Software Engineering, Theory and Experimental Programming

Bauman Moscow State T.U. & PSI RAS

Expressibility of Languages with Capture Operations: an Overview

Antonina Nepeivoda, a_nevod@mail.ru

A Precursor: Pattern Languages

Dana Angluin, 1980: Finding Patterns Common to a Set of Strings.

- Letters in an alphabet Σ ;
- Variables: matching against strings in Σ*.

Non-trivial language inclusion for finite alphabets (undecidable for erasing case): XabY and XaZbY match against the same set of strings in $\{a, b\}^*$, i.e. $\mathscr{L}(XabY) = \mathscr{L}(XaZbY)$ if $\Sigma = \{a, b\}$.

Angluin's infamous theorem

Matching a string against a pattern is NP-complete.

In practice:

- Efficient exact matching techniques for restricted classes of patterns (regular, bounded-width).
- Techiques for approximate matching.

Extended Regular Expressions

Evolved from 1980s and Perl regular engine:

• lookaheads, lookbehinds — positive, negative. Positive lookahead syntax:

 $(? = r_1)r_2$ (matching a regex r_2 whose prefix satisfies r_1 . For readability, sometimes we assume that lookahead matches against the whole string)

- capture groups and backreferences (recursive and not).
 Syntax:

 (aa⁺)\1⁺ capture groups are numbered by parentheses ordering. Lookaheads are not capture groups.
- recursive definitions. Recursive definition syntax: (a(?1)b|c) — the syntax (not the matched string) of 1-st capture group is reused.

Regex Classes Currently Investigated

- Non-recursive backref-regexes (\mathcal{REwBR}^-): Campeanu–Salomaa–Yu formalism (2003);
- Recursive backref-regexes (\mathcal{REwBR}): Shmid formalism, memory finite automata (2016);
- Recursive backref-regexes with lookahead $\mathcal{REwBR} + \mathcal{LA}$: Chida–Terauchi extended MFA formalism (2023).

Backreferences Formalisations

- Appeared much later than implementations of backref-regexes.
- Some almost repeated PCRE (Perl) backref-regexes.

 $\begin{array}{ll} \mbox{Campeanu-Salomaa-Yu (CSY) formalisation:} \\ \left\{ \begin{aligned} (\tau) & (\mbox{anonymous capturing}) \\ \backslash k & (\mbox{reading memory cell from k-th group}) \\ \mbox{Example:} (\mbox{a}^+)(\backslash 1)^+ \mbox{ defines } \{a^n \mid \mbox{n is not prime}\} \end{aligned} \right.$

- Any capture group is initialized exactly once.
- Any reference must be preceded by the capture group textually.

Backreferences Formalisations

• Currently most used in the theoretical scope: only named capture groups.

Backref-regex (ref-words, by Shmid) operations: $\begin{cases} [_k \tau]_k & \text{(named capturing)} \\ \&k & \text{(reading memory cell)} \\ \text{Example: } [_1 a^*]_1 a^+ b\& 1 \text{ defines } \{a^m ba^n \mid m > n\} \end{cases}$

- ε -semantics (Schmid) uninitialized reference recognizes $\{\varepsilon\};$
- Ø-semantics (regex engines) uninitialized reference recognizes Ø.

No impact on language properties.

Backreferences Formalisations

• Currently most used in the theoretical scope: only named capture groups.

Backref-regex (ref-words, by Shmid) operations: $\begin{cases} [_k \tau]_k & \text{(named capturing)} \\ \&k & \text{(reading memory cell)} \\ \text{Example: } [_1 a^*]_1 a^+ b\& 1 \text{ defines } \{a^m ba^n \mid m > n\} \end{cases}$

- Possibly unbalanced and nested (but not self-nested) capturing.
- References on k-th memory cell cannot occur inside a capturing group for k.

Word Equations

Given a pair of patterns Φ, Ψ sharing common variables X₁,..., X_n, we say a tuple ⟨ω₁,..., ω_n⟩ is a solution set to equation Ψ ≐ Φ if a morphism defined by X_i → ω_i, γ → γ turns both patterns into equal strings.

• Given equation $E: aX_1X_1bX_2 \doteq X_1aX_2bX_1$, the set $\{\langle a^n, (a^nb)^ma^n \rangle \mid m, n \in \mathbb{N}\}$ is the solution set to E.

Note: X_2 -projection of the set is not context-free. Still, the X_2 -projection belongs to the class of Okhotin's conjunctive languages (discussed later).

Word Equations

- Given a pair of patterns Φ, Ψ sharing common variables X₁,..., X_n, we say a tuple ⟨ω₁,..., ω_n⟩ is a solution set to equation Ψ ≐ Φ if a morphism defined by X_i → ω_i, γ → γ turns both patterns into equal strings.
- A k-projection of a solution set $\{\langle \omega_1, \dots, \omega_n \rangle \mid \Phi[\omega_1, \dots, \omega_n] = \Psi[\omega_1, \dots, \omega_n] \}$ is the set of k-components of the tuples.
- If a string set *L* is a projection of the solution set of a word equation Φ ≐ Ψ, then *L* is said to be a language of Φ ≐ Ψ.

Captured Values and Patterns

A word equation over k variables defines k languages. As a pattern (i.e. a pair of patterns defining the same string), a word equation $\Phi \doteq \Psi$ defines a single language, as usual, $\{\Phi[\omega_1, \ldots, \omega_n] \mid \Phi[\omega_1, \ldots, \omega_n] = \Psi[\omega_1, \ldots, \omega_n]\}.$

We distinguish the first languages class $W\mathcal{E}_{\pi}$ and the second $W\mathcal{E}$ and note that $W\mathcal{E} \subset W\mathcal{E}_{\pi}$, since $a^* \in W\mathcal{E}_{\pi}$, but every equation defining such a variable value must have at least one explicit *a*-occurrence, hence its side after any substitution cannot be valued ε .

\mathcal{REwBR} and \mathcal{REwBR}_{π}

 $\mathcal{REwBR} \subset \mathcal{REwBR}_{\pi}$

Given $\mathscr{L} = \{a^n b^n \mid n \in \mathbb{N}\}$, it can be constructed as a captured value &3 in the ref-word

 $([_2a\&1b]_2[_1a\&2b]_1)^*[_3\&|\&2]_3$

 \mathscr{L} is not expressible by a \mathcal{REwBR} : both *a*-block and *b*-block have to contain an iteration \Rightarrow asynchronous growth.

Known Analysis Techniques

- \mathcal{REwBR} and $\mathcal{REwBR} + \mathcal{LA}$, known proofs refer to the restricted CSY formalisation \Rightarrow no known formal techniques of disproving expressibility for multiple capturing case.
- For \mathcal{WE} , W. Plandowski in 2000s developed a combinatorial method relying on synchronising \mathcal{F} -codes.
- In 2023, J. Day used the method to prove that all the star subexpressions Φ* of a thin regular language recognised by a word equation language has the following property: every two elements ω₁, ω₂ of the language recognised by Φ commute, i.e. ω₁ω₂ = ω₂ω₁.

\mathcal{REwBR} and $\mathcal{REwBR} + \mathcal{LA}$: Growth Argument

The factorial star language $\{(a^{k!})^+ba^k\}$: $\left((?=[_2a\&1]_2a^*b)(?=[_1\&2]_1a^*b)(?=\&2^*b)\right)^*a^*b\&2$

Main reason of non-expressibility in \mathcal{REwBR} : given a maximal length multiplier N^N (i.e. given length of the regex N), the words $(a^{N^N!})^+ba^{N^N}$ cannot be expressed, because of the abnormal growth of the first *a*-block.

In Chida's paper, the CSY formalism was referred with a non-expressible language $\{a^iba^{i+1}ba^{i\cdot(i+1)\cdot k} \mid i,k \in \mathbb{N}\}$.

REGEX and \mathcal{CNJ}

REGEX includes conjunctive languages by Okhotin expressible by the rules augmented with conjunction:

$$\left\{A_i \to \Phi_1 \& \cdots \& \Phi_2 \mid A_i \in N \& \Phi_j \in (N \cup \Sigma)^*\right\}$$

Example: a grammar for $\{(a^n b)^k \mid n, k \in \mathbb{N}\}.$

$$S \rightarrow SA \& Cb \mid A$$
$$A \rightarrow aA \mid ab$$
$$C \rightarrow aCa \mid B$$
$$B \rightarrow BA \mid b$$

May be expressed with the use of recursion and lookaheads: capture group 1

$$\overbrace{\left(\left(?=\underbrace{(a(?2)a|b|b.*b)}_{\text{capture group }2}b\right)a^*b(?1)|a^*|\underbrace{(a(?3)a|b)}_{\text{group }3}\right)}^{\bullet}b$$

Technique: same to μ -regexes for CFG, augmented with lookaheads.

Linear CFL and $\mathcal{RE}w\mathcal{BR}_{\pi}$

A language is linear-context-free \Leftrightarrow it is expressed by a CFG having at most one non-terminal in each rule rhs.

Every linear \mathcal{CFL} can be expressed by a capture group language.

- For every non-terminal N_i , introduce a pair of memory cells i, i' (for capturing in an lhs and for recapturing).
- Each recursive rule N_i → ω₁N_jω₂ is rewritten into a subexpression r_k : [_{i'}ω₁&jω₂]_{i'}[_i&i']_i. Terminal rules for every nonterminal N_i are gathered into a disjunction and are rewritten into an expression r'_i in the similar way.
- A total expression is $r'_1 \dots r'_m (r_1 | \dots | r_k)^*$.

CFL and $REwBR_{\pi}$

Some non-linear (and non-linear-conjunctive) languages such as $\{(ww^R)(vv^R) \mid w, v \in \Sigma^*\}$ can be generated by cells of \mathcal{REwBR} . Some non-linear context-free languages cause encoding problems (e.g. balanced parentheses language). Reason: unbounded treewidth of the derivation tree.

On the other hand, using the $CNJ \subset REGEX$ technique, the balanced parenthesis language can be expressed by $REwBR+LA_{\pi}$. Idea: construct a Trellis automaton and transform it to a linear CNJ.

d	a	b	d	r
a	a	d	a	a
b	r	b		r
d		b		a
r	r	b	b	r

\mathcal{WE}_{π} and $\mathcal{RE}w\mathcal{BR} + \mathcal{LA}_{\pi}$

- Given Φ(X₁,...,X_n) ≐ Ψ(X₁,...,X_n) with a canonical numeration of variables, every first occurrence of a variable in ΦΨ is replaced with a capture group (.*), while the other variable occurrences are replaced by \k operations. The resulting equation sides are Φ', Ψ'.
- Regex (?= Φ')Ψ' recognises the solution projections in its capture groups.

Main reason: capture-preserving lookaheads in REGEX. For instance, in the expression $(?=(.*)ab(.*))\backslash 2ba\backslash 1$ both first and second memory cells are captured by the lookahead checker.

$q \mathcal{WE}_{\pi}$ and $\mathcal{RE}w\mathcal{BR}_{\pi}$

In a quadratic word equation, each variable occurs at most twice.

- Every solution to a quadratic word equation is expressed by a graph containing the assignments: X → YX, X → Y, X → aX, X → ε.
- Can be transformed to an MFA moving from graph leaves to its root with re-capturing. E.g. X → YX is represented by [X' &Y &X]X' [X &X']X subexpression.

Variable values in $XabY \doteq YbaX$ are captured by $([_Xa^*]_X[_Y\&Xa]_Y|[_Yb^*]_Y[_X\&Yb]_X)$ $\left([_{X'}\&Yba\&X]_{X'}[_X\&X']_X|[_{Y'}\&Xab\&Y]_{Y'}[_Y\&Y']_Y\right)$

Summary: What is Known?

Open Problems

- Techniques for disproving membership in \mathcal{REwBR} , $\mathcal{REwBR} + \mathcal{LA}$ classes?
- Clarifying position of word-equation-languages in the regex languages hierarchy: *REwBR*, *REwBR*_π, *REwBR* + *LA* or *REwBR* + *LA*_π?
- Determining a cone over $W\mathcal{E}$ and $\mathcal{R}\mathcal{E}w\mathcal{B}\mathcal{R}$: a minimal language class closed under intersections with regular languages, homomorphism and inverse homomorphism operations.

References-I

- J. Karhumäki, F. Mignosi, and W. Plandowski, The expressibility of languages and relations by word equations, J. ACM, vol. 47, no. 3, pp. 483–505, (2000).
- Joel D. Day, Vijay Ganesh, Nathan Grewal, Matthew Konefal, Florin Manea: A Closer Look at the Expressive Power of Logics Based on Word Equations. Theory Comput. Syst. 68(3): 322-379 (2024).
- Alexander Okhotin: Conjunctive Grammars. J. Autom. Lang. Comb. 6(4): 519-535 (2001)
- Nariyoshi Chida, Tachio Terauchi: On Lookaheads in Regular Expressions with Backreferences. IEICE Trans. Inf. Syst. 106(5): 959-975 (2023)

References-II

- Henning Fernau, Florin Manea, Robert Mercas, Markus L. Schmid: Pattern Matching with Variables: Efficient Algorithms and Complexity Results. ACM Trans. Comput. Theory 12(1): 6:1-6:37 (2020).
- Markus L. Schmid: Characterising REGEX languages by regular languages equipped with factor-referencing. Inf. Comput. 249: 1-17 (2016).
- Cezar Câmpeanu, Kai Salomaa, Sheng Yu: A Formal Study Of Practical Regular Expressions. Int. J. Found. Comput. Sci. 14(6): 1007-1018 (2003).
- 8. Yuya Uezato: Regular Expressions with Backreferences and Lookaheads Capture NLOG. ICALP 2024: 155:1-155:20.
- M. Berglund and B. van der Merwe, "Re-examining regular expressions with backreferences", Theoretical Computer Science, vol. 940, pp. 66–80, 2023.

