
“The Theory of 
Everything”: 
uniform algorithm 
design patterns 
(backtracking, branch & bound, greedy 
algorithms, divide and conquer, and dynamic 
programming...)
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Simulated Large Hadron Collider CMS particle detector data depicting a 
Higgs boson produced by colliding protons decaying into hadron jets and 
electrons

https://en.wikipedia.org/wiki/File:CMS_Higgs-event.jpg


Introduction
Part 1
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Standard Template Library

• Story (borrowed from Standard Template Library – Wikipedia) that I 
didn’t know till 2021 (and firstly learnt from Eugene Zouev lectures on 
Software Systems Analysis and Design):

o In November 1993 Alexander Stepanov presented a library based on 
generic programming to the ANSI/ISO committee for C++ 
standardization. 

o The committee's response was overwhelmingly favorable and led to a 
request from Andrew Koenig for a formal proposal in time for the 
March 1994 meeting. 
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Standard Template Library

o The prospects for early widespread dissemination of the STL were 
considerably improved with Hewlett-Packard's decision to make its 
implementation freely available on the Internet in August 1994. 

o This implementation, developed by Stepanov, Lee, and Musser during 
the standardization process, became the basis of many 
implementations offered by compiler and library vendors today.

o It provides four components called algorithms, containers, functions, 
and iterators.
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A “Must”

• Design and Analysis of Computer Algorithms is a must of 
Computer Curricula. 

• In particular, it covers algorithm design patterns like greedy 
method, divide-and-conquer, dynamic programming, 
backtracking and branch-and-bound. 
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Undergraduate vs. Graduate levels

• All listed design patterns are taught, learned and 
comprehended by examples.

• It is acceptable at undergraduate level. But  is it a valid 
educating approach at graduate level?
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Glory of the Past

• Greedy Method

o Continues Knapsack problem

o Kruskal's algorithm

o Huffman coding 

• Backtracking 

o N-Queen Problem

o Discrete Knapsack problem

o Davis–Putnam–Logemann–Loveland algorithm
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More Glory …

• Branch & Bound 

o Discrete Knapsack problem

o Interval Methods for Global Optimization

o Towards a Tractable Exact Test for Global Multiprocessor Fixed 
Priority Scheduling (Artem Burnyakov talks for STEP-2024)

• Dynamic Programming

o Dijkstra (shortest path) algorithm

o Floyd–Warshall (shortest paths) algorithm

o Cocke – Younger – Kasami algorithm
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Formalize!

• But these patterns can be formalized as design templates, rigorously 
specified, and mathematically verified. 

• Greedy method is the only pattern that had been studied and 
formalized from rigor mathematical point of view in XX century. 

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at 

Innopolis
9



Formalization (?) of Greedy Method

• Edmonds J. Matroids and the greedy algorithm. Mathematical 
Programming, 1971, v.1, p.127-113.

• Korte B., Lovasz L. Mathematical structures underlying greedy 
algorithms. Lecture Notes in Computer Science, 1981, v.117, p.205-209.

• Helman P., Moret B.M.E., Shapiro H.D. An exact characterization of 
greedy structures. SIAM Journal on Discrete Mathematics, 1993, v.6(2), 
p.274-283.
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Formalize!

• The speaker (i.t., me;-) published (in years 2010-2016) formalization, 
specification and (manual) verification for the following individual 
design techniques – backtracking, branch & bound, dynamic 
programming.

• In the present talk: survey of these formalizations from programming 
theory perspective and then … a move to a uniform/unified pattern in 
terms op 𝑚𝑎𝑝 and 𝑟𝑒𝑑𝑢𝑐𝑒.
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Talk outlines

• Introduction

• Levels of reasoning – interpreted and uninterpreted

• Recursive and iterative Dynamic Programming (DP)

• Recall about Backtracking (BT) and Branch & Bound (B&B)

• Unifying patterns for BT and B&B

• Conclusion (greedy, divide and conquer?) 

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at 

Innopolis
12



LEVELS OF REASONING – 
INTERPRETED AND UNINTERPRETED

Part 2
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Let’s start with recursion elimination

• A classic example of monadic recursion elimination (using 
reduction to the tail recursion) is function 𝑀91: 𝑵 → 𝑵

𝑀91 𝑛 = 𝑖𝑓 𝑛 > 100 𝑡ℎ𝑒𝑛 𝑛 − 10  𝑒𝑙𝑠𝑒 𝑀91 𝑀91 𝑛 + 11 .

• It was introduced by John McCarthy, studied by Zohar Manna, 
Amir Pnueli, Donald Knuth. It turns out that 

𝑀91 𝑛 = 𝑖𝑓 𝑛 > 101 𝑡ℎ𝑒𝑛 𝑛 − 10  𝑒𝑙𝑠𝑒 91.
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Problem via recursion elimination

• A “key” idea elimination is a move from a monadic function 
𝑀91: 𝑵 → 𝑵 to a binary function 𝑀2: 𝑵 × 𝑵 → 𝑵 such that 
𝑀2 𝑛, 𝑘 = 𝑀91

𝑘 𝑛  for all 𝑛, 𝑘 ∈ 𝑵:

𝑀2 𝑛, 𝑘 = 𝑖𝑓 𝑘 = 0 𝑡ℎ𝑒𝑛 𝑛 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛 > 100 𝑡ℎ𝑒𝑛 𝑀2 𝑛 − 10 , 𝑘 − 1  

𝑒𝑙𝑠𝑒 𝑀2 𝑛 + 11 , 𝑘 + 1 .
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Recursive factorial

• Recursive program to compute the factorial function 𝐹: 𝑵 → 𝑵 

o 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑠𝑙𝑒 𝑛 ∙ 𝐹 𝑛 − 1  (in the standard notation), 

o 𝐹 𝑛 = 𝑖𝑓 𝑝 𝑛  𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑛, 𝐹 𝑔 𝑛  (in a prefix notation), 

where known functions are 

o 𝑝 ≡ 𝜆 𝑥 ∈ 𝑵. 𝑥 = 0 ∶ 𝑵 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛,

o 𝑐 ≡ 1 ∶→ 𝑵 (i.e., a constant)

o 𝑓 ≡ 𝜆 𝑥, 𝑦 ∈ 𝑵. 𝑥 ∙ 𝑦 ∶ 𝑵 × 𝑵 → 𝑵,

o 𝑔 ≡ 𝜆 𝑥 ∈ 𝑵. 𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒 𝑥 − 1 ∶ 𝑵 → 𝑵.
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Imperative factorial

Program 1

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑵;

2. 𝑦: = 1;

3. 𝑤ℎ𝑖𝑙𝑒 𝑥 ≠ 0 𝑑𝑜

4.  𝑦: = 𝑥 ∙ 𝑦;

5.  𝑥: = 𝑥 − 1

6. 𝑜𝑑

Program 2

1. 𝑉𝐴𝑅 𝑥, 𝑦, 𝑧: 𝑵;

2. 𝑦: = 1; 𝑧 ≔ 1;

3. 𝑤ℎ𝑖𝑙𝑒 𝑧 ≤ 𝑥 𝑑𝑜

4.  𝑦 ≔ 𝑧 ∙ 𝑦;

5.  𝑧 ≔ 𝑧 + 1

6. 𝑜𝑑
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What if known functions are uninterpreted?

Recursive schemata with a single available (not specified) data type 𝑻:

𝐹 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑥, 𝐹 𝑔 𝑥  

Standard scheme 1 Standard scheme 2

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑻;
2. 𝑦 ≔ 𝑐;
3. 𝑤ℎ𝑖𝑙𝑒 ¬𝑝 𝑥  𝑑𝑜
4.  𝑦 ≔ 𝑓 𝑥, 𝑦 ;
5.  𝑥 ≔ 𝑔 𝑥
6. 𝑜𝑑

1. 𝑉𝐴𝑅 𝑥, 𝑦, 𝑧: 𝑻;
2. 𝑦 ≔ 𝑐; 𝑧 ≔ 𝑐;
3. 𝑤ℎ𝑖𝑙𝑒 𝑞 𝑥, 𝑧  𝑑𝑜
4.  𝑦 ≔ 𝑓 𝑧, 𝑦 ;
5.  𝑧 ≔ ℎ 𝑧
6. 𝑜𝑑
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Herbrand models and structures 

• To demonstrate that not any two of program schemata from the 
previous slide are equivalent, it is sufficient to consider Herbrand 
models (also called free models). 

• The domain of a Herbrand model comprises all terms constructed from 
the available functional symbols and input variables (while the domain 
of the Herbrand structures comprise the ground terms exclusively). 
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Why the schemata aren’t equivalent?

• Let us consider a Herbrand model such that 
o 𝑞 is always 𝑇𝑅𝑈𝐸, 

o 𝑝 𝑔 𝑔 𝑥  is 𝑇𝑅𝑈𝐸 while 𝑝 is 𝐹𝐴𝐿𝑆𝐸 for all other terms. 

• Then 

o 𝐹 𝑥 = 𝑓 𝑥, 𝐹 𝑔 𝑥 = 𝑓 𝑥, 𝑓 𝑔 𝑥 , 𝐹 𝑔 𝑔 𝑥 =

= 𝑓 𝑥, 𝑓 𝑔 𝑥 , 𝑐 ,

o the output value of 𝑦 computed by scheme 1 is 𝑓 𝑔 𝑥 , 𝑓 𝑥, 𝑐 , 

o while scheme 2 does not halt at all. 
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Translation of the recursive scheme 
to a standard scheme (with equality) 

1. 𝑉 𝐴𝑅 𝑥, 𝑦, 𝑢, 𝑣 ∶ 𝑻;
2. 𝑢 ∶= 𝑥;
3. 𝑤ℎ𝑖𝑙𝑒 ¬𝑝 𝑢 𝑑𝑜
4.   𝑢 ∶= 𝑔 𝑢
5. 𝑜𝑑
6. 𝑦 ∶= 𝑐;

7. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 𝑥 𝑑𝑜
8.     𝑣 ∶= 𝑥;
9.     𝑤ℎ𝑖𝑙𝑒 𝑔 𝑣 ≠ 𝑢 𝑑𝑜
                  𝐼𝑛𝑣. 1: ∃𝑚 < 𝑛 ∈ 𝑵 ∶  𝑣 = 𝑔𝑚 𝑥  & 𝑢 = 𝑔𝑛 𝑥
                  𝑣 ∶= 𝑔 𝑣
             𝑜𝑑;
             𝐼𝑛𝑣. 2: 𝑔 𝑣 = 𝑢 & 𝑦 = 𝐹 𝑢
10.     𝑦 ∶= 𝑓 𝑢, 𝑦 ; 𝑢 ∶= 𝑣
11. 𝑜𝑑;
12. 𝑦 ≔ 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑐 𝑒𝑙𝑠𝑒 𝑓 𝑥, 𝑦
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How to rid of the equality 

• Finally, the equality used in lines 7 and 
9 of the scheme is easy to eliminate 
because it may be implemented as call 
of the following tail-recursive function 
𝐸𝑄 (easy to implement by an iterative 
program:
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𝐸𝑄 𝑎, 𝑏 =  𝑖𝑓 𝑝 𝑎 ∨ 𝑝 𝑎  𝑡ℎ𝑒𝑛 𝑝 𝑎  & 𝑝 𝑏  𝑒𝑙𝑠𝑒 𝐸𝑄 𝑔 𝑎 , 𝑔 𝑏 .



Translation of the recursive factorial 
to an iterative form 

1. 𝑉 𝐴𝑅 𝑥, 𝑦, 𝑢, 𝑣 ∶ 𝑵;
2. 𝑢 ∶= 𝑥;
3. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 0 𝑑𝑜
4.   𝑢 ∶= 𝑢 − 1
5. 𝑜𝑑
6. 𝑦 ∶= 1;

7. 𝑤ℎ𝑖𝑙𝑒 𝑢 ≠ 𝑥 𝑑𝑜
8.    𝑣 ∶= 𝑥;
9.    𝑤ℎ𝑖𝑙𝑒 𝑣 − 1 ≠ 𝑢 𝑑𝑜
                  𝐼𝑛𝑣. 1: ∃𝑚 < 𝑛 ∈ 𝑵 ∶ 𝑣 = 𝑥 − 𝑚 & 𝑢 = 𝑥 − 𝑛
                  𝑣 ∶= 𝑣 − 1
             𝑜𝑑;
             𝐼𝑛𝑣. 2: 𝑣 − 1 = 𝑢 & 𝑦 = 𝐹 𝑢
10.    𝑦 ∶= 𝑢 ⋅ 𝑦; 𝑢 ∶= 𝑣
11. 𝑜𝑑;
12. 𝑦 ≔ 𝑖𝑓 𝑥 = 0  𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝑥 ⋅ 𝑦
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Extremely inefficient 
but semantic-independent
• Unfortunately, imperative factorial from the previous slide 10 is 

extremely inefficient – it runs in 𝑂 𝑛2  time in contrast to both 
programs (1 and 2) from slide 4 that run in linear time 𝑂 𝑛 .

• It worth to remark that Program 1 can be automatically constructed 
from the recursive factorial program using co-recursion and then tail-
recursion. 

• This use of the co-recursion is semantic-dependent (since it is safe 
assuming commutativity of the function 𝑓), while our approach to 
recursion elimination is semantic-independent.   
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Co-recursion and Tail-recursion by example

• Recursive factorial 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑠𝑙𝑒 𝑛 ∙ 𝐹 𝑛 − 1  is not in 
the tail-form (because has next call inside some function).

• But it is equivalent to the following recursive program in the tail-form:

൝
𝐹 𝑛 = 𝑃 𝑛, 1

𝑃 𝑛, 𝑚 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑚 𝑒𝑠𝑙𝑒 𝑃 𝑛 − 1 , 𝑛 ∙ 𝑚
.

• This program is in the tail-form because all calls are never inside other 
functions.

• Co-recursion is a “trick” that consists in converts result into another 
argument and use this argument in the recursion.
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Teil-recursion elimination by example

• Tail-recursion ൝
𝐹 𝑛 = 𝑃 𝑛, 1

𝑃 𝑛, 𝑚 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑚 𝑒𝑠𝑙𝑒 𝑃 𝑛 − 1 , 𝑛 ∙ 𝑚
 

is easy to eliminate (and compare with Program 1 from slide 4):
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𝑠𝑡𝑎𝑟𝑡:  𝑉𝐴𝑅 𝑥, 𝑦:  𝑵 𝑔𝑜𝑡𝑜 2 
2:  𝑦: = 1 𝑔𝑜𝑡𝑜 3 
3:  𝑖𝑓 𝑥 = 0 𝑡ℎ𝑒𝑛 𝑔𝑜𝑡𝑜 𝑠𝑡𝑜𝑝 𝑒𝑙𝑠𝑒 𝑔𝑜𝑡𝑜 4 
4:  𝑦: = 𝑥 ⋅ 𝑦 𝑔𝑜𝑡𝑜 5 
5:  𝑥: = 𝑥 − 1 𝑔𝑜𝑡𝑜 3 
stop

1. 𝑉𝐴𝑅 𝑥, 𝑦: 𝑵;
2. 𝑦: = 1;
3. 𝑤ℎ𝑖𝑙𝑒 𝑥 ≠ 0 𝑑𝑜
4.  𝑦: = 𝑥 ∙ 𝑦;
5.  𝑥: = 𝑥 − 1
6. 𝑜𝑑



RECURSIVE AND ITERATIVE 
DYNAMIC PROGRAMMING

Part 3
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Warming-up Dropping Bricks Problem

• Define stability of “bricks” (cell phones) by 
dropping them from a tower of H meters. How 
many times do you need to drop bricks, if you 
have just 2 bricks?

• 𝐺 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒 

1 + min1≤𝑘≤𝑛 max 𝑘 − 1 , 𝐺 𝑛 − 𝑘 .
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History of “Dynamic Programming”

• Dynamic Programming was introduced by Richard Bellman in the 1950s 
to tackle optimal planning problems. 

• In 1950s the noun programming had nothing in common with more 
recent computer programming and meant planning (compare: linear 
programming). 

• The adjective dynamic points out that Dynamic Programming is related 
to a change of states (compare – dynamic logic, dynamic
system). 
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Bellman equation and optimality principle

• Bellman equation is a functional equality for the objective function that 
expresses the optimal solution at the current state in terms of the 
optimal solution at next (changed) states. 

• It is conceptualized a so-called Bellman Principle of Optimality: an 
optimal plan (or program) should be optimal at every stage. 
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Descending (top-down) 
Dynamic Programming
• General pattern of Bellman equation may be formalised by the following 

scheme of recursive descending Dynamic Programming: 

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑓 𝑥  𝑒𝑙𝑠𝑒 

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥 ;
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the term is linear in each branch
w.r.t. the objective function G



Descending (top-down) 
Dynamic Programming – cont.
• In this scheme 

o 𝐺: 𝑋 → 𝑌 is a symbol for the objective function, 

o 𝑝: 𝑋 → 𝐵𝑜𝑜𝑙 is a symbol for a known predicate, 

o 𝑓: 𝑋 → 𝑌 is a symbol for a known function, 

o is a symbol for a known function with a variable (but finite) number 
of arguments,

– all ℎ𝑖: 𝑋 × 𝑍 → 𝑌, 𝑖 ∈ 1. . 𝑛(𝑥) are symbols for known functions, 

– all ℎ𝑖: 𝑋 → 𝑋, 𝑖 ∈ 1. . 𝑛(𝑥) are symbols for known functions too. 
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More Examples: 
Factorial, Fibonacci Numbers and Words 
• 𝐹 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝑛 ⋅ 𝐹 𝑛 − 1 ;

• 𝐹𝑖𝑏 𝑛 = 𝑖𝑓 0 ≤ 𝑛 ≤ 1 𝑡ℎ𝑒𝑛 1 𝑒𝑙𝑠𝑒 𝐹𝑖𝑏 𝑛 − 2 + 𝐹𝑖𝑏 𝑛 − 1 ;

• 𝑊𝑟𝑑 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 𝑎 

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛 = 1 𝑡ℎ𝑒𝑛 𝑏  

𝑒𝑙𝑠𝑒 𝑊𝑟𝑑 𝑛 − 2 ∘ 𝑊𝑟𝑑 𝑛 − 1 .
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Observations

• Factorial, Fibonacci Numbers and Words need static memory of a fixed 
size.

• Surprisingly, but Dropping Bricks Problem also needs just static memory 

of fix-size, since 𝐺 𝑛 = arg min 𝑘 ∈ 𝑵:
𝑘 𝑘+1

2
≥ 𝑛 .
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Research questions about 
Descending  Dynamic Programming 

• It follows from Paterson M.S. and Hewitt C.T. paper Comparative 
Schematology (1970) that fix-size static memory is not enough for 
recursion elimination in Bellman equation.

• When one-time allocated 

o array (with integer indexes),

o (fix-size) static memory

is sufficient to eliminate recursion in Bellman equation?
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A need of dynamic (size) memory

• The following program scheme

𝐹 𝑥  =  𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑓 𝐹 𝑔 𝑥 , 𝐹 ℎ 𝑥   

is not equivalent to any standard program scheme:

for every 𝑛 > 0 

there exists an Herbrand model 𝑇𝑛

where any standard program scheme 

needs 𝑛 variables to compute 𝐹.
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A need of dynamic (size) memory (proof idea)

Consider the following data type 𝑇𝑛:

• values are sub-terms of the term 𝑡𝑛 
depicted to the right;

• 𝑝 𝑔𝑘 ℎ𝑚 𝑥  is true, if 𝑘 + 𝑚 = 𝑛.
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A need of dynamic (size) memory (proof idea)

• Observe that if 𝐹 𝑥  =  𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑓 𝐹 𝑔 𝑥 , 𝐹 ℎ 𝑥  

then 𝐹 𝑥 = 𝑡𝑛.

• Prove by induction: any iterative algorithm that computes 𝑡𝑛 needs 𝑛 
variables (memory cells) at least.
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Support of the Objective Function 

• If 𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑓 𝑥  𝑒𝑙𝑠𝑒 

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥  

is defined for some value 𝑣, then it is possible to pre-compute the 
support spp 𝑣 , the set of all values that occur in the computation of 
𝐺 𝑣 :

spp 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑥 ⋃ ⋃𝑖∈ 1..𝑛 𝑥 spp 𝑡𝑖 𝑥 .

• Remark, that for every 𝑣, if 𝐺 𝑣  is defined, then spp 𝑣  is finite (but 
not vice versa).
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When an array suffices

• One-time allocated array with integer indexes suffices for computing 

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑓 𝑥  𝑒𝑙𝑠𝑒 

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 is a constant and all 𝑡𝑖, 𝑖 ∈ 1. . 𝑛 𝑥 , are interpreted by 

commutative functions.
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When static memory suffices

• Fix-size static memory suffice for computing 

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑓 𝑥  𝑒𝑙𝑠𝑒 

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 𝑥 = 𝑛 is a constant and there exists a known computable function 
𝑡 such that 

o 𝑡𝑖 = 𝑡𝑖 for all 𝑖 ∈ 1. . 𝑛 ,

o 𝑝 𝑢  implies 𝑝 𝑡 𝑢  for all 𝑢 ∈ spp 𝑥 .

• Examples: Factorial, Fibonacci Numbers and Words.

• Counter-example: Paterson-Hewitt scheme. 
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Design outlines and proof comments

Proof comments

• Proof idea – very same as for 
factorial function in Part 1.

• Scheme’ design (with equality and 
invertible function 𝑡) is depicted to the 
right.

Design outlines
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RECALL ABOUT BACKTRACKING 
AND BRANCH & BOUND

Part 3
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Two slides that were dropped on May 22:
Support of the Objective Function 

• If 𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑓 𝑥  𝑒𝑙𝑠𝑒 

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥  

is defined for some value 𝑣, then it is “possible” to pre-compute the 
support spp 𝑣  – the set of all values that occur while computing 𝐺 𝑣 :

spp 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑥 ⋃ ⋃𝑖∈ 1..𝑛 𝑥 spp 𝑡𝑖 𝑥 .

• Remark, that for every 𝑣, if 𝐺 𝑣  is defined, then spp 𝑣  is finite (but 
not vice versa).
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Two slides that were dropped on May 22:
When an array suffices
• One-time allocated array with integer indexes suffices for computing 

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑓 𝑥  𝑒𝑙𝑠𝑒 

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

if 𝑛 is a constant and all 𝑡𝑖, 𝑖 ∈ 1. . 𝑛 𝑥 , are interpreted by 

commutative functions.
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Back to Dropping Bricks Problem

• Unfortunately, the techniques 
developed above lead to use of 

o a (one time allocated) array,

o but not a fix-size static 
memory…
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Dynamic Programming for
knapsack with undividable goods 
• Knapsack problem for undividable goods can be formulated in the form 

of descending dynamic programming,

but 

• when gross capacity and/or individual weights are real values the  
computation of the support function 𝑠𝑝𝑝 has the same complexity as 
the problem itself!
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Dynamic Programming for
knapsack with undividable goods – cont.
• For example, the maximal price of 𝑛 ≥ 0 undividable goods 𝑊1, 𝑃1 , … 

𝑊𝑛, 𝑃𝑛  that may be accumulated in a  knapsack with capacity 𝑊 may 
be computed recursive algorithm (that match dynamic programming 
pattern): 

𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊, 𝑛 = 𝑖𝑓 𝑛 = 0 𝑡ℎ𝑒𝑛 0 𝑒𝑙𝑠𝑒 

𝑖𝑓 𝑊𝑛 > 𝑊 𝑡ℎ𝑒𝑛 𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊, 𝑛 − 1  𝑒𝑙𝑠𝑒  

max 𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊, 𝑛 − 1 , 𝑃𝑛 + 𝑀𝑎𝑥𝑃𝑟𝑖𝑐𝑒 𝑊 − 𝑊𝑛 , 𝑛 − 1  
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Graph Traversals

• In cases like knapsack with undividable goods, it remains to travers the 
decision tree (i.e., the tree of recursive calls) of the problem using 
backtracking or branch-and-bound methodology.

• In general, graph traversal refers to the problem of visiting all the nodes 
in a (di)graph to compute some graph characteristics (in particular, to 
find any/all nodes/vertices that enjoy some property specified by some 
Boolean criterion condition).
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Back to descending
Dynamic Programming
• Bellman equation is already a functioal program and 

𝐺 𝑥 = 𝑖𝑓 𝑝 𝑥  𝑡ℎ𝑒𝑛 𝑓 𝑥  𝑒𝑙𝑠𝑒 

𝑔 𝑥, ℎ𝑖 𝑥, 𝐺 𝑡𝑖 𝑥 ∶ 𝑖 ∈ 1. . 𝑛 𝑥

and its computations may be considered as a traversal of the tree of 
recursive calls.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at 

Innopolis
51



Depth- and Breadth-first Traversals

• A Depth-first search (DFS) is a technique for traversing a finite graph 
that visits the child nodes before visiting the sibling nodes.

• A Breadth-first search (BFS) is another technique for traversing a finite 
graph that visits the sibling nodes before visiting the child nodes.
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Backtracking and 
Branch-and-Bound
• Sometimes it is not necessary to traverse all vertices of a graph 

to collect the set of nodes that meet the criterion function, 
since there exists some Boolean boundary condition which 
guarantees that child nodes do not meet the criterion function
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Backtracking
Branch-and-Bound and Backtracking
• Branch-and-bound (B&B) is DFS that uses boundary condition, the 

method was introduced in the paper

Land A. H. and Doig A. G. An automatic method of solving discrete 
programming problems. Econometrica, 28(3), 1960, p.497-520.

• Backtracking (BT) is DFS that uses boundary condition, the method was 
introduced in the paper

Golomb S.W. and Baumert L.D. Backtrack Programming. Journal of ACM, 
12(4), 1965, p.516-524.
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Example: Four Queens Puzzle

• Place 4 queens on simplified 4 ×
4 chessboard so that non attacks 
another (criterion condition).

• Naïve Algorithm: 

o generate ALL possible  
placements proceeding row by 
row, and square by square in 
the row; 

o try criterion condition for each 
generated placement. 
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Four Queens Puzzle: 
Naïve Algorithm

2 18 34 50

3 8 13 19 24 29 35 40 45 51 56 61

1

4         6        9       11     14        16      20      22       25      27      30      32       36      38      41     43        46     48       52     54       57      59       62      64

5        7       10       12     15       17      21       23      26       28      31      33       37      39      42      44 47     49       53     55       58      60       63      65

1        2        3         4        5        6         7        8         9       10      11      12        13      14      15 16        17     18       19     20       21      22       23      24

indexes for positioning

1                                   2                            3                                  4

2      3      4                     1      3      4                    1      2      4                    1      2     3

3       4  2      4   2      3  3      4   1      4   1      3   2     4   1      4    1     2   2     3   1      3   1      2

4    3     4     2   3      2   4     3     4    1    3     1    4   2      4   1     2     1   3    2      3    1    2     1
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Four Queens Puzzle: 
Backtracking and Branch-and-Bound

30 38

2 18 34 50

8 13 29 35 51 56

1

1                                   2                            3                                  4

2      3      4                     1      3      4                    1      2      4                    1      2     3

2      4   2      3  3                   1  3   2   4                2     3   1      3   

Q

Q

Q

Q

Q

Q

Q

Q

3         2

boundary

boundary boundary

boundary

boundary boundary

Some subtrees may be refuted on the fly due to 
boundary condition: some queens attack each other
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Basic Terminology

Nodes that emerge in the process 
of traversing (of a tree with some 
boundary condition) can be

• live (some of its children are not  
generated yet),

• dead (all its children has been  
generated),

• expanding  (currently 
processing).
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8 13 29

1

1                                   2 

2      3      4                     1      3      4 

2      4   2      3  3                        1   

Q

Q

Q

Q

3 

boundary

boundary
boundary



Interval Method for 
Global Optimization
⚫ Most global optimization methods using interval techniques employ a 

branch-and-bound strategy:

Gray P., HartW., Painton L., Phillips C., Trahan M.,Wagner J. A Survey of 
Global Optimization Methods. Sandia National Laboratories, 1997 
(http://www.cs.sandia.gov/opt/survey/main.html). 

⚫ These algorithms decompose the search domain into a collection of 
boxes, arrange them into a tree-structure (according to inclusion), and 
compute the lower bound on the objective function by interval 
technique.
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UNIFYING TEMPLATES 
FOR BT AND B&B

Part 4
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Temporal ADT Teque

• Theque is a finite set of values (of some background data type) marked 
by disjoint time-stamps.

• The time stamps are readings of a global clock that counts time in 
numbers of ticks, they (time-stamps) never change and always are not 
greater than current reading of the clock.

• Let us represent an element 𝑥 with a time-stamp 𝑡 by the pair 𝑥, 𝑡 . 
Readings of the clock as well as time-stamps are not visible for any 
observer.
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Temporal ADT Teque – cont.

• Theque inherits some set-theoretic operations: the empteq (i.e., empty 
teque) is simply the empty set (∅), set-theoretic equality (=) and 
inequality (≠), subset relations (for example, ⊆). 

• ADT theque has its own specific operations, some of these operations 
are time-independent, some others are time-sensitive, and some are 
time-dependent.
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Time-independent operations

⚫ Operation 𝑆𝑒𝑡: for every teque 𝑇 let 𝑆𝑒𝑡 𝑇  be 𝑥 | ∃𝑡: 𝑥, 𝑡 ∈ 𝑇 .

⚫ Operations 𝐼𝑛 and 𝑁𝑖: for every teque 𝑇 and any value 𝑥 (of the 
background type) 

o let 𝐼𝑛 𝑥, 𝑇  stay for 𝑥 ∈ 𝑆𝑒𝑡 𝑇 , 

o and 𝑁𝑖 𝑥, 𝑇  stay for 𝑥 ∉ 𝑆𝑒𝑡 𝑇 .

• Operation 𝑆𝑝𝑒𝑐 (specification): for every teque 𝑇 and any predicate
𝜆𝑥: 𝑄 𝑥  on values of the background type let teque 𝑆𝑝𝑒𝑐 𝑇, 𝑄  be the 
following sub-teque 𝑥, 𝑡 ∈ 𝑇 ∶ 𝑄 𝑥 .
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Time-dependent operation AddTo

• For every list of teques 𝑇1,… 𝑇𝑛 (𝑛 ≥ 1) and

any finite set 𝑥1, … 𝑥𝑚  of elements of the background type (𝑚 ≥ 0), 
let execution 𝐴𝑑𝑑𝑇𝑜 𝑥1, … 𝑥𝑚 , 𝑇1,… 𝑇𝑛  at time 𝑡 

returns 𝑛 teques 𝑇1
′,… 𝑇𝑛

′  such that 

for some moments of time  𝑡 = 𝑡1 < ⋯ < 𝑡𝑚 = 𝑡′ 

(where 𝑡′ is the the moment of termination of the operation), 

𝑇𝑖
′ = 𝑇𝑖⋃ 𝑥1, 𝑡1 , … 𝑥𝑚, 𝑡𝑚  for all 𝑖 ∈ 1. . 𝑛 .
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Time-sensitive operations

• There are three pairs of time-sensitive operations: 

o 𝐹𝑖𝑟 and 𝑅𝑒𝑚𝐹𝑖𝑟 (“head” and “tail”), 

o 𝐿𝑎𝑠 and 𝑅𝑒𝑚𝐿𝑎𝑠 (“top” and “pop”), 

o 𝐸𝑙𝑚 and 𝑅𝑒𝑚𝐸𝑙𝑚 (“random” and “drop it”). 

• Let 𝑇 be a teque.

o Let 𝐹𝑖𝑟 𝑇  be the value of the background type that has the smallest 
(i.e., the first) time-stamp in 𝑇, and let 𝑅𝑒𝑚𝐹𝑖𝑟 𝑇  be the teque that 
results from 𝑇 after removal of this element (with the smallest time-
stamp).
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Time-sensitive operations – cont.

o Let 𝐿𝑎𝑠 𝑇  be the value of the background type that has the largest 
(i.e., the last) time-stamp in 𝑇, and let 𝑅𝑒𝑚𝐿𝑎𝑠 𝑇  be the teque that 
results from 𝑇 after removal of this element (with the largest time-
stamp).

o Let 𝐸𝑙𝑚 𝑇  be some element (somehow defined or specified, even 
randomly) of 𝑇 (also without any time-stamp) and 𝑅𝑒𝑚𝐸𝑙𝑚 𝑇  is the 
teque that results from 𝑇 after removal of this element (with its time-
stamp).
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Notational convention

• Let pair of 𝐹𝐸𝐿 and 𝑅𝐸𝑀 stays simultaneously for

o either 𝐹𝑖𝑟 and 𝑅𝑒𝑚𝐹𝑖𝑟, 

o or 𝐿𝑎𝑠 and 𝑅𝑒𝑚𝐿𝑎𝑠, 

o or 𝐸𝑙𝑚 and 𝑅𝑒𝑚𝐸𝑙𝑚. 

• It means, for example, that if we instantiate 𝐹𝑖𝑟 for 𝐹𝐸𝐿, then we must 
instantiate 𝐹𝑖𝑟 for 𝐹𝐸𝐿 and 𝑅𝑒𝑚𝐹𝑖𝑟 for 𝑅𝐸𝑀 throughout the template.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at 

Innopolis
67



Teque Convention

⚫ Instantiation of 𝐹𝑖𝑟 and 𝑅𝑒𝑚𝐹𝑖𝑟 imposes queue discipline first-in — 
first-out and specializes the unified template to B&B template. 

⚫ Instantiation of 𝐿𝑎𝑠 and 𝑅𝑒𝑚𝐿𝑎𝑠 imposes stack discipline first-in — 
last-out and specializes the template to BT template. 

⚫ Instantiation of 𝐸𝑙𝑚 and 𝑅𝑒𝑚𝐸𝑙𝑚 specializes the unified template to 
Deep Backtracking, Branch and Bounds with priorities, or even a random 
walk templates.
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Virtual Graph Notation

• A virtual (di)graph 𝐺 is defined by means of the following features:

o a type 𝑁𝑜𝑑𝑒 of vertices and the initial vertex 𝑖𝑛𝑖 of this type such 
that every vertex of 𝐺 is reachable from 𝑖𝑛𝑖;

o a computable function 𝑁𝑒𝑖𝑔ℎ𝑏 ∶  𝑁𝑜𝑑𝑒 → 2𝑁𝑜𝑑𝑒  that for any vertex 
in 𝐺 returns the set of all its neighbors (children in a digraph).
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Boundary and Decision Conditions

• Let us introduce easy to cheque

o a Boundary condition 𝐵: 2𝑁𝑜𝑑𝑒 × 𝑁𝑜𝑑𝑒 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

o and a Decision condition 𝐷: 2𝑁𝑜𝑑𝑒 × 𝑁𝑜𝑑𝑒 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛

    to be used for collecting all nodes that meet a hard to cheque Criterion 
condition 𝐶: 𝑁𝑜𝑑𝑒 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛.
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Template
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0
Live, Visit:=  AddTo({ini}, empteq, empteq);

Out:= empteq; IF D({ini}, ini) THEN Out:= AddTo(ini, Out) 

1

2

Precondition

Postcondition

Invariant

U:= FEL(Live) ; Live:= REM(Live) ;

S:= { WNeighb(U) : Ni(W, Visit)) 

&  B(Set(Visit), W) } ;

Live, Saved:=  AddTo(S, Live, Saved) ;

Out:= Spec(Out, D(Set(Visit), _))

D(Set(Visit), U)

Out:= AddTo(U, Out)

+
_

Live = empteq ?+ _



Specification: Postcondition

Teque 𝑂𝑢𝑡 consists (with time-
stamps) of all nodes of the graph 𝐺 
that meet the criterion condition 𝐶, 
and each of these nodes has single 
entry (occurrence) in 𝑂𝑢𝑡.
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Specification: Preconditions 1 and 2 

1. A virtual (di)graph 𝐺 is defined 
by the initial node 𝑖𝑛𝑖 and the 
neighborhood function 𝑁𝑒𝑖𝑔ℎ𝑏.

2. For every node 𝑥 of 𝐺 the 
boundary condition 𝜆𝑆: 𝐵 𝑆, 𝑥  
is a monotone function (i.e., if a 
node is ruled-out by a set, then 
it is ruled-out by any larger set).
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Specification: Preconditions 3 and 4 

3. For every set 𝑆 of nodes of 𝐺 the 
decision condition 𝜆𝑥: 𝐷 𝑆, 𝑥  is a 
monotone function in the following 
sense: if a node is ruled-out by the 
set then all its successors are ruled 
out by the set also. 

4. For every node 𝑥 of 𝐺 the decision 
condition 𝜆𝑆: 𝐷 𝑆, 𝑥  is an anti-
monotone function in the following 
sense: a candidate node may be 
discarded later by a lager set.

May 22 and June 19, 2024
Algorithm Design Patterns - Nikolay V. Shilov for STEP at 

Innopolis
74



Specification: Precondition 5 

5. For every set of nodes 𝑆:

if 𝑆 ∪ 𝑥 ∈ 𝐺 ∶ 𝐵 𝑆, 𝑥 =

all nodes of 𝐺, 

then 𝐷 𝑆, 𝑥 ⇔ 𝐶 𝑥

(i.e., the decision condition 𝐷 
applied to a set with a complete 
extension is equivalent to the 
criterion condition 𝐶).
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Loop Invariant
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Conjunction of the following 4 clauses:

1. 𝑂𝑢𝑡 =

= 𝑆𝑝𝑒𝑐 𝑉𝑖𝑠𝑖𝑡, 𝜆𝑥: 𝐷 𝑆𝑒𝑡 𝑉𝑖𝑠𝑖𝑡 , 𝑥 .

2. 𝐿𝑖𝑣𝑒 ⊆ 𝑉𝑖𝑠𝑖𝑡, and for every node 𝑧 ∈
𝐺, if 𝑁𝑖 𝑧, 𝑉𝑖𝑠𝑖𝑡  and 𝐶 𝑧 , then 𝑧 is 
reachable from 𝑆𝑒𝑡 𝐿𝑖𝑣𝑒 .



Loop Invariant – cont.
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3. Each node 𝑥 ∈ 𝐺 has (at most) single 
instance in 𝑉𝑖𝑠𝑖𝑡. 

4. 𝑆𝑒𝑡 𝑉𝑖𝑠𝑖𝑡 ∪ 𝑁𝑒𝑖𝑔ℎ𝑏 𝑆𝑒𝑡 𝑉𝑖𝑠𝑖𝑡  

equals to the set of all nodes that has 
been generated by the algorithm up 
to the current moment of time.



Correctness

• If the boundary, decision and criterion conditions 𝐵, 𝐷 and 𝐶 meet the 
precondition, and the virtual graph 𝐺 for traversing is finite, 

• then every algorithm instantiated from the template terminates after
𝑂 𝐺  iterations of the loop, 

• and upon termination the final value of 𝑆𝑒𝑡 𝑂𝑢𝑡  is the set of all nodes 
of 𝐺 that meet the criterion condition 𝐶.
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CONCLUDING REMARKS 
ON BT AND B&B DESIGN TEMPLATES

Part 5
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BT and B&B

⚫ We have discussed and present a unified template for BT and B&B 
algorithm design patterns, 

⚫ specified the template by means of (semiformal) precondition and 
postcondition, 

⚫ validate it manually by Floyd method.
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Directions for further research

• Formalization of the template and its specification, development of a 
computer-aided proof in some proof-assistant system.

• Study of the algorithm design templates from mixed computations 
perspective for automatic algorithm generation.

• Implementation as a template library in C++ to extend STL and try its 
efficiency (educational as well as practical).
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Templates: 
Mixed Computation Perspective
• The primary purpose of the specified and verified templates for 

algorithm design patterns is to use them for (semi-)automatic 
specialization of the patterns to generate correct by design algorithms 
to solve concrete problems. 

• The purpose is closely related to Mixed Computations and/or Partial 
Evaluation:

o Ershov A.P. Mixed computation: potential applications and problems 
for study. Theor. Comp. Sci., 1982, v18(1), p.41-67.

o Jones J.D., Gomard C.K., and Sestoft P. Partial Evaluation and 
Automatic Program Generation. Prentice Hall International, 1993.
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Templates: 
Mixed Computation Perspective
• The difference consists in level of consideration: 

o in our case we  use algorithm design templates and use pseudo-code,

o while in Mixed Computations and Partial Evaluation program code 
and programming languages are in use. 
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Thank you! Questions?
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