method

• Edmonds J. Matroids and the greedy algorithm. Mathematical
Programming, 1971, v.1, p.127-113.

• Korte B., Lovasz L. Mathematical structures underlying greedy
algorithms. Lecture Notes in Computer Science, 1981, v.117, p.205-209.

• Helman P., Moret B.M.E., Shapiro H.D. An exact characterization of
greedy structures. SIAM Journal on Discrete Mathematics, 1993, v.6(2),
p.274-283.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
10

Formalize!

• The speaker (i.t., me;-) published (in years 2010-2016) formalization,
specification and (manual) verification for the following individual
design techniques – backtracking, branch & bound, dynamic
programming.

• In the present talk: survey of these formalizations from programming
theory perspective and then … a move to a uniform/unified pattern in
terms op 𝑚𝑎𝑝 and 𝑟𝑒𝑑𝑢𝑐𝑒.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
11

Talk outlines

• Introduction

• Levels of reasoning – interpreted and uninterpreted

• Recursive and iterative Dynamic Programming (DP)

• Recall about Backtracking (BT) and Branch & Bound (B&B)

• Unifying patterns for BT and B&B

• Conclusion (greedy, divide and conquer?)

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
12

LEVELS OF REASONING –
INTERPRETED AND UNINTERPRETED

Part 2

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
13

Let’s start with recursion elimination

• A classic example of monadic recursion elimination (using
reduction to the tail recursion) is function 𝑀91: 𝑵 → 𝑵

𝑀91 𝑛 = 𝑖𝑓 𝑛 > 100 𝑡ℎ𝑒𝑛 𝑛 − 10 𝑒𝑙𝑠𝑒 𝑀91 𝑀91 𝑛 + 11 .

• It was introduced by John McCarthy, studied by Zohar Manna,
Amir Pnueli, Donald Knuth. It turns out that

𝑀91 𝑛 = 𝑖𝑓 𝑛 > 101 𝑡ℎ𝑒𝑛 𝑛 − 10 𝑒𝑙𝑠𝑒 91.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
14

Problem via recursion elimination

• A “key” idea elimination is a move from a monadic function
𝑀91: 𝑵 → 𝑵 to a binary function 𝑀2: 𝑵 × 𝑵 → 𝑵 such that
𝑀2 𝑛, 𝑘 = 𝑀91

𝑘 𝑛 for all 𝑛, 𝑘 ∈ 𝑵:

𝑀2 𝑛, 𝑘 = 𝑖𝑓 𝑘 = 0 𝑡ℎ𝑒𝑛 𝑛

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛 > 100 𝑡ℎ𝑒𝑛 𝑀2 𝑛 − 10 , 𝑘 − 1

𝑒𝑙𝑠𝑒 𝑀2 𝑛 + 11 , 𝑘 + 1 .

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
15

Recursive factorial

• Recursive program to compute the factorial function 𝐹: 𝑵 → 𝑵

o 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑠𝑙𝑒 𝑛 ∙ 𝐹 𝑛 − 1 (in the standard notation),

o 𝐹 𝑛 = 𝑖𝑓 𝑝 𝑛 𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑛, 𝐹 𝑔 𝑛 (in a prefix notation),

where known functions are

o 𝑝 ≡ 𝜆 𝑥 ∈ 𝑵. 𝑥 = 0 ∶ 𝑵 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛,

o 𝑐 ≡ 1 ∶→ 𝑵 (i.e., a constant)

o 𝑓 ≡ 𝜆 𝑥, 𝑦 ∈ 𝑵. 𝑥 ∙ 𝑦 ∶ 𝑵 × 𝑵 → 𝑵,

o 𝑔 ≡ 𝜆 𝑥 ∈ 𝑵. 𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒 𝑥 − 1 ∶ 𝑵 → 𝑵.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
16

Imperative factorial

Program 1

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑵;

2. 𝑦: = 1;

3. 𝑤ℎ𝑖𝑙𝑒 𝑥 ≠ 0 𝑑𝑜

4. 𝑦: = 𝑥 ∙ 𝑦;

5. 𝑥: = 𝑥 − 1

6. 𝑜𝑑

Program 2

1. 𝑉𝐴𝑅 𝑥, 𝑦, 𝑧: 𝑵;

2. 𝑦: = 1; 𝑧 ≔ 1;

3. 𝑤ℎ𝑖𝑙𝑒 𝑧 ≤ 𝑥 𝑑𝑜

4. 𝑦 ≔ 𝑧 ∙ 𝑦;

5. 𝑧 ≔ 𝑧 + 1

6. 𝑜𝑑

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
17

What if known functions are uninterpreted?

Recursive schemata with a single available (not specified) data type 𝑻:

𝐹 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑥, 𝐹 𝑔 𝑥

Standard scheme 1 Standard scheme 2

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑻;
2. 𝑦 ≔ 𝑐;
3. 𝑤ℎ𝑖𝑙𝑒 ¬𝑝 𝑥 𝑑𝑜
4. 𝑦 ≔ 𝑓 𝑥, 𝑦 ;
5. 𝑥 ≔ 𝑔 𝑥
6. 𝑜𝑑

1. 𝑉𝐴𝑅 𝑥, 𝑦, 𝑧: 𝑻;
2. 𝑦 ≔ 𝑐; 𝑧 ≔ 𝑐;
3. 𝑤ℎ𝑖𝑙𝑒 𝑞 𝑥, 𝑧 𝑑𝑜
4. 𝑦 ≔ 𝑓 𝑧, 𝑦 ;
5. 𝑧 ≔ ℎ 𝑧
6. 𝑜𝑑

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
18

Herbrand models and structures

• To demonstrate that not any two of program schemata from the
previous slide are equivalent, it is sufficient to consider Herbrand
models (also called free models).

• The domain of a Herbrand model comprises all terms constructed from
the available functional symbols and input variables (while the domain
of the Herbrand structures comprise the ground terms exclusively).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
19

Why the schemata aren’t equivalent?

• Let us consider a Herbrand model such that
o 𝑞 is always 𝑇𝑅𝑈𝐸,

o 𝑝 𝑔 𝑔 𝑥 is 𝑇𝑅𝑈𝐸 while 𝑝 is 𝐹𝐴𝐿𝑆𝐸 for all other terms.

• Then

o 𝐹 𝑥 = 𝑓 𝑥, 𝐹 𝑔 𝑥 = 𝑓 𝑥, 𝑓 𝑔 𝑥 , 𝐹 𝑔 𝑔 𝑥 =

= 𝑓 𝑥, 𝑓 𝑔 𝑥 , 𝑐 ,

o the output value of 𝑦 computed by scheme 1 is 𝑓 𝑔 𝑥 , 𝑓 𝑥, 𝑐 ,

o while scheme 2 does not halt at all.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
20

Translation of the recursive scheme
to a standard scheme (with equality)

1. 𝑉 𝐴𝑅 𝑥, 𝑦, 𝑢, 𝑣 ∶ 𝑻;
2. 𝑢 ∶= 𝑥;
3. 𝑤ℎ𝑖𝑙𝑒 ¬𝑝 𝑢 𝑑𝑜
4. 𝑢 ∶= 𝑔 𝑢
5. 𝑜𝑑
6. 𝑦 ∶= 𝑐;

7. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 𝑥 𝑑𝑜
8. 𝑣 ∶= 𝑥;
9. 𝑤ℎ𝑖𝑙𝑒 𝑔 𝑣 ≠ 𝑢 𝑑𝑜
 𝐼𝑛𝑣. 1: ∃𝑚 < 𝑛 ∈ 𝑵 ∶ 𝑣 = 𝑔𝑚 𝑥 & 𝑢 = 𝑔𝑛 𝑥
 𝑣 ∶= 𝑔 𝑣
 𝑜𝑑;
 𝐼𝑛𝑣. 2: 𝑔 𝑣 = 𝑢 & 𝑦 = 𝐹 𝑢
10. 𝑦 ∶= 𝑓 𝑢, 𝑦 ; 𝑢 ∶= 𝑣
11. 𝑜𝑑;
12. 𝑦 ≔ 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑥, 𝑦

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
21

How to rid of the equality

• Finally, the equality used in lines 7 and
9 of the scheme is easy to eliminate
because it may be implemented as call
of the following tail-recursive function
𝐸𝑄 (easy to implement by an iterative
program:

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
22

𝐸𝑄 𝑎, 𝑏 = 𝑖𝑓 𝑝 𝑎 ∨ 𝑝 𝑎 𝑡ℎ𝑒𝑛 𝑝 𝑎 & 𝑝 𝑏 𝑒𝑙𝑠𝑒 𝐸𝑄 𝑔 𝑎 , 𝑔 𝑏 .

Translation of the recursive factorial
to an iterative form

1. 𝑉 𝐴𝑅 𝑥, 𝑦, 𝑢, 𝑣 ∶ 𝑵;
2. 𝑢 ∶= 𝑥;
3. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 0 𝑑𝑜
4. 𝑢 ∶= 𝑢 − 1
5. 𝑜𝑑
6. 𝑦 ∶= 1;

7. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 𝑥 𝑑𝑜
8. 𝑣 ∶= 𝑥;
9. 𝑤ℎ𝑖𝑙𝑒 𝑣 − 1 ≠ 𝑢 𝑑𝑜
 𝐼𝑛𝑣. 1: ∃𝑚 < 𝑛 ∈ 𝑵 ∶ 𝑣 = 𝑥 − 𝑚 & 𝑢 = 𝑥 − 𝑛
 𝑣 ∶= 𝑣 − 1
 𝑜𝑑;
 𝐼𝑛𝑣. 2: 𝑣 − 1 = 𝑢 & 𝑦 = 𝐹 𝑢
10. 𝑦 ∶= 𝑢 ⋅ 𝑦; 𝑢 ∶= 𝑣
11. 𝑜𝑑;
12. 𝑦 ≔ 𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝑥 ⋅ 𝑦

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
23

Extremely inefficient
but semantic-independent
• Unfortunately, imperative factorial from the previous slide 10 is

extremely inefficient – it runs in 𝑂 𝑛2 time in contrast to both
programs (1 and 2) from slide 4 that run in linear time 𝑂 𝑛 .

• It worth to remark that Program 1 can be automatically constructed
from the recursive factorial program using co-recursion and then tail-
recursion.

• This use of the co-recursion is semantic-dependent (since it is safe
assuming commutativity of the function 𝑓), while our approach to
recursion elimination is semantic-independent.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
24

Co-recursion and Tail-recursion by example

• Recursive factorial 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑠𝑙𝑒 𝑛 ∙ 𝐹 𝑛 − 1 is not in
the tail-form (because has next call inside some function).

• But it is equivalent to the following recursive program in the tail-form:

൝
𝐹 𝑛 = 𝑃 𝑛, 1

𝑃 𝑛, 𝑚 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑚 𝑒𝑠𝑙𝑒 𝑃 𝑛 − 1 , 𝑛 ∙ 𝑚
.

• This program is in the tail-form because all calls are never inside other
functions.

• Co-recursion is a “trick” that consists in converts result into another
argument and use this argument in the recursion.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
25

Teil-recursion elimination by example

• Tail-recursion ൝
𝐹 𝑛 = 𝑃 𝑛, 1

𝑃 𝑛, 𝑚 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑚 𝑒𝑠𝑙𝑒 𝑃 𝑛 − 1 , 𝑛 ∙ 𝑚

is easy to eliminate (and compare with Program 1 from slide 4):

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
26

𝑠𝑡𝑎𝑟𝑡: 𝑉𝐴𝑅 𝑥, 𝑦: 𝑵 𝑔𝑜𝑡𝑜 2
2: 𝑦: = 1 𝑔𝑜𝑡𝑜 3
3: 𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 𝑔𝑜𝑡𝑜 𝑠𝑡𝑜𝑝 𝑒𝑙𝑠𝑒 𝑔𝑜𝑡𝑜 4
4: 𝑦: = 𝑥 ⋅ 𝑦 𝑔𝑜𝑡𝑜 5
5: 𝑥: = 𝑥 − 1 𝑔𝑜𝑡𝑜 3
stop

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑵;
2. 𝑦: = 1;
3. 𝑤ℎ𝑖𝑙𝑒 𝑥 ≠ 0 𝑑𝑜
4. 𝑦: = 𝑥 ∙ 𝑦;
5. 𝑥: = 𝑥 − 1
6. 𝑜𝑑

RECURSIVE AND ITERATIVE
DYNAMIC PROGRAMMING

Part 3

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
27

Warming-up Dropping Bricks Problem

• Define stability of “bricks” (cell phones) by
dropping them from a tower of H meters. How
many times do you need to drop bricks, if you
have just 2 bricks?

• 𝐺 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒

1 + min1≤𝑘≤𝑛 max 𝑘 − 1 , 𝐺 𝑛 − 𝑘 .

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
28

History of “Dynamic Programming”

• Dynamic Programming was introduced by Richard Bellman in the 1950s
to tackle optimal planning problems.

• In 1950s the noun programming had nothing in common with more
recent computer programming and meant planning (compare: linear
programming).

• The adjective dynamic points out that Dynamic Programming is related
to a change of states (compare – dynamic logic, dynamic
system).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
29

Bellman equation and optimality principle

• Bellman equation is a functional equality for the objective function that
expresses the optimal solution at the current state in terms of the
optimal solution at next (changed) states.

• It is conceptualized a so-called Bellman Principle of Optimality: an
optimal plan (or program) should be optimal at every stage.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
30

Descending (top-down)
Dynamic Programming
• General pattern of Bellman equation may be formalised by the following

scheme of recursive descending Dynamic Programming:

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥 ;

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
31

the term is linear in each branch
w.r.t. the objective function G

Descending (top-down)
Dynamic Programming – cont.
• In this scheme

o 𝐺: 𝑋 → 𝑌 is a symbol for the objective function,

o 𝑝: 𝑋 → 𝐵𝑜𝑜𝑙 is a symbol for a known predicate,

o 𝑓: 𝑋 → 𝑌 is a symbol for a known function,

o is a symbol for a known function with a variable (but finite) number
of arguments,

– all ℎ𝑖: 𝑋 × 𝑍 → 𝑌, 𝑖 ∈ 1. . 𝑛(𝑥) are symbols for known functions,

– all ℎ𝑖: 𝑋 → 𝑋, 𝑖 ∈ 1. . 𝑛(𝑥) are symbols for known functions too.

May 22 and June 19, 2024 32
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

More Examples:
Factorial, Fibonacci Numbers and Words
• 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝑛 ⋅ 𝐹 𝑛 − 1 ;

• 𝐹𝑖𝑏 𝑛 = 𝑖𝑓 0 ≤ 𝑛 ≤ 1 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝐹𝑖𝑏 𝑛 − 2 + 𝐹𝑖𝑏 𝑛 − 1 ;

• 𝑊𝑟𝑑 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑎

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛 = 1 𝑡ℎ𝑒𝑛 𝑏

𝑒𝑙𝑠𝑒 𝑊𝑟𝑑 𝑛 − 2 ∘ 𝑊𝑟𝑑 𝑛 − 1 .

May 22 and June 19, 2024 33
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

Observations

• Factorial, Fibonacci Numbers and Words need static memory of a fixed
size.

• Surprisingly, but Dropping Bricks Problem also needs just static memory

of fix-size, since 𝐺 𝑛 = arg min 𝑘 ∈ 𝑵:
𝑘 𝑘+1

2
≥ 𝑛 .

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
34

Research questions about
Descending Dynamic Programming

• It follows from Paterson M.S. and Hewitt C.T. paper Comparative
Schematology (1970) that fix-size static memory is not enough for
recursion elimination in Bellman equation.

• When one-time allocated

o array (with integer indexes),

o (fix-size) static memory

is sufficient to eliminate recursion in Bellman equation?

May 22 and June 19, 2024 35
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

A need of dynamic (size) memory

• The following program scheme

𝐹 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑓 𝐹 𝑔 𝑥 , 𝐹 ℎ 𝑥

is not equivalent to any standard program scheme:

for every 𝑛 > 0

there exists an Herbrand model 𝑇𝑛

where any standard program scheme

needs 𝑛 variables to compute 𝐹.

May 22 and June 19, 2024 36
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

A need of dynamic (size) memory (proof idea)

Consider the following data type 𝑇𝑛:

• values are sub-terms of the term 𝑡𝑛
depicted to the right;

• 𝑝 𝑔𝑘 ℎ𝑚 𝑥 is true, if 𝑘 + 𝑚 = 𝑛.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
37

f

f f

f f f f

gk(x) gk-1h ghk-1 hk(x)

A need of dynamic (size) memory (proof idea)

• Observe that if 𝐹 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑓 𝐹 𝑔 𝑥 , 𝐹 ℎ 𝑥

then 𝐹 𝑥 = 𝑡𝑛.

• Prove by induction: any iterative algorithm that computes 𝑡𝑛 needs 𝑛
variables (memory cells) at least.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
38

Support of the Objective Function

• If 𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

is defined for some value 𝑣, then it is possible to pre-compute the
support spp 𝑣 , the set of all values that occur in the computation of
𝐺 𝑣 :

spp 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑥 ⋃ ⋃𝑖∈ 1..𝑛 𝑥 spp 𝑡𝑖 𝑥 .

• Remark, that for every 𝑣, if 𝐺 𝑣 is defined, then spp 𝑣 is finite (but
not vice versa).

May 22 and June 19, 2024 39
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

When an array suffices

• One-time allocated array with integer indexes suffices for computing

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 is a constant and all 𝑡𝑖, 𝑖 ∈ 1. . 𝑛 𝑥 , are interpreted by

commutative functions.

May 22 and June 19, 2024 40
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

When static memory suffices

• Fix-size static memory suffice for computing

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 𝑥 = 𝑛 is a constant and there exists a known computable function
𝑡 such that

o 𝑡𝑖 = 𝑡𝑖 for all 𝑖 ∈ 1. . 𝑛 ,

o 𝑝 𝑢 implies 𝑝 𝑡 𝑢 for all 𝑢 ∈ spp 𝑥 .

• Examples: Factorial, Fibonacci Numbers and Words.

• Counter-example: Paterson-Hewitt scheme.
May 22 and June 19, 2024 41

Algorithm Design Patterns - Nikolay V. Shilov for STEP at
Innopolis

Design outlines and proof comments

Proof comments

• Proof idea – very same as for
factorial function in Part 1.

• Scheme’ design (with equality and
invertible function 𝑡) is depicted to the
right.

Design outlines

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
42

Selected references

1. G. Berry. Bottom-up computation of recursive programs. RAIRO | Informatique Th´eorique et
Applications (Theoretical Informatics and Applications, 10(3):47-82, 1976.

2. R. S. Bird. Zippy tabulations of recursive functions. In Proceedings of the 9th International
Conference on Mathematics of Program Construction, MPC ’08, pages 92-109. Springer-Verlag,
2008.

3. J. Cowles and R. Gamboa. Contributions to the theory of tail recursive functions, 2004. Available at
http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf.

4. D.E. Knuth. Textbook examples of recursion. arXiv:cs/9301113[cs.CC], 1991.

5. Y. A. Liu. Systematic Program Design: From Clarity to Efficiency. Cambridge University Press, 2013.

6. M.S. Paterson and C.T. Hewitt. Comperative schematology. In Proc. of the ACM Conf. on Concurrent
Systems and Parallel Computation, pages 119-127. Association for Computing Machinery, 1970.

7. N.V. Shilov, D. Danko Teaching Efficient Recursive Programming and Recursion Elimination Using
Olympiads and Contests Problems. In Proc. of the workshop on Frontiers in Software Engineering
Education (FISEE-2019), Lecture Notes in Computer Science, 2020, v.12271, p.246-264.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
43

http://www.cs.uwyo.edu/~ruben/static/pdf/tailrec.pdf

RECALL ABOUT BACKTRACKING
AND BRANCH & BOUND

Part 3

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
44

Two slides that were dropped on May 22:
Support of the Objective Function

• If 𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

is defined for some value 𝑣, then it is “possible” to pre-compute the
support spp 𝑣 – the set of all values that occur while computing 𝐺 𝑣 :

spp 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑥 ⋃ ⋃𝑖∈ 1..𝑛 𝑥 spp 𝑡𝑖 𝑥 .

• Remark, that for every 𝑣, if 𝐺 𝑣 is defined, then spp 𝑣 is finite (but
not vice versa).

May 22 and June 19, 2024 45
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

Two slides that were dropped on May 22:
When an array suffices
• One-time allocated array with integer indexes suffices for computing

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 is a constant and all 𝑡𝑖, 𝑖 ∈ 1. . 𝑛 𝑥 , are interpreted by

commutative functions.

May 22 and June 19, 2024 46
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

Back to Dropping Bricks Problem

• Unfortunately, the techniques
developed above lead to use of

o a (one time allocated) array,

o but not a fix-size static
memory…

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
47

Dynamic Programming for
knapsack with undividable goods
• Knapsack problem for undividable goods can be formulated in the form

of descending dynamic programming,

but

• when gross capacity and/or individual weights are real values the
computation of the support function 𝑠𝑝𝑝 has the same complexity as
the problem itself!

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
48

Dynamic Programming for
knapsack with undividable goods – cont.
• For example, the maximal price of 𝑛 ≥ 0 undividable goods 𝑊1, 𝑃1 , …

𝑊𝑛, 𝑃𝑛 that may be accumulated in a knapsack with capacity 𝑊 may
be computed recursive algorithm (that match dynamic programming
pattern):

𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊, 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒

𝑖𝑓 𝑊𝑛 > 𝑊 𝑡ℎ𝑒𝑛 𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊, 𝑛 − 1 𝑒𝑙𝑠𝑒

max 𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊, 𝑛 − 1 , 𝑃𝑛 + 𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊 − 𝑊𝑛 , 𝑛 − 1

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
49

Graph Traversals

• In cases like knapsack with undividable goods, it remains to travers the
decision tree (i.e., the tree of recursive calls) of the problem using
backtracking or branch-and-bound methodology.

• In general, graph traversal refers to the problem of visiting all the nodes
in a (di)graph to compute some graph characteristics (in particular, to
find any/all nodes/vertices that enjoy some property specified by some
Boolean criterion condition).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
50

Back to descending
Dynamic Programming
• Bellman equation is already a functioal program and

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥 𝑡ℎ𝑒𝑛 𝑓 𝑥 𝑒𝑙𝑠𝑒

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

and its computations may be considered as a traversal of the tree of
recursive calls.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
51

Depth- and Breadth-first Traversals

• A Depth-first search (DFS) is a technique for traversing a finite graph
that visits the child nodes before visiting the sibling nodes.

• A Breadth-first search (BFS) is another technique for traversing a finite
graph that visits the sibling nodes before visiting the child nodes.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
52

Backtracking and
Branch-and-Bound
• Sometimes it is not necessary to traverse all vertices of a graph

to collect the set of nodes that meet the criterion function,
since there exists some Boolean boundary condition which
guarantees that child nodes do not meet the criterion function

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
53

Backtracking
Branch-and-Bound and Backtracking
• Branch-and-bound (B&B) is DFS that uses boundary condition, the

method was introduced in the paper

Land A. H. and Doig A. G. An automatic method of solving discrete
programming problems. Econometrica, 28(3), 1960, p.497-520.

• Backtracking (BT) is DFS that uses boundary condition, the method was
introduced in the paper

Golomb S.W. and Baumert L.D. Backtrack Programming. Journal of ACM,
12(4), 1965, p.516-524.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
54

Example: Four Queens Puzzle

• Place 4 queens on simplified 4 ×
4 chessboard so that non attacks
another (criterion condition).

• Naïve Algorithm:

o generate ALL possible
placements proceeding row by
row, and square by square in
the row;

o try criterion condition for each
generated placement.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
55

Q

Four Queens Puzzle:
Naïve Algorithm

2 18 34 50

3 8 13 19 24 29 35 40 45 51 56 61

1

4 6 9 11 14 16 20 22 25 27 30 32 36 38 41 43 46 48 52 54 57 59 62 64

5 7 10 12 15 17 21 23 26 28 31 33 37 39 42 44 47 49 53 55 58 60 63 65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

indexes for positioning

1 2 3 4

2 3 4 1 3 4 1 2 4 1 2 3

3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2

4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1

May 22 and June 19, 2024 56
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

Four Queens Puzzle:
Backtracking and Branch-and-Bound

30 38

2 18 34 50

8 13 29 35 51 56

1

1 2 3 4

2 3 4 1 3 4 1 2 4 1 2 3

2 4 2 3 3 1 3 2 4 2 3 1 3

Q

Q

Q

Q

Q

Q

Q

Q

3 2

boundary

boundary boundary

boundary

boundary boundary

Some subtrees may be refuted on the fly due to
boundary condition: some queens attack each other

May 22 and June 19, 2024 57
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis

boundary

Basic Terminology

Nodes that emerge in the process
of traversing (of a tree with some
boundary condition) can be

• live (some of its children are not
generated yet),

• dead (all its children has been
generated),

• expanding (currently
processing).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
58

30

2 18

8 13 29

1

1 2

2 3 4 1 3 4

2 4 2 3 3 1

Q

Q

Q

Q

3

boundary

boundary
boundary

Interval Method for
Global Optimization
⚫ Most global optimization methods using interval techniques employ a

branch-and-bound strategy:

Gray P., HartW., Painton L., Phillips C., Trahan M.,Wagner J. A Survey of
Global Optimization Methods. Sandia National Laboratories, 1997
(http://www.cs.sandia.gov/opt/survey/main.html).

⚫ These algorithms decompose the search domain into a collection of
boxes, arrange them into a tree-structure (according to inclusion), and
compute the lower bound on the objective function by interval
technique.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
59

http://www.cs.sandia.gov/opt/survey/main.html

UNIFYING TEMPLATES
FOR BT AND B&B

Part 4

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
60

Temporal ADT Teque

• Theque is a finite set of values (of some background data type) marked
by disjoint time-stamps.

• The time stamps are readings of a global clock that counts time in
numbers of ticks, they (time-stamps) never change and always are not
greater than current reading of the clock.

• Let us represent an element 𝑥 with a time-stamp 𝑡 by the pair 𝑥, 𝑡 .
Readings of the clock as well as time-stamps are not visible for any
observer.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
61

Temporal ADT Teque – cont.

• Theque inherits some set-theoretic operations: the empteq (i.e., empty
teque) is simply the empty set (∅), set-theoretic equality (=) and
inequality (≠), subset relations (for example, ⊆).

• ADT theque has its own specific operations, some of these operations
are time-independent, some others are time-sensitive, and some are
time-dependent.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
62

Time-independent operations

⚫ Operation 𝑆𝑒𝑡: for every teque 𝑇 let 𝑆𝑒𝑡 𝑇 be 𝑥 | ∃𝑡: 𝑥, 𝑡 ∈ 𝑇 .

⚫ Operations 𝐼𝑛 and 𝑁𝑖: for every teque 𝑇 and any value 𝑥 (of the
background type)

o let 𝐼𝑛 𝑥, 𝑇 stay for 𝑥 ∈ 𝑆𝑒𝑡 𝑇 ,

o and 𝑁𝑖 𝑥, 𝑇 stay for 𝑥 ∉ 𝑆𝑒𝑡 𝑇 .

• Operation 𝑆𝑝𝑒𝑐 (specification): for every teque 𝑇 and any predicate
𝜆𝑥: 𝑄 𝑥 on values of the background type let teque 𝑆𝑝𝑒𝑐 𝑇, 𝑄 be the
following sub-teque 𝑥, 𝑡 ∈ 𝑇 ∶ 𝑄 𝑥 .

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
63

Time-dependent operation AddTo

• For every list of teques 𝑇1,… 𝑇𝑛 (𝑛 ≥ 1) and

any finite set 𝑥1, … 𝑥𝑚 of elements of the background type (𝑚 ≥ 0),
let execution 𝐴𝑑𝑑𝑇𝑜 𝑥1, … 𝑥𝑚 , 𝑇1,… 𝑇𝑛 at time 𝑡

returns 𝑛 teques 𝑇1
′,… 𝑇𝑛

′ such that

for some moments of time 𝑡 = 𝑡1 < ⋯ < 𝑡𝑚 = 𝑡′

(where 𝑡′ is the the moment of termination of the operation),

𝑇𝑖
′ = 𝑇𝑖⋃ 𝑥1, 𝑡1 , … 𝑥𝑚, 𝑡𝑚 for all 𝑖 ∈ 1. . 𝑛 .

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
64

Time-sensitive operations

• There are three pairs of time-sensitive operations:

o 𝐹𝑖𝑟 and 𝑅𝑒𝑚𝐹𝑖𝑟 (“head” and “tail”),

o 𝐿𝑎𝑠 and 𝑅𝑒𝑚𝐿𝑎𝑠 (“top” and “pop”),

o 𝐸𝑙𝑚 and 𝑅𝑒𝑚𝐸𝑙𝑚 (“random” and “drop it”).

• Let 𝑇 be a teque.

o Let 𝐹𝑖𝑟 𝑇 be the value of the background type that has the smallest
(i.e., the first) time-stamp in 𝑇, and let 𝑅𝑒𝑚𝐹𝑖𝑟 𝑇 be the teque that
results from 𝑇 after removal of this element (with the smallest time-
stamp).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
65

Time-sensitive operations – cont.

o Let 𝐿𝑎𝑠 𝑇 be the value of the background type that has the largest
(i.e., the last) time-stamp in 𝑇, and let 𝑅𝑒𝑚𝐿𝑎𝑠 𝑇 be the teque that
results from 𝑇 after removal of this element (with the largest time-
stamp).

o Let 𝐸𝑙𝑚 𝑇 be some element (somehow defined or specified, even
randomly) of 𝑇 (also without any time-stamp) and 𝑅𝑒𝑚𝐸𝑙𝑚 𝑇 is the
teque that results from 𝑇 after removal of this element (with its time-
stamp).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
66

Notational convention

• Let pair of 𝐹𝐸𝐿 and 𝑅𝐸𝑀 stays simultaneously for

o either 𝐹𝑖𝑟 and 𝑅𝑒𝑚𝐹𝑖𝑟,

o or 𝐿𝑎𝑠 and 𝑅𝑒𝑚𝐿𝑎𝑠,

o or 𝐸𝑙𝑚 and 𝑅𝑒𝑚𝐸𝑙𝑚.

• It means, for example, that if we instantiate 𝐹𝑖𝑟 for 𝐹𝐸𝐿, then we must
instantiate 𝐹𝑖𝑟 for 𝐹𝐸𝐿 and 𝑅𝑒𝑚𝐹𝑖𝑟 for 𝑅𝐸𝑀 throughout the template.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
67

Teque Convention

⚫ Instantiation of 𝐹𝑖𝑟 and 𝑅𝑒𝑚𝐹𝑖𝑟 imposes queue discipline first-in —
first-out and specializes the unified template to B&B template.

⚫ Instantiation of 𝐿𝑎𝑠 and 𝑅𝑒𝑚𝐿𝑎𝑠 imposes stack discipline first-in —
last-out and specializes the template to BT template.

⚫ Instantiation of 𝐸𝑙𝑚 and 𝑅𝑒𝑚𝐸𝑙𝑚 specializes the unified template to
Deep Backtracking, Branch and Bounds with priorities, or even a random
walk templates.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
68

Virtual Graph Notation

• A virtual (di)graph 𝐺 is defined by means of the following features:

o a type 𝑁𝑜𝑑𝑒 of vertices and the initial vertex 𝑖𝑛𝑖 of this type such
that every vertex of 𝐺 is reachable from 𝑖𝑛𝑖;

o a computable function 𝑁𝑒𝑖𝑔ℎ𝑏 ∶ 𝑁𝑜𝑑𝑒 → 2𝑁𝑜𝑑𝑒 that for any vertex
in 𝐺 returns the set of all its neighbors (children in a digraph).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
69

Boundary and Decision Conditions

• Let us introduce easy to cheque

o a Boundary condition 𝐵: 2𝑁𝑜𝑑𝑒 × 𝑁𝑜𝑑𝑒 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

o and a Decision condition 𝐷: 2𝑁𝑜𝑑𝑒 × 𝑁𝑜𝑑𝑒 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

 to be used for collecting all nodes that meet a hard to cheque Criterion
condition 𝐶: 𝑁𝑜𝑑𝑒 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
70

Template

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
71

0
Live, Visit:= AddTo({ini}, empteq, empteq);

Out:= empteq; IF D({ini}, ini) THEN Out:= AddTo(ini, Out)

1

2

Precondition

Postcondition

Invariant

U:= FEL(Live) ; Live:= REM(Live) ;

S:= { WNeighb(U) : Ni(W, Visit))

& B(Set(Visit), W) } ;

Live, Saved:= AddTo(S, Live, Saved) ;

Out:= Spec(Out, D(Set(Visit), _))

D(Set(Visit), U)

Out:= AddTo(U, Out)

+
_

Live = empteq ?+ _

Specification: Postcondition

Teque 𝑂𝑢𝑡 consists (with time-
stamps) of all nodes of the graph 𝐺
that meet the criterion condition 𝐶,
and each of these nodes has single
entry (occurrence) in 𝑂𝑢𝑡.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
72

Specification: Preconditions 1 and 2

1. A virtual (di)graph 𝐺 is defined
by the initial node 𝑖𝑛𝑖 and the
neighborhood function 𝑁𝑒𝑖𝑔ℎ𝑏.

2. For every node 𝑥 of 𝐺 the
boundary condition 𝜆𝑆: 𝐵 𝑆, 𝑥
is a monotone function (i.e., if a
node is ruled-out by a set, then
it is ruled-out by any larger set).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
73

Specification: Preconditions 3 and 4

3. For every set 𝑆 of nodes of 𝐺 the
decision condition 𝜆𝑥: 𝐷 𝑆, 𝑥 is a
monotone function in the following
sense: if a node is ruled-out by the
set then all its successors are ruled
out by the set also.

4. For every node 𝑥 of 𝐺 the decision
condition 𝜆𝑆: 𝐷 𝑆, 𝑥 is an anti-
monotone function in the following
sense: a candidate node may be
discarded later by a lager set.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
74

Specification: Precondition 5

5. For every set of nodes 𝑆:

if 𝑆 ∪ 𝑥 ∈ 𝐺 ∶ 𝐵 𝑆, 𝑥 =

all nodes of 𝐺,

then 𝐷 𝑆, 𝑥 ⇔ 𝐶 𝑥

(i.e., the decision condition 𝐷
applied to a set with a complete
extension is equivalent to the
criterion condition 𝐶).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
75

Loop Invariant

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
76

Conjunction of the following 4 clauses:

1. 𝑂𝑢𝑡 =

= 𝑆𝑝𝑒𝑐 𝑉𝑖𝑠𝑖𝑡, 𝜆𝑥: 𝐷 𝑆𝑒𝑡 𝑉𝑖𝑠𝑖𝑡 , 𝑥 .

2. 𝐿𝑖𝑣𝑒 ⊆ 𝑉𝑖𝑠𝑖𝑡, and for every node 𝑧 ∈
𝐺, if 𝑁𝑖 𝑧, 𝑉𝑖𝑠𝑖𝑡 and 𝐶 𝑧 , then 𝑧 is
reachable from 𝑆𝑒𝑡 𝐿𝑖𝑣𝑒 .

Loop Invariant – cont.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
77

3. Each node 𝑥 ∈ 𝐺 has (at most) single
instance in 𝑉𝑖𝑠𝑖𝑡.

4. 𝑆𝑒𝑡 𝑉𝑖𝑠𝑖𝑡 ∪ 𝑁𝑒𝑖𝑔ℎ𝑏 𝑆𝑒𝑡 𝑉𝑖𝑠𝑖𝑡

equals to the set of all nodes that has
been generated by the algorithm up
to the current moment of time.

Correctness

• If the boundary, decision and criterion conditions 𝐵, 𝐷 and 𝐶 meet the
precondition, and the virtual graph 𝐺 for traversing is finite,

• then every algorithm instantiated from the template terminates after
𝑂 𝐺 iterations of the loop,

• and upon termination the final value of 𝑆𝑒𝑡 𝑂𝑢𝑡 is the set of all nodes
of 𝐺 that meet the criterion condition 𝐶.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
78

CONCLUDING REMARKS
ON BT AND B&B DESIGN TEMPLATES

Part 5

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
79

BT and B&B

⚫ We have discussed and present a unified template for BT and B&B
algorithm design patterns,

⚫ specified the template by means of (semiformal) precondition and
postcondition,

⚫ validate it manually by Floyd method.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
80

Directions for further research

• Formalization of the template and its specification, development of a
computer-aided proof in some proof-assistant system.

• Study of the algorithm design templates from mixed computations
perspective for automatic algorithm generation.

• Implementation as a template library in C++ to extend STL and try its
efficiency (educational as well as practical).

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
81

Templates:
Mixed Computation Perspective
• The primary purpose of the specified and verified templates for

algorithm design patterns is to use them for (semi-)automatic
specialization of the patterns to generate correct by design algorithms
to solve concrete problems.

• The purpose is closely related to Mixed Computations and/or Partial
Evaluation:

o Ershov A.P. Mixed computation: potential applications and problems
for study. Theor. Comp. Sci., 1982, v18(1), p.41-67.

o Jones J.D., Gomard C.K., and Sestoft P. Partial Evaluation and
Automatic Program Generation. Prentice Hall International, 1993.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
82

Templates:
Mixed Computation Perspective
• The difference consists in level of consideration:

o in our case we use algorithm design templates and use pseudo-code,

o while in Mixed Computations and Partial Evaluation program code
and programming languages are in use.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
83

Selected references

1. Shilov N.V. Algorithm Design Template base on Temporal ADT. Proceedings of 18th International
Symposium on Temporal Representation and Reasoning, 2011. IEEE Computer Society. P.157-162.

2. Silov N.V. Verification of Backtracking and Branch and Bound Design Templates. Automatic Control
and Computer Sciences, 2012, v.46(7), p.402-409.

3. Shilov N.V. Unifying Dynamic Programming Design Patterns. Bulletin of the Novosibirsk Computing
Center (Series: Computer Science, IIS Special Issue), v.34, 2012, p.135-156.

4. Shilov N.V. Algorithm Design Patterns: Program Theory Perspective. In Proceedings of Fifth
International Valentin Turchin Workshop on Metacomputation, 2016, University of Pereslavl, p.
170-181.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
84

Thank you! Questions?

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at

Innopolis
85

	Слайд 1, “The Theory of Everything”: uniform algorithm design patterns (backtracking, branch & bound, greedy algorithms, divide and conquer, and dynamic programming...)
	Слайд 2, Introduction
	Слайд 3, Standard Template Library
	Слайд 4, Standard Template Library
	Слайд 5, A “Must”
	Слайд 6, Undergraduate vs. Graduate levels
	Слайд 7, Glory of the Past
	Слайд 8, More Glory …
	Слайд 9, Formalize!
	Слайд 10, Formalization (?) of Greedy Method
	Слайд 11, Formalize!
	Слайд 12, Talk outlines
	Слайд 13, Levels of reasoning – interpreted and uninterpreted
	Слайд 14, Let’s start with recursion elimination
	Слайд 15, Problem via recursion elimination
	Слайд 16, Recursive factorial
	Слайд 17, Imperative factorial
	Слайд 18, What if known functions are uninterpreted?
	Слайд 19, Herbrand models and structures
	Слайд 20, Why the schemata aren’t equivalent?
	Слайд 21, Translation of the recursive scheme to a standard scheme (with equality)
	Слайд 22, How to rid of the equality
	Слайд 23, Translation of the recursive factorial to an iterative form
	Слайд 24, Extremely inefficient but semantic-independent
	Слайд 25, Co-recursion and Tail-recursion by example
	Слайд 26, Teil-recursion elimination by example
	Слайд 27, Recursive and iterative Dynamic Programming
	Слайд 28, Warming-up Dropping Bricks Problem
	Слайд 29, History of “Dynamic Programming”
	Слайд 30, Bellman equation and optimality principle
	Слайд 31, Descending (top-down) Dynamic Programming
	Слайд 32, Descending (top-down) Dynamic Programming – cont.
	Слайд 33, More Examples: Factorial, Fibonacci Numbers and Words
	Слайд 34, Observations
	Слайд 35, Research questions about Descending Dynamic Programming
	Слайд 36, A need of dynamic (size) memory
	Слайд 37, A need of dynamic (size) memory (proof idea)
	Слайд 38, A need of dynamic (size) memory (proof idea)
	Слайд 39, Support of the Objective Function
	Слайд 40, When an array suffices
	Слайд 41, When static memory suffices
	Слайд 42, Design outlines and proof comments
	Слайд 43, Selected references
	Слайд 44, Recall about Backtracking And Branch & Bound
	Слайд 45, Two slides that were dropped on May 22: Support of the Objective Function
	Слайд 46, Two slides that were dropped on May 22: When an array suffices
	Слайд 47, Back to Dropping Bricks Problem
	Слайд 48, Dynamic Programming for knapsack with undividable goods
	Слайд 49, Dynamic Programming for knapsack with undividable goods – cont.
	Слайд 50, Graph Traversals
	Слайд 51, Back to descending Dynamic Programming
	Слайд 52, Depth- and Breadth-first Traversals
	Слайд 53, Backtracking and Branch-and-Bound
	Слайд 54, Backtracking Branch-and-Bound and Backtracking
	Слайд 55, Example: Four Queens Puzzle
	Слайд 56, Four Queens Puzzle: Naïve Algorithm
	Слайд 57, Four Queens Puzzle: Backtracking and Branch-and-Bound
	Слайд 58, Basic Terminology
	Слайд 59, Interval Method for Global Optimization
	Слайд 60, Unifying Templates for BT and B&B
	Слайд 61, Temporal ADT Teque
	Слайд 62, Temporal ADT Teque – cont.
	Слайд 63, Time-independent operations
	Слайд 64, Time-dependent operation AddTo
	Слайд 65, Time-sensitive operations
	Слайд 66, Time-sensitive operations – cont.
	Слайд 67, Notational convention
	Слайд 68, Teque Convention
	Слайд 69, Virtual Graph Notation
	Слайд 70, Boundary and Decision Conditions
	Слайд 71, Template
	Слайд 72, Specification: Postcondition
	Слайд 73, Specification: Preconditions 1 and 2
	Слайд 74, Specification: Preconditions 3 and 4
	Слайд 75, Specification: Precondition 5
	Слайд 76, Loop Invariant
	Слайд 77, Loop Invariant – cont.
	Слайд 78, Correctness
	Слайд 79, Concluding Remarks on BT and B&B Design Templates
	Слайд 80, BT and B&B
	Слайд 81, Directions for further research
	Слайд 82, Templates: Mixed Computation Perspective
	Слайд 83, Templates: Mixed Computation Perspective
	Слайд 84, Selected references
	Слайд 85, Thank you! Questions?

