
Software Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, TheorySoftware Engineering, Theory
and Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programmingand Experimental Programming

Bauman Moscow State T.U. & PSI RAS

Expressibility of Languages
with Capture Operations: an Overview

Antonina Nepeivoda, a_nevod@mail.ru

A Precursor: Pattern Languages
Dana Angluin, 1980: Finding Patterns Common to a Set of Strings.

∙ Letters in an alphabet Σ;
∙ Variables: matching against strings in Σ*.

Non-trivial language inclusion for finite alphabets (undecidable for
erasing case): 𝑋𝑎𝑏𝑌 and 𝑋𝑎𝑍𝑏𝑌 match against the same set of
strings in {𝑎, 𝑏}*, i.e. L (𝑋𝑎𝑏𝑌) = L (𝑋𝑎𝑍𝑏𝑌) if Σ = {𝑎, 𝑏}.

Angluin’s infamous theorem

Matching a string against a pattern is NP-complete.

In practice:
∙ Efficient exact matching techniques for restricted classes of
patterns (regular, bounded-width).

∙ Techiques for approximate matching.

2/19, Survey on Capturing Languages, 27.09.24, STEP

Extended Regular Expressions
Evolved from 1980s and Perl regular engine:
∙ lookaheads, lookbehinds — positive, negative. Positive
lookahead syntax:
(? = 𝑟1)𝑟2 (matching a regex 𝑟2 whose prefix satisfies 𝑟1.
For readability, sometimes we assume that lookahead
matches against the whole string)

∙ capture groups and backreferences (recursive and not).
Syntax:
(𝑎𝑎+)∖1+ — capture groups are numbered by parentheses
ordering. Lookaheads are not capture groups.

∙ recursive definitions. Recursive definition syntax:
(𝑎(?1)𝑏|𝑐)— the syntax (not the matched string) of 1-st
capture group is reused.

3/19, Survey on Capturing Languages, 27.09.24, STEP

Regex Classes Currently Investigated

∙ Non-recursive backref-regexes (ℛℰ𝑤ℬℛ−):
Campeanu–Salomaa–Yu formalism (2003);

∙ Recursive backref-regexes (ℛℰ𝑤ℬℛ): Shmid formalism,
memory finite automata (2016);

∙ Recursive backref-regexes with lookaheadℛℰ𝑤ℬℛ+ ℒ𝒜:
Chida–Terauchi extended MFA formalism (2023).

4/19, Survey on Capturing Languages, 27.09.24, STEP

Backreferences Formalisations

∙ Appeared much later than implementations of
backref-regexes.

∙ Some almost repeated PCRE (Perl) backref-regexes.

Campeanu–Salomaa-Yu (CSY) formalisation:{︃
(𝜏) (anonymous capturing)
∖𝑘 (reading memory cell from k-th group)

Example: (aa+)(∖1)+ defines {𝑎𝑛 | n is not prime}

∙ Any capture group is initialized exactly once.
∙ Any reference must be preceded by the capture group
textually.

5/19, Survey on Capturing Languages, 27.09.24, STEP

Backreferences Formalisations
∙ Currently most used in the theoretical scope: only named
capture groups.

Backref-regex (ref-words, by Shmid) operations:{︃
[𝑘𝜏]𝑘 (named capturing)

&𝑘 (reading memory cell)

Example: [1a*]1a+b&1 defines {𝑎𝑚𝑏𝑎𝑛 | 𝑚 > 𝑛}

∙ 𝜀-semantics (Schmid) — uninitialized reference recognizes
{𝜀};

∙ ∅-semantics (regex engines) — uninitialized reference
recognizes ∅.

No impact on language properties.
5/19, Survey on Capturing Languages, 27.09.24, STEP

Backreferences Formalisations

∙ Currently most used in the theoretical scope: only named
capture groups.

Backref-regex (ref-words, by Shmid) operations:{︃
[𝑘𝜏]𝑘 (named capturing)

&𝑘 (reading memory cell)

Example: [1a*]1a+b&1 defines {𝑎𝑚𝑏𝑎𝑛 | 𝑚 > 𝑛}

∙ Possibly unbalanced and nested (but not self-nested)
capturing.

∙ References on 𝑘-th memory cell cannot occur inside a
capturing group for 𝑘.

5/19, Survey on Capturing Languages, 27.09.24, STEP

Word Equations

∙ Given a pair of patterns Φ, Ψ sharing common variables
𝑋1, . . . , 𝑋𝑛, we say a tuple ⟨𝜔1, . . . , 𝜔𝑛⟩ is a solution set to
equation Ψ .= Φ if a morphism defined by 𝑋𝑖 ↦→ 𝜔𝑖, 𝛾 ↦→ 𝛾
turns both patterns into equal strings.

∙ Given equation 𝐸 : 𝑎𝑋1𝑋1𝑏𝑋2
.= 𝑋1𝑎𝑋2𝑏𝑋1, the set{︀

⟨𝑎𝑛, (𝑎𝑛𝑏)𝑚𝑎𝑛⟩ | 𝑚,𝑛 ∈ N
}︀
is the solution set to 𝐸.

Note: 𝑋2-projection of the set is not context-free. Still, the
𝑋2-projection belongs to the class of Okhotin’s conjunctive
languages (discussed later).

6/19, Survey on Capturing Languages, 27.09.24, STEP

Word Equations

∙ Given a pair of patterns Φ, Ψ sharing common variables
𝑋1, . . . , 𝑋𝑛, we say a tuple ⟨𝜔1, . . . , 𝜔𝑛⟩ is a solution set to
equation Ψ .= Φ if a morphism defined by 𝑋𝑖 ↦→ 𝜔𝑖, 𝛾 ↦→ 𝛾
turns both patterns into equal strings.

∙ A 𝑘-projection of a solution set{︀
⟨𝜔1, . . . , 𝜔𝑛⟩ | Φ[𝜔1, . . . , 𝜔𝑛] = Ψ[𝜔1, . . . , 𝜔𝑛]

}︀
is the set

of 𝑘-components of the tuples.

∙ If a string set L is a projection of the solution set of a word
equation Φ .= Ψ, then L is said to be a language of Φ .= Ψ.

6/19, Survey on Capturing Languages, 27.09.24, STEP

Captured Values and Patterns

A word equation over 𝑘 variables defines 𝑘 languages.
As a pattern (i.e. a pair of patterns defining the same string), a word
equation Φ .= Ψ defines a single language, as usual,{︀
Φ[𝜔1, . . . , 𝜔𝑛] | Φ[𝜔1, . . . , 𝜔𝑛] = Ψ[𝜔1, . . . , 𝜔𝑛]

}︀
.

We distinguish the first languages class𝒲ℰ𝜋 and the second𝒲ℰ and
note that 𝒲ℰ ⊂ 𝒲ℰ𝜋, since 𝑎* ∈ 𝒲ℰ𝜋, but every equation defining
such a variable value must have at least one explicit 𝑎-occurrence,
hence its side after any substitution cannot be valued 𝜀.

7/19, Survey on Capturing Languages, 27.09.24, STEP

ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ𝜋

ℛℰ𝑤ℬℛ ⊂ ℛℰ𝑤ℬℛ𝜋

Given L =
{︀
𝑎𝑛𝑏𝑛 | 𝑛 ∈ N

}︀
, it can be constructed as a captured value

&3 in the ref-word(︀
[2𝑎&1𝑏]2[1𝑎&2𝑏]1

)︀* [3& | &2]3
L is not expressible by aℛℰ𝑤ℬℛ: both 𝑎-block and 𝑏-block have to
contain an iteration ⇒ asynchronous growth.

8/19, Survey on Capturing Languages, 27.09.24, STEP

Known Analysis Techniques

∙ ℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜, known proofs refer to the
restricted CSY formalisation⇒ no known formal
techniques of disproving expressibility for multiple
capturing case.

∙ For𝒲ℰ , W. Plandowski in 2000s developed a
combinatorial method relying on synchronising ℱ-codes.

∙ In 2023, J. Day used the method to prove that all the star
subexpressions Φ* of a thin regular language recognised by
a word equation language has the following property: every
two elements 𝜔1, 𝜔2 of the language recognised by Φ
commute, i.e. 𝜔1𝜔2 = 𝜔2𝜔1.

9/19, Survey on Capturing Languages, 27.09.24, STEP

ℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ andℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argumentℛℰ𝑤ℬℛ and ℛℰ𝑤ℬℛ+ ℒ𝒜: Growth Argument

The factorial star language {(𝑎𝑘!)+𝑏𝑎𝑘}:(︂
(?= [2𝑎&1]2𝑎

*𝑏)(? = [1&2]1𝑎
*𝑏)(?= &2*𝑏)

)︂
*𝑎*𝑏&2

Main reason of non-expressibility inℛℰ𝑤ℬℛ: given a maximal
length multiplier 𝑁𝑁 (i.e. given length of the regex 𝑁), the words
(𝑎𝑁

𝑁 !)+𝑏𝑎𝑁
𝑁 cannot be expressed, because of the abnormal growth

of the first 𝑎-block.

In Chida’s paper, the CSY formalism was referred with a non-
expressible language

{︀
𝑎𝑖𝑏𝑎𝑖+1𝑏𝑎𝑖·(𝑖+1)·𝑘 | 𝑖, 𝑘 ∈ N

}︀
.

10/19, Survey on Capturing Languages, 27.09.24, STEP

REGEX and 𝒞𝒩𝒥
REGEX includes conjunctive languages by Okhotin expressible by
the rules augmented with conjunction:{︀

𝐴𝑖 → Φ1 & · · · & Φ2 | 𝐴𝑖 ∈ 𝑁 & Φ𝑗 ∈ (𝑁 ∪ Σ)*
}︀

Example: a grammar for
{︀
(𝑎𝑛𝑏)𝑘 | 𝑛, 𝑘 ∈ N

}︀
.

𝑆 → 𝑆𝐴 & 𝐶𝑏 |𝐴
𝐴 → 𝑎𝐴 | 𝑎𝑏
𝐶 → 𝑎𝐶𝑎 |𝐵
𝐵 → 𝐵𝐴 | 𝑏

May be expressed with the use of recursion and lookaheads:
capture group 1⏞ ⏟ (︂(︀

?= (𝑎(?2)𝑎|𝑏|𝑏.*𝑏)⏟ ⏞
capture group 2

𝑏
)︀
𝑎*𝑏(?1)|𝑎* |

(︀
𝑎(?3)𝑎|𝑏

)︀⏟ ⏞
group 3

)︂
𝑏

Technique: same to 𝜇-regexes for CFG, augmented with lookaheads.

11/19, Survey on Capturing Languages, 27.09.24, STEP

Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋Linear 𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋

A language is linear-context-free⇔ it is expressed by a CFG
having at most one non-terminal in each rule rhs.

Every linear 𝒞ℱℒ can be expressed by a capture group
language.

∙ For every non-terminal 𝑁𝑖, introduce a pair of memory
cells 𝑖, 𝑖′ (for capturing in an lhs and for recapturing).

∙ Each recursive rule 𝑁𝑖 → 𝜔1𝑁𝑗𝜔2 is rewritten into a
subexpression 𝑟𝑘 : [𝑖′𝜔1&𝑗𝜔2]𝑖′ [𝑖&𝑖

′]𝑖. Terminal rules for
every nonterminal 𝑁𝑖 are gathered into a disjunction and
are rewritten into an expression 𝑟′𝑖 in the similar way.

∙ A total expression is 𝑟′1 . . . 𝑟′𝑚(𝑟1| . . . |𝑟𝑘)*.

12/19, Survey on Capturing Languages, 27.09.24, STEP

𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋𝒞ℱℒ and ℛℰ𝑤ℬℛ𝜋𝒞ℱℒ andℛℰ𝑤ℬℛ𝜋

Some non-linear (and non-linear-conjunctive) languages such as{︀
(𝑤𝑤𝑅)(𝑣𝑣𝑅) | 𝑤, 𝑣 ∈ Σ*}︀ can be generated by cells ofℛℰ𝑤ℬℛ.

Some non-linear context-free languages cause encoding problems
(e.g. balanced parentheses language). Reason: unbounded treewidth of
the derivation tree.

On the other hand, using the 𝒞𝒩𝒥 ⊂ REGEX technique, the
balanced parenthesis language can be expressed byℛℰ𝑤ℬℛ+ℒ𝒜𝜋.
Idea: construct a Trellis automaton and transform it to a linear 𝒞𝒩𝒥 .

𝑑 𝑎 𝑏 𝑑 𝑟

𝑎 𝑎 𝑑 𝑎 𝑎
𝑏 𝑟 𝑏 𝑟
𝑑 𝑏 𝑎
𝑟 𝑟 𝑏 𝑏 𝑟

13/19, Survey on Capturing Languages, 27.09.24, STEP

𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 andℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋

∙ Given Φ(𝑋1, . . . , 𝑋𝑛)
.= Ψ(𝑋1, . . . , 𝑋𝑛) with a canonical

numeration of variables, every first occurrence of a
variable in ΦΨ is replaced with a capture group (.*), while
the other variable occurrences are replaced by ∖𝑘
operations. The resulting equation sides are Φ′, Ψ′.

∙ Regex (?= Φ′)Ψ′ recognises the solution projections in its
capture groups.

Main reason: capture-preserving lookaheads in REGEX.
For instance, in the expression

(︀
?= (.*)𝑎𝑏(.*)

)︀
∖2𝑏𝑎∖1 both

first and second memory cells are captured by the lookahead
checker.

14/19, Survey on Capturing Languages, 27.09.24, STEP

𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 andℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋𝑞𝒲ℰ𝜋 and ℛℰ𝑤ℬℛ𝜋

In a quadratic word equation, each variable occurs at most twice.

∙ Every solution to a quadratic word equation is expressed by
a graph containing the assignments: 𝑋 ↦→ 𝑌 𝑋 , 𝑋 ↦→ 𝑌 ,
𝑋 ↦→ 𝑎𝑋 , 𝑋 ↦→ 𝜀.

∙ Can be transformed to an MFA moving from graph leaves
to its root with re-capturing. E.g. 𝑋 ↦→ 𝑌 𝑋 is represented
by [𝑋′&𝑌 &𝑋]𝑋′ [𝑋&𝑋 ′]𝑋 subexpression.

Variable values in 𝑋𝑎𝑏𝑌 .= 𝑌 𝑏𝑎𝑋 are captured by
([𝑋𝑎

*]𝑋 [𝑌 &𝑋𝑎]𝑌 |[𝑌 𝑏*]𝑌 [𝑋&𝑌 𝑏]𝑋)(︂
[𝑋′&𝑌 𝑏𝑎&𝑋]𝑋′ [𝑋&𝑋 ′]𝑋 |[𝑌 ′&𝑋𝑎𝑏&𝑌]𝑌 ′ [𝑌 &𝑌

′]𝑌

)︂*

15/19, Survey on Capturing Languages, 27.09.24, STEP

Summary: What is Known?

𝒲ℰ

𝑞𝒲ℰ𝜋

ℛℰ

𝒲ℰ𝜋

ℛℰ𝑤ℬℛ

𝑙𝑖𝑛𝒞ℱ𝒢

ℛℰ𝑤ℬℛ+ ℒ𝒜

ℛℰ𝑤ℬℛ𝜋 ℛℰ𝑤ℬℛ+ ℒ𝒜𝜋

𝒞ℱ𝒢

𝑙𝑖𝑛𝒞𝒩𝒥

𝒞𝒩𝒥

REGEX

16/19, Survey on Capturing Languages, 27.09.24, STEP

Open Problems

∙ Techniques for disproving membership inℛℰ𝑤ℬℛ,
ℛℰ𝑤ℬℛ+ ℒ𝒜 classes?

∙ Clarifying position of word-equation-languages in the
regex languages hierarchy:ℛℰ𝑤ℬℛ,ℛℰ𝑤ℬℛ𝜋,
ℛℰ𝑤ℬℛ+ ℒ𝒜 orℛℰ𝑤ℬℛ+ ℒ𝒜𝜋?

∙ Determining a cone over𝒲ℰ andℛℰ𝑤ℬℛ: a minimal
language class closed under intersections with regular
languages, homomorphism and inverse homomorphism
operations.

17/19, Survey on Capturing Languages, 27.09.24, STEP

References-I

1. J. Karhumäki, F. Mignosi, and W. Plandowski, The expressibility of
languages and relations by word equations, J. ACM, vol. 47, no. 3, pp.
483–505, (2000).

2. Joel D. Day, Vijay Ganesh, Nathan Grewal, Matthew Konefal, Florin
Manea: A Closer Look at the Expressive Power of Logics Based on
Word Equations. Theory Comput. Syst. 68(3): 322-379 (2024).

3. Alexander Okhotin: Conjunctive Grammars. J. Autom. Lang. Comb.
6(4): 519-535 (2001)

4. Nariyoshi Chida, Tachio Terauchi: On Lookaheads in Regular
Expressions with Backreferences. IEICE Trans. Inf. Syst. 106(5):
959-975 (2023)

18/19, Survey on Capturing Languages, 27.09.24, STEP

References-II

5. Henning Fernau, Florin Manea, Robert Mercas, Markus L. Schmid:
Pattern Matching with Variables: Efficient Algorithms and Complexity
Results. ACM Trans. Comput. Theory 12(1): 6:1-6:37 (2020).

6. Markus L. Schmid: Characterising REGEX languages by regular
languages equipped with factor-referencing. Inf. Comput. 249: 1-17
(2016).

7. Cezar Câmpeanu, Kai Salomaa, Sheng Yu: A Formal Study Of
Practical Regular Expressions. Int. J. Found. Comput. Sci. 14(6):
1007-1018 (2003).

8. Yuya Uezato: Regular Expressions with Backreferences and
Lookaheads Capture NLOG. ICALP 2024: 155:1-155:20.

9. M. Berglund and B. van der Merwe, “Re-examining regular expressions
with backreferences”, Theoretical Computer Science, vol. 940, pp.
66–80, 2023.

19/19, Survey on Capturing Languages, 27.09.24, STEP

