
Object-oriented programming without built-in types
Software Engineering, Theory and Experimental Programming

(STEP-2024)

Computing the Answer to the Ultimate Question to Life, the Universe, and Everything

Alexander Kogtenkov

2024–04–01

03

Disclaimer

No affiliation

No use

No science

2

Motivation

Effective computability

:

(“Propositions as types” by Philip Wadler):

• Alonzo Church: Lambda calculus

• Kurt Gödel: Recursive functions

• Alan M. Turing: Turing machines

3

Motivation

Effective computability:

(“Propositions as types” by Philip Wadler):

• Alonzo Church: Lambda calculus

0 := λf.λx.x

1 := λf.λx.f x

2 := λf.λx.f (f x)

. . .

plus := λm.λn.λf.λx.m f (n f x)

mult := λm.λn.λf.m (n f)

• Kurt Gödel: Recursive functions

• Alan M. Turing: Turing machines

3

Motivation

Effective computability:

(“Propositions as types” by Philip Wadler):

• Alonzo Church: Lambda calculus

true := λx.λy.x

false := λx.λy.y

and := λp.λq.p q p

if then else := λp.λa.λb.p a b

• Kurt Gödel: Recursive functions

• Alan M. Turing: Turing machines

3

Motivation

Effective computability:

(“Propositions as types” by Philip Wadler):

• Alonzo Church: Lambda calculus

1. Variables: x, y, . . .

2. Abstraction: λx.expr

3. Application: foo bar

• Kurt Gödel: Recursive functions

• Alan M. Turing: Turing machines

3

Motivation

Effective computability:

(“Propositions as types” by Philip Wadler):

• Alonzo Church: Lambda calculus

1. Variables: x, y, . . .

2. Abstraction: λx.expr

3. Application: foo barCan we do
simila

rly in
pure

OOP
?

• Kurt Gödel: Recursive functions

• Alan M. Turing: Turing machines

3

Motivation

Effective computability:

(“Propositions as types” by Philip Wadler):

• Alonzo Church: Lambda calculus

1. Variables: x, y, . . .

2. Abstraction: λx.expr

3. Application: foo barCan we do
simila

rly in
pure

OOP
?

Bonus: The Secret Notation for
Functional Programming in Eiffel

https://youtu.be/zxBYH9nrykI

• Kurt Gödel: Recursive functions

• Alan M. Turing: Turing machines

3

https://youtu.be/zxBYH9nrykI

Motivation

Model languages in formal proofs
Alexander J. Summers and Peter Müller. “Freedom Before Commitment: A Lightweight Type System for Object Initialisation”. In: Proceedings of the
2011 ACM International Conference on Object Oriented Programming Systems Languages and Applications. OOPSLA ’11. Portland, Oregon, USA:
ACM, 2011, pp. 1013–1032. isbn: 978-1-4503-0940-0. doi: 10.1145/2048066.2048142

Classes:

• parent?

• field*

• method*

Expressions:
e ::= x | x.f | null

Instructions:
s ::= x = e

| z.f = y

| x = y.m (z)

| x = new C (z)

| x = (t) y

| s1 ; s2

4

https://doi.org/10.1145/2048066.2048142

Motivation

Model languages in formal proofs
Alexander J. Summers and Peter Müller. “Freedom Before Commitment: A Lightweight Type System for Object Initialisation”. In: Proceedings of the
2011 ACM International Conference on Object Oriented Programming Systems Languages and Applications. OOPSLA ’11. Portland, Oregon, USA:
ACM, 2011, pp. 1013–1032. isbn: 978-1-4503-0940-0. doi: 10.1145/2048066.2048142

Classes:

• parent?

• field*

• method*

Expressions:
e ::= x | x.f | null

Instructions:
s ::= x = e

| z.f = y

| x = y.m (z)

| x = new C (z)

| x = (t) y

| s1 ; s2

Can we do
anyt

hing
usefu

l with
it?

4

https://doi.org/10.1145/2048066.2048142

Motivation

Model languages in formal proofs
Alexander J. Summers and Peter Müller. “Freedom Before Commitment: A Lightweight Type System for Object Initialisation”. In: Proceedings of the
2011 ACM International Conference on Object Oriented Programming Systems Languages and Applications. OOPSLA ’11. Portland, Oregon, USA:
ACM, 2011, pp. 1013–1032. isbn: 978-1-4503-0940-0. doi: 10.1145/2048066.2048142

Classes:

• parent?

• field*

• method*

Expressions:
e ::= x | x.f | null

Instructions:
s ::= x = e

| z.f = y

| x = y.m (z)

| x = new C (z)

| x = (t) y

| s1 ; s2

Can we do
anyt

hing
usefu

l with
it?The Answer to the Question

Side effects!

4

https://doi.org/10.1145/2048066.2048142

Model language

Included

Classes:
parent*
method*
field*

Expressions:
x | f | x.m (args)
| Result | Current

Instructions:
x := e
f := e
create x.m (args)
x.m (args)
i1; i2

Not included

Built-in types:
Integer
Boolean
Array

Operators:
Arithmetic
Comparison (including equality)

Branching constructs:
Conditional instructions
Loops
Multi-branch

5

Proof method

Proof by Necessity It had better be true or the whole structure of mathematics
would crumble to the ground.

Proof by Lack of Sufficient Time Because of the time constraint, I’ll leave the
proof to you.

Proof by Margin Size This theorem has a truly marvelous proof which this
margin is too narrow to contain.

Proof by Calculus This proof requires calculus, so we’ll skip it.

Proof by Tessellation This proof is just the same as the last.

Proof by Accumulated Evidence Long and diligent search has not revealed a
counterexample.

Proof by Deferral We’ll prove this later in the seminar.

Proof by Intimidation Trivial.

6

Proof method

Proof by Necessity It had better be true or the whole structure of mathematics
would crumble to the ground.

Proof by Lack of Sufficient Time Because of the time constraint, I’ll leave the
proof to you.

Proof by Margin Size This theorem has a truly marvelous proof which this
margin is too narrow to contain.

Proof by Calculus This proof requires calculus, so we’ll skip it.

Proof by Tessellation This proof is just the same as the last.

Proof by Accumulated Evidence Long and diligent search has not revealed a
counterexample.

Proof by Deferral We’ll prove this later in the seminar.

Proof by Intimidation Trivial.

Proo
f by

Exam
ple I’ll sh

ow you an exam
ple a

nd the r
e-

main
ing cases

you can prove
yours

elf.

6

The question

Ultimate Question to Life, the Universe, and Everything

1979 UK, Douglas Adams

Most popular random number between 1 and 100

5 days ago US, Veritasium

Fibonacci numbers

450–200BC India; 1202 Pisa, Fibonacci

7

The question

Ultimate Question to Life, the Universe, and Everything

1979 UK, Douglas Adams

Most popular random number between 1 and 100

5 days ago US, Veritasium

Fibonacci numbers

450–200BC India; 1202 Pisa, Fibonacci

7

The question

Ultimate Question to Life, the Universe, and Everything

1979 UK, Douglas Adams

Most popular random number between 1 and 100

5 days ago US, Veritasium

Fibonacci numbers

450–200BC India; 1202 Pisa, Fibonacci

7

Side effects

How to achieve without passing
data?

8

Side effects

8

Side effects

Trigger API

External behavior in C

reset

byte = 0;

increment

byte++;

emit

putc (byte);

8

Side effects

Trigger API External behavior in C

reset byte = 0;

increment byte++;

emit putc (byte);

8

Side effects

create output.make

output.reset

output.increment

. . .

output.increment

 42times

output.emit −−Prints ’∗’

9

Natural numbers

NATURAL VALUE

◦ plus alias ”+”
◦ minus alias ”−”
◦ times alias ”∗”
◦ div alias ”/”
◦ mod alias ”\”

◦ predecessor: NATURAL VALUE

NATURAL ZERO

• predecessor
Result := Current

NATURAL SUCCESSOR

• make (p)
predecessor := p

• predecessor

10

Natural numbers

NATURAL VALUE

◦ plus alias ”+”
◦ minus alias ”−”
◦ times alias ”∗”
◦ div alias ”/”
◦ mod alias ”\”

◦ predecessor: NATURAL VALUE

NATURAL ZERO

• predecessor
Result := Current

NATURAL SUCCESSOR

• make (p)
predecessor := p

• predecessor

x.plus (y)~w�
x + y

10

Addition

plus alias ”+”(other: NATURAL VALUE): NATURAL VALUE

NATURAL ZERO:

Result := other

0+ n = n

NATURAL SUCCESSOR:

Result := predecessor + create {NATURAL SUCCESSOR}.make (other)

(m + 1) + n = m + (n + 1)

11

Multiplication

times alias ”∗”(other: NATURAL VALUE): NATURAL VALUE

NATURAL ZERO:
Result := Current

0× n = 0

NATURAL SUCCESSOR:

Result := predecessor ∗ other + other

(m + 1)× n = m× n + n

12

Literals

n0: NATURAL VALUE do

create {NATURAL ZERO} Result end

n1: NATURAL VALUE do

create {NATURAL SUCCESSOR} Result.make (n0) end

n2: NATURAL VALUE do Result := n1 + n1 end

n3: NATURAL VALUE do Result := n2 + n1 end

...
n10: NATURAL VALUE do Result := n9 + n1 end

n20: NATURAL VALUE do Result := n2 ∗ n10 end

n30: NATURAL VALUE do Result := n3 ∗ n10 end

...

n42 := n40 + n2

13

Literals

n0: NATURAL VALUE do

create {NATURAL ZERO} Result end

n1: NATURAL VALUE do

create {NATURAL SUCCESSOR} Result.make (n0) end

n2: NATURAL VALUE do Result := n1 + n1 end

n3: NATURAL VALUE do Result := n2 + n1 end

...
n10: NATURAL VALUE do Result := n9 + n1 end

n20: NATURAL VALUE do Result := n2 ∗ n10 end

n30: NATURAL VALUE do Result := n3 ∗ n10 end

...

n42 := n40 + n2

13

Boolean values

BOOLEAN VALUE

◦ negation alias ”¬”
◦ conjunction alias ”∧”
◦ disjunction alias ”∨”
◦ exclusive or alias ”∨”
◦ equivalence alias ”≡”

BOOLEAN FALSE
. . .

• conjunction alias ”∧”(other)
Result := Current

. . .

BOOLEAN TRUE
. . .

• conjunction alias ”∧”(other)
Result := other

. . .

14

Boolean values

BOOLEAN VALUE

◦ pick (t, f: INSTRUCTION)
◦ choose natural (t, f: NATURAL EXPRESSION): NATURAL VALUE

BOOLEAN FALSE

• pick (t, f)
f.run

• choose natural (t, f)
Result := f.value

BOOLEAN TRUE

• pick (t, f)
t.run

• choose natural (t, f)
Result := t.value

INSTRUCTION

◦ run

EXPRESSION [G]

◦ value: G

15

Subtraction

minus alias ”−”(other: NATURAL VALUE): NATURAL VALUE

NATURAL ZERO:
Result := Current

0 – n = 0

NATURAL SUCCESSOR:

Result := other.is zero.choose natural (Current, predecessor − other.predecessor)

(m + 1) – 0 = m+ 1

(m + 1) – (n + 1) = m – n

16

Comparison

is less alias ”<”(other: NATURAL VALUE): BOOLEAN VALUE

NATURAL ZERO:

Result := ¬ other.is zero

0 < n ⇐⇒ n ̸= 0

NATURAL SUCCESSOR:

Result := (¬ other.is zero) ∧ (predecessor < other.predecessor)

(m + 1) < 0 ⇐⇒ false

(m + 1) < (n + 1) ⇐⇒ m < n

17

Comparison

is less alias ”<”(other: NATURAL VALUE): BOOLEAN VALUE

NATURAL ZERO:

Result := ¬ other.is zero

0 < n ⇐⇒ n ̸= 0

NATURAL SUCCESSOR:

Result := (¬ other.is zero) ∧ (predecessor < other.predecessor)

(m + 1) < 0 ⇐⇒ false

(m + 1) < (n + 1) ⇐⇒ m < n

2 < 3 ⇐⇒
(1+ 1) < (2+ 1) ⇐⇒

1 < 2 ⇐⇒
(0+ 1) < (1+ 1) ⇐⇒

0 < 1 ⇐⇒
1 ̸= 0 ⇐⇒
true

3 < 2 ⇐⇒
(2+ 1) < (1+ 1) ⇐⇒

2 < 1 ⇐⇒
(1+ 1) < (0+ 1) ⇐⇒

1 < 0 ⇐⇒
(0+ 1) < 0 ⇐⇒

false

17

Why do we need INSTRUCTION and EXPRESSION?

if condition then

print 1

else

print 2

end

=⇒

if (

condition,

print 1,

print 2

)

18

Why do we need INSTRUCTION and EXPRESSION?

if condition then

print 1

else

print 2

Deferred
execution

end

=⇒

if (

condition,

print 1,

print 2

Immediate
execution

)

18

Why do we need INSTRUCTION and EXPRESSION?

if condition then

print 1

else

print 2

Deferred
execution

end

=⇒

if (

condition,

print 1,

print 2

Immediate
execution

)

18

Why do we need INSTRUCTION and EXPRESSION?

if condition then

print 1

else

print 2

Deferred
execution

end

=⇒

if (

condition,

print 1,

print 2

Immediate
execution

Solution: wrap them!

)

18

Why do we need INSTRUCTION and EXPRESSION?

INSTRUCTION
◦ run

SKIP
• run

do end

SEQUENCE

• run
s1.run; s2.run

• s1: INSTRUCTION
• s2: INSTRUCTION

IF INSTRUCTION
• run

condition.pick
(on true, on false)

• on true: INSTRUCTION
• on false: INSTRUCTION

. . .

18

Assignment

x := expr

VARIABLE [G] inherit EXPRESSION [G]:
value: G
put (v: G) do value := v end

put alias ”:=”(e: EXPRESSION [G]): INSTRUCTION
do create {ASSIGNMENT [G]} Result.make (e, Current) end

ASSIGNMENT [G] inherit INSTRUCTION:
expression: EXPRESSION [G]
variable: VARIABLE [G]

run do variable.put (expression.value) end

19

Assignment

x := expr

VARIABLE [G] inherit EXPRESSION [G]:
value: G
put (v: G) do value := v end

put alias ”:=”(e: EXPRESSION [G]): INSTRUCTION
do create {ASSIGNMENT [G]} Result.make (e, Current) end

ASSIGNMENT [G] inherit INSTRUCTION:
expression: EXPRESSION [G]
variable: VARIABLE [G]

run do variable.put (expression.value) end

19

Systematic wrapping

LINKED LIST [G]

Regular Wrapped

first: G first : EXPRESSION [G]

item (i: NATURAL VALUE): G item (i: NATURAL EXPRESSION):
EXPRESSION [G]

count: NATURAL VALUE count : NATURAL EXPRESSION

insert first (value: G) insert first (expression: EXPRESSION [G]):
INSTRUCTION

remove first remove first : INSTRUCTION

20

Loop

until

loop

end

condition

body

21

Loop

until

loop

end

condition

BOOLEAN EXPRESSION

body

INSTRUCTION

21

Loop

until

loop

end

condition

BOOLEAN EXPRESSION

body

INSTRUCTION

LOOP INSTRUCTION

SEQUENCE INSTRUCTION

21

Loop

until

loop

end

condition

BOOLEAN EXPRESSION

body

INSTRUCTION

LOOP INSTRUCTION

SEQUENCE INSTRUCTION

run
do

condition.pick
(create {SKIP}, seq)

end

21

Example: item by index in LINKED LIST

item (i: NATURAL VALUE): G
local

n: LINKED NODE VARIABLE [G]
j: NATURAL VARIABLE

do

create n.make (head)
create j.make (i)
loop until (

j ≡ n0,
n := n.next +
j := (j − n1)

)
Result := n.value.item

end

22

Model language (revised)

Included

Classes:
parent*
method*
field*

Expressions:
x | f | x.m (args)
| Result | Current

Instructions:
x := e
f := e
create x.m (args)
x.m (args)
i1; i2

Implemented

Types:
Integer
Boolean
Array (as List)

Operators:
Arithmetic
Comparison (including equality)

Branching constructs:
Conditional instructions
Loops
Multi-branch (work in progress)

23

More types and operations

Integer
one natural with a sign

two naturals with normalization

Size-limited naturals/integers (uint8, int32, etc.)
modular arithmetic with normalization

Bit-wise operations
powers of 2 + arithmetic

Arrays
lists

Real numbers
left to audience

24

What about input?

Recall: no data types!

25

What about input?

External

Internal

reset

read

increment

emit

25

What about input?

External Internal

reset

read increment

emit

25

Demo!

26

Summary

Key observation
Built-in types, operators, literals, branching instructions, etc. are leftovers
from electrical engineers. True programmers do not need all this obsolete stuff.

What was/would be useful?
• Genericity

• Type inference

• Flexible syntax

• Fixing operator precedence in the Unicode standard

What OO language designers should be looking for?
Properties that cannot be derived from the basics of OOP

What OOPL compilers should do?
Automatically detect wrappers and generate highly efficient code instead

27

	Disclaimer
	Motivation
	Model language
	Proof method
	The question
	Side effects
	Natural numbers
	Addition
	Multiplication
	Literals
	Boolean values
	Subtraction
	Comparison
	Why do we need [style=eiffel,breakindent=0pt]|INSTRUCTION| and [style=eiffel,breakindent=0pt]|EXPRESSION|?
	Assignment
	Systematic wrapping
	Loop
	Example: item by index in [style=eiffel,breakindent=0pt]|LINKEDLIST|
	Model language (revised)
	More types and operations
	What about input?
	Demo
	Summary

