Software Engineering, Theory
and Experimental Programming

Bauman Moscow State T.U. & PSI RAS

Expressibility of Languages

with Capture Operations: an Overview

Antonina Nepeivoda, a_nevod@mail . ru

A Precursor: Pattern Languages

Dana Angluin, 1980: Finding Patterns Common to a Set of Strings.
® [etters in an alphabet >;
® Variables: matching against strings in X*.

Non-trivial language inclusion for finite alphabets (undecidable for
erasing case): XabY and XaZbY match against the same set of
strings in {a, b}*, i.e. Z(XabY) = Z(XaZbY) if ¥ = {a,b}.

Angluin’s infamous theorem

Matching a string against a pattern is NP-complete.

In practice:

e Efficient exact matching techniques for restricted classes of
patterns (regular, bounded-width).
® Techiques for approximate matching.

2/19, Survey on Capturing Languages, 27.09.24, STEP

Extended Regular Expressions

Evolved from 1980s and Perl regular engine:

® Jookaheads, lookbehinds — positive, negative. Positive
lookahead syntax:
(? =ry)ry (matching a regex ro whose prefix satisfies r;.
For readability, sometimes we assume that lookahead
matches against the whole string)

e capture groups and backreferences (recursive and not).
Syntax:
(aat)\1T — capture groups are numbered by parentheses
ordering. Lookaheads are not capture groups.

® recursive definitions. Recursive definition syntax:
(a(?1)b|c) — the syntax (not the matched string) of 1-st
capture group is reused.

3/19, Survey on Capturing Languages, 27.09.24, STEP

Regex Classes Currently Investigated

® Non-recursive backref-regexes (REWBR™):
Campeanu—Salomaa—Yu formalism (2003);

® Recursive backref-regexes (REwWBR): Shmid formalism,
memory finite automata (2016);

® Recursive backref-regexes with lookahead REWBR + LA:

Chida—Terauchi extended MFA formalism (2023).

4/19, Survey on Capturing Languages, 27.09.24, STEP

Backreferences Formalisations

® Appeared much later than implementations of
backref-regexes.

e Some almost repeated PCRE (Perl) backref-regexes.

Campeanu—Salomaa-Yu (CSY) formalisation:
{(T) (anonymous capturing)

\k (reading memory cell from k-th group)
Example: (aa™)(\1)" defines {a" | n is not prime }

® Any capture group is initialized exactly once.

® Any reference must be preceded by the capture group
textually.

5/19, Survey on Capturing Languages, 27.09.24, STEP

Backreferences Formalisations

® Currently most used in the theoretical scope: only named
capture groups.

Backref-regex (ref-words, by Shmid) operations:

[k7]r (named capturing)
&k (reading memory cell)
Example: [12*];aTb& 1 defines {a™ba™ | m > n}

® c-semantics (Schmid) — uninitialized reference recognizes
{eh

® ¢-semantics (regex engines) — uninitialized reference
recognizes <.

No impact on language properties.
5/19, Survey on Capturing Languages, 27.09.24, STEP

Backreferences Formalisations

® Currently most used in the theoretical scope: only named
capture groups.

Backref-regex (ref-words, by Shmid) operations:
{[kT] ¢ (named capturing)

&k (reading memory cell)
Example: [12*];aTb& 1 defines {a™ba™ | m > n}

® Possibly unbalanced and nested (but not self-nested)
capturing.

e References on k-th memory cell cannot occur inside a
capturing group for k.

5/19, Survey on Capturing Languages, 27.09.24, STEP

Word Equations

® Given a pair of patterns ®, W sharing common variables
X1, ..., X,, we say a tuple (wy, ...,w,) is a solution set to
equation ¥ = @ if a morphism defined by X; — w;, v — 7y
turns both patterns into equal strings.

® Given equation F : a X7 X 16X, = X1aX5bX, the set
{(a", (a"b)™a™) | m,n € N} is the solution set to E.

Note: Xs-projection of the set is not context-free. Still, the

Xs-projection belongs to the class of Okhotin’s conjunctive
languages (discussed later).

6/19, Survey on Capturing Languages, 27.09.24, STEP

Word Equations

® Given a pair of patterns ®, W sharing common variables
Xi, ..., X, we say a tuple (wy, ..., w,) is a solution set to

equation ¥ = @ if a morphism defined by X; — w;, v +—
turns both patterns into equal strings.

® A k-projection of a solution set
{{wr, ... wn) | @lwr, ..., wn] = Tlws, ..., w,]} is the set
of k-components of the tuples.

e [f a string set .Z is a projection of the solution set of a word

equation ® = U, then .Z is said to be a language of & = .

6/19, Survey on Capturing Languages, 27.09.24, STEP

Captured Values and Patterns

A word equation over k variables defines k languages.
As a pattern (i.e. a pair of patterns defining the same string), a word

equation ¢ = W defines a single language, as usual,
{@wi,...,wn] | ®lwr,...,wn] = Ylws, ..., wa}.

We distinguish the first languages class W& and the second WE and
note that WE C WE, since a* € WE -, but every equation defining
such a variable value must have at least one explicit a-occurrence,
hence its side after any substitution cannot be valued .

7119, Survey on Capturing Languages, 27.09.24, STEP

REwWBR and REWBR

REWBR C REWBR,

Given ¢ = {a"b" | n € N}, it can be constructed as a captured value
&3 in the ref-word
(lha&lblaf1ad2b])* [s& | &2]5

Z is not expressible by a REwBR: both a-block and b-block have to
contain an iteration = asynchronous growth.

8/19, Survey on Capturing Languages, 27.09.24, STEP

Known Analysis Techniques

e REWBR and REWBR + LA, known proofs refer to the
restricted CSY formalisation = no known formal
techniques of disproving expressibility for multiple
capturing case.

e For WE, W. Plandowski in 2000s developed a
combinatorial method relying on synchronising F-codes.

e [n 2023, J. Day used the method to prove that all the star
subexpressions ®* of a thin regular language recognised by
a word equation language has the following property: every
two elements wy, wy of the language recognised by ¢
commute, i.€. wWiwe = Woly.

9/19, Survey on Capturing Languages, 27.09.24, STEP

REwWBR and REWBR + LA: Growth Argument

The factorial star language {(a*')*ba*}:
((?: [2a&1]2a*b)(? = [1&2]1a*D)(?= &2*b)>*a*b&2

Main reason of non-expressibility in REwBR: given a maximal
length multiplier N (i.e. given length of the regex N), the words
(aN Nl)*baN ™ cannot be expressed, because of the abnormal growth
of the first a-block.

In Chida’s paper, the CSY formalism was referred with a non-
expressible language {a’ba’'ba®("TV* | i k € N}.

10/19, Survey on Capturing Languages, 27.09.24, STEP

REGEX and CN' J

REGEX includes conjunctive languages by Okhotin expressible by
the rules augmented with conjunction:
{AZ—>(I)1&&¢2|AZEN&(I)]€(NUE)*}

Example: a grammar for {(a"b)" | n,k € N}.
S—SA&CH A
A — aAlab
C —aCa|B
B — BA|b

May be expressed with the use of recursion and lookaheads:
capture group 1

<(?: (a(?2)alb|b.*b) b) a*b(?1)|a*| (a(?3)a|b)> b
N S———

capture group 2 group 3

Technique: same to p-regexes for CFG, augmented with lookaheads.

11/19, Survey on Capturing Languages, 27.09.24, STEP

Linear CFL and REWBR

A language is linear-context-free <> it is expressed by a CFG
having at most one non-terminal in each rule rhs.

Every linear CFL can be expressed by a capture group
language.

® For every non-terminal /V;, introduce a pair of memory
cells 4, ¢’ (for capturing in an lhs and for recapturing).

® Each recursive rule N; — w;N;w, is rewritten into a
subexpression 7y, : [ywy &jws i [;&i’];. Terminal rules for
every nonterminal /V; are gathered into a disjunction and
are rewritten into an expression 7 in the similar way.

o A total expressionis 7y ... 7. (ri|...|rk)*.

12/19, Survey on Capturing Languages, 27.09.24, STEP

CFL and REWBR

Some non-linear (and non-linear-conjunctive) languages such as
{(ww?)(vv®) | w,v € £*} can be generated by cells of REWBR.
Some non-linear context-free languages cause encoding problems

(e.g. balanced parentheses language). Reason: unbounded treewidth of

the derivation tree.

On the other hand, using the CN'J C REGEX technique, the
balanced parenthesis language can be expressed by REWBR + LA:.
Idea: construct a Trellis automaton and transform it to a linear CA/ 7.

dla b d r
ala d a a
blr b 7
d b a
rir b b r

13/19, Survey on Capturing Languages, 27.09.24, STEP

WE.. and REWBR + LA,

e Given ®(X;,...,X,) = ¥(Xy,...,X,) with a canonical
numeration of variables, every first occurrence of a
variable in ®V is replaced with a capture group (.*), while
the other variable occurrences are replaced by \k
operations. The resulting equation sides are ®’, U’.

® Regex (7= @)V’ recognises the solution projections in its
capture groups.

Main reason: capture-preserving lookaheads in REGEX.

For instance, in the expression (7= (.*)ab(.*))\2ba\1l both
first and second memory cells are captured by the lookahead
checker.

14/19, Survey on Capturing Languages, 27.09.24, STEP

gWE and REWBR
In a quadratic word equation, each variable occurs at most twice.

® Every solution to a quadratic word equation is expressed by
a graph containing the assignments: X — Y X, X — Y,
X—=aX, X — e

e Can be transformed to an MFA moving from graph leaves
to its root with re-capturing. E.g. X +— Y X is represented
by [x/ &Y &X | x:/[x&X']x subexpression.

Variable values in XabY = YbaX are captured by
(Ixa*]x [y &Xaly|[yb"]y [x &Y b]x)

([X’ &Yba&X]X/ [X&X/]Xl[Y’ &Xab&Y]y/ [y&Y’]Y>

15/19, Survey on Capturing Languages, 27.09.24, STEP

Summary: What is Known?

WE ——— > WE,

QW&

%ﬂ)BR + LA

REWBR —— REWBR, — REWBR + LA, REGEX

RE — ; g linCN'J /
inCFG

TP CeFG————— S CNT

/N

16/19, Survey on Capturing Languages, 27.09.24, STEP

Open Problems

® Techniques for disproving membership in REWBR,
REWBR + LA classes?

® (Clarifying position of word-equation-languages in the
regex languages hierarchy: REWBR, REWBR .,
REWBR + LA or REWBR + LA;?

® Determining a cone over WWE and REwWBR: a minimal
language class closed under intersections with regular
languages, homomorphism and inverse homomorphism
operations.

17/19, Survey on Capturing Languages, 27.09.24, STEP

References-I

1. J. Karhumiki, F. Mignosi, and W. Plandowski, The expressibility of

languages and relations by word equations, J. ACM, vol. 47, no. 3, pp.

483-505, (2000).

2. Joel D. Day, Vijay Ganesh, Nathan Grewal, Matthew Konefal, Florin
Manea: A Closer Look at the Expressive Power of Logics Based on
Word Equations. Theory Comput. Syst. 68(3): 322-379 (2024).

3. Alexander Okhotin: Conjunctive Grammars. J. Autom. Lang. Comb.
6(4): 519-535 (2001)

4. Nariyoshi Chida, Tachio Terauchi: On Lookaheads in Regular
Expressions with Backreferences. IEICE Trans. Inf. Syst. 106(5):
959-975 (2023)

18/19, Survey on Capturing Languages, 27.09.24, STEP

References-I1

5. Henning Fernau, Florin Manea, Robert Mercas, Markus L. Schmid:
Pattern Matching with Variables: Efficient Algorithms and Complexity
Results. ACM Trans. Comput. Theory 12(1): 6:1-6:37 (2020).

6. Markus L. Schmid: Characterising REGEX languages by regular
languages equipped with factor-referencing. Inf. Comput. 249: 1-17
(2016).

7. Cezar Campeanu, Kai Salomaa, Sheng Yu: A Formal Study Of
Practical Regular Expressions. Int. J. Found. Comput. Sci. 14(6):
1007-1018 (2003).

8. Yuya Uezato: Regular Expressions with Backreferences and
Lookaheads Capture NLOG. ICALP 2024: 155:1-155:20.

9. M. Berglund and B. van der Merwe, “Re-examining regular expressions

with backreferences”, Theoretical Computer Science, vol. 940, pp.
66-80, 2023.

19/19, Survey on Capturing Languages, 27.09.24, STEP

