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Abstract

Recent years have seen the advent of large and com-
plex ontologies, most notably in the medical domain.
As a consequence, structuring mechanisms for ontolo-
gies are nowadays viewed as an indispensible tool. A
basic such mechanism is the automatic decomposition
of the vocabulary of an ontology into independent parts.
In this paper, we study decompositions that are syntax
independent in the sense that the resulting partitioning
depends only on the meaning of the vocabulary items,
but not on the concrete syntactic form of the axioms in
the ontology.
We present the first systematic investigation of de-
compositions of this type in the context of ontologies.
Specifically, we focus on ontologies formulated in de-
scription logics and provide a variety of results that
range from theorems stating the existence of unique
finest decompositions to complexity results and algo-
rithms computing decompositions. We also investigate
the relationship between the existence of unique finite
decompositions and a variant of the Craig interpolation
property called parallel interpolation.

Introduction
The purpose of an ontology in knowledge representation is
to fix the vocabulary of an application domain and to for-
mally describe the meaning of this vocabulary using a logic-
based language. This simple idea has proved to be rather
successful, and consequently a considerable number of on-
tologies have been developed for various application do-
mains. In broad domains such as medicine, ontologies used
in practice can be extremely large; as an example, take the
medical ontology SNOMED CT that covers almost half a
million vocabulary items. Unsurprisingly, the design and
maintenance of logical theories of this size poses serious
challenges and it has long been a major goal of the KR com-
munity to provide support in the form of automated reason-
ing techniques.

Basic reasoning support for ontology design and main-
tenance aims to make explicit the structure of an ontology,
for example by using classification (computing the subcon-
cept/superconcept hierarchy). This is fundamental for an
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ontology designer who can easily lose track of the overall
structure of an ontology—especially when it is constructed
by multiple designers working in parallel as in the case of
SNOMED CT. Making explicit the structure is also essen-
tial when an existing ontology has to be re-engineered due to
changes in the modeled application domain or to customize
it for a novel application—especially when the ontology was
designed by somebody else.

In this paper, we consider a way of analyzing the struc-
ture of an ontology that aims at making explicit the depen-
dencies among vocabulary items in the ontology. Our ap-
proach is based on signature decompositions, a partition of
the signature of an ontology (i.e., of the symbols used to
describe vocabulary items) into parts that are independent
regarding their meaning. Similar kinds of structural anal-
ysis of an ontology have been advocated, e.g. in (d’Aquin
et al. 2009). However, all existing approaches are syntax-
dependent in the sense that two semantically equivalent, but
syntactically different ontologies may yield different decom-
positions. Thus, the quality of the computed signature de-
composition depends on the quality of the representation of
the analyzed ontology (when the goal of the analysis may
actually be to improve the quality of a poorly organized on-
tology).

Our aim is to establish the theoretical foundations for a
purely semantic approach to signature decompositions that
is not syntax-dependent in the above sense. Formally, the ba-
sic notion studied in this paper is the following: a partition
Σ1, . . . ,Σn of the signature of an ontology T formulated in
an ontology language L is a signature decomposition of T
in L if there are ontologies T1, . . . , Tn formulated in L such
that (i) each Ti uses only symbols from Σi and (ii) the union
T1 ∪ · · · ∪ Tn is logically equivalent to T . This notion has
first been proposed by Parikh (1999) and Kourousias and
Makinson (2007) in the context of propositional logic and
belief revision. We emphasize that the ontologies T1, . . . , Tn
used in the definition of signature decompositions need not
be subsets of the original ontology T . Moreover, as we
are interested in decompositions of signatures, we only de-
mand the existence of these ontologies, but do not insist
they are explicitly computed. There is a close relationship
between signature decompositions and approaches to mod-
ularization of ontologies that aim at a partition of the ax-
ioms (rather than signature) of an ontology into independent



parts (Cuenca Grau et al. 2006; Amir and McIlraith 2005;
Stuckenschmidt, Parent, and Spaccapietra 2009). Again,
however, all existing approaches are syntax-dependent and
aim at partitioning the existing axiomatization.

In many cases, the initial version of signature decompo-
sitions defined above can be expected to be too coarse to
be informative. To see this, consider a description logic
(DL) ontology T that consists of the axioms α = (Car v
∃has part.Tire) and β = (Ship v ∃has part.Deck). It is
not difficult to show that, due to the use of the role has part,
the only decomposition of T consists of only one set that
contains the whole signature. From an ontology design per-
spective, though, the ontology T contains cars and ships as
two separate subject areas that should not be ‘merged’ due
to using the general-purpose role has part that, intuitively,
does not belong to any specific subject area. From a logical
viewpoint, has part behaves like a logical symbol much like
the equality symbol or the symbol ⊥ for contradiction. This
example suggests to generalize the initial version of signa-
ture decompositon by adding a set of symbols ∆ that do not
induce dependencies and do not participate in the decom-
position. Formally, a signature ∆-decomposition is defined
just like a signature decomposition, except that each ontol-
ogy Ti is allowed to use symbols from Σi and ∆. This gener-
alization was first proposed by Ponomaryov (2008). In prac-
tice, it may not be easy to determine a suitable ∆. In fact,
we do not expect signature decompositions to be a push-
button technique, but rather envision an iterative and inter-
active process of understanding and improving the structure
of an ontology, where the designer repeatedly chooses sets
∆ and analyzes the impact on the resulting decomposition.

It is important to observe that the definition of a signature
decomposition, both with and without the set ∆, depends on
the language L used to formulate the ontologies T1, . . . , Tn
that realize the signature decomposition (henceforth called
realizations). In principle, this is a point of concern as it
may not be clear which language L is appropriate here; for
example, when decomposing an ontology T given in a DL,
one might expect more fine-grained decompositions if L is
second-order logic (SO) compared to when L is again a DL.
Therefore, the first aim of this paper is to study in how far
decompositions of DL ontologies depend on the language
for the realizations. Fortunately, it turns out that for many
standard DLs, decompositions of TBoxes do not depend on
whether one uses SO or the DL for realizations. The main
tool for proving this and related results is establishing the
parallel interpolation property, a type of interpolation that
has not yet been investigated in the context of ontologies.

In general, one may expect that there can be many dis-
tinct and incomparable signature decompositions of a given
ontology T . This is another point of concern because facing
a large number of incomparable decompositions is likely to
be confusing rather than helpful for an ontology designer.
Therefore and since finer decompositions are clearly more
informative than coarser ones, one would ideally like to have
a unique finest decomposition to work with. Thus, the sec-
ond aim of this paper is to investigate when unique finest
decompositions exist. Fortunately, we can use parallel in-
terpolation to show that this is the case for many standard

Syntax FO EL ALC Short
> x = x X X
⊥ ¬(x = x) X
A A(x) X X
¬C ¬C(x) X
C uD C(x) ∧D(x) X X
∃r.C ∃y (r(x, y) ∧ C(y)) X X

(6 n r C) ∃≥ny (r(x, y) ∧ C(y)) Q
{a} x = a O
r− r(y, x) I

C v D ∀x (C(x)→ D(x)) X X
r v s ∀xy (r(x, y)→ s(x, y)) H

Figure 1: Standard translation

DLs.
Finally, we provide a first analysis of the complexity of

some computational problems related to signature decompo-
sitions in DL ontologies. We show that for many expressive
DLs, these problems are not harder than standard reasoning.
Given that there is a very close connection between signa-
ture decompositions on the one hand, and computationally
very expensive notions such as conservative extensions and
uniform interpolation on the other hand, this result is rather
surprising. We also show that in the lightweight descrip-
tion logic DL-Lite, signature decompositions can typically
be computed in polynomial time. For the lightweight DL
EL, we establish the same result for some restricted, but nat-
ural cases.

Many proofs are omitted and can be found in the full ver-
sion of this paper (Konev et al. 2010).

Preliminaries
Let NC, NR, and NI be countably infinite and mutually dis-
joint sets of concept names (unary predicates), role names
(binary predicates), and individual names. We use NC, NR,
and NI as the vocabulary for second-order logic (SO), first-
order logic (FO), and a variety of DLs. More precisely,
we consider SO (and FO) with equality, the predicates from
NC ∪NR and constants from NI.1 Matching this vocabulary,
second-order quantification is over set variables and binary
relation variables. We use T ⊆ SO and T ⊆fin SO to de-
note that T is a set, respectively finite set, of SO-sentences;
we write T |= ϕ if ϕ is an SO-sentence that is a conse-
quence of T . A set T ⊆ SO is satisfiable iff T has a model.
Two sets T1 ⊆ SO and T2 ⊆ SO are equivalent, in symbols
T1 ≡ T2, if they have the same models or, equivalently, if
T1 |= ϕ for all ϕ ∈ T2 and vice versa. We sometimes write
T1 |= T2 as shorthand for ‘T1 |= ϕ for all ϕ ∈ T2’. The sig-
nature sig(ϕ) of an SO-formula is the set of all predicate and
constant symbols (except equality) used in ϕ. This notion is
lifted to sets of sentences in the obvious way. A fragment of
second-order logic is simply a subset L ⊆ SO.

Description logics can be viewed as fragments of FO. DL
concepts are formed starting from concept names by induc-

1This is only for uniformity with DLs. The results presented in
this paper do not depend on the restricted arity.



tively applying concept constructors such as those shown
in the upper part of Figure 1. The choice of different con-
structors gives rise to different DLs. In the figure, we have
marked the constructors of the basic DLs EL and ALC and
assigned to each additional constructor a letter that allows
the systematic appellation of extended DLs. The extension
I is with a role constructor for inverse roles, not a concept
constructor. When I is present, inverse roles can be used in-
side existential restrictions, number restrictions Q and role
hierarchies H. For details, we refer the reader to (Baader et
al. 2003).

To simplify notation, we identify models of SO (and,
therefore, of FO and DLs) with interpretations I = (∆I , ·I)
consisting of a non-empty domain ∆I and a function ·I that
assigns a set AI ⊆ ∆I to each A ∈ NC, a relation rI over
∆I to each r ∈ NC, and an element aI ∈ ∆I to each a ∈ NI.
The extension CI ⊆ ∆I of a DL concept C is defined by
the standard inductive translation of C into an FO-formula
with one free variable x as shown in Figure 1.

A TBox (or ontology) is a finite set of concept inclusions
(CIs) C v D, where C,D are concepts. An interpretation
satisfies a CI C v D (written I |= C v D) iff CI ⊆ DI

and a TBox T (written I |= T ) if I |= C v D for all
C v D ∈ T . In the presence of role hierarchies (indi-
cated by the letter H), TBoxes can also include role inclu-
sions r v s whose semantics can be found in Figure 1. We
will typically not distinguish between DL concepts (resp.
TBoxes) and their FO translations. In particular, we often
regard DL TBoxes as finite sets of FO-sentences (and thus
SO-sentences).

Signature Decomposition
We introduce and illustrate the basic notion of this paper and
identify some of its fundamental properties.

Definition 1 (Signature Decomposition) Let T ⊆fin SO,
∆ ⊆ sig(T ) andL a fragment of SO. A partition Σ1, . . . ,Σn
of sig(T )\∆ is called a signature ∆-decomposition of T in
L if there are T1, . . . , Tn ⊆ L such that

• sig(Ti) ⊆ Σi ∪∆ for 1 ≤ i ≤ n;
• T1 ∪ · · · ∪ Tn ≡ T .

In this case, we say that T1, . . . , Tn realize the signature ∆-
decomposition Σ1, . . . ,Σn in L.

For simplicity, we will often speak only of ∆-
decompositions instead of signature ∆-decompositons.
When ∆ = ∅, we simply drop it and speak only of (signa-
ture) decompositions. Note that in contrast to Kourousias
and Makinson (2007), we consider only finitely axiomatized
theories, which suffices for our purposes. Some proofs
actually depend on this assumption.

For any T and ∆, there exists at least one ∆-
decomposition, namely the trivial decomposition consist-
ing only of the single set sig(T ) \ ∆. We call a partition
Σ1, . . . ,Σn finer than a partition Π1, . . . ,Πm if they are dis-
tinct and for every i ≤ m there exist i1, . . . , ik ≤ n such that
Πi =

⋃
`≤k Σi` .

Example 2 Let T be the TBox consisting of α1 = (Ball v
Physical Object), α2 = (Table v Physical Object), α3 =
(Ball v ∃has colour.>), α4 = (Table v ∃has colour.>),
α5 = (OrangeBall v Ball).

For any of ∆ = ∅, ∆ = {Physical object} and ∆ =
{has colour}, there are no non-trivial ∆-decompositions
of T because, intuitively, Ball and Table are connected
independently via both Phyical object and has colour.
In many contexts, one would not regard this as a rel-
evant dependency between the two terms. In fact,
for ∆ = {Physical object, has colour} the finest ∆-
decomposition of T is {Ball,OrangeBall}, {Table}, real-
ized by {α1, α3, α5} and {α2, α4}.

One way to extend T such that Ball and Table are
separated already when choosing ∆ = {has colour}
is to add α6 = (∃has colour.> v Physical Object).
In the resulting T ′, the axioms α1, α2 become
redundant and the finest ∆-decomposition is
{Physical Object}, {Ball,OrangeBall}, {Table}, real-
ized by {α6}, {α3, α5}, {α4}.

Finally, note that OrangeBall and Ball cannot be separated
in a non-trivial way because one would have to extend ∆ by
at least one of the two concepts.

Signature decompositions that can be obtained by analyzing
the syntactic form of axioms are a special case of signature
decompositions in the sense of Definition 1. The following
example shows how such syntactic decompositions can be
computed.

Example 3 (Syntactic decomposition) Let T ⊆fin SO
and ∆ ⊆ sig(T ). There always exists a (unique) finest
∆-decomposition Σ1, . . . ,Σn that is realized by subsets
T1, . . . , Tn of T . We denote this ∆-decomposition by
sdeco∆(T ) and call it the syntactic ∆-decomposition of T .
sdeco∆(T ) can be obtained as the partition of sig(T )\∆ in-
duced by the smallest equivalence relation on sig(T )\∆ that
contains all pairs (σ1, σ2) for which there exists α ∈ T with
{σ1, σ2} ⊆ sig(α) \∆. In general, sdeco∆(T ) is of course
not the finest decomposition possible. Note that sdeco∆(T )
can be computed in poly-time.

We now establish some basic properties of decompositons
in SO, i.e., decompositions of ontologies based on realiza-
tions T1, . . . , Tn that are formulated in SO. As announced in
the introduction, decompositions in SO play a special role
in this paper as they are easy to work with and turn out
to be equivalent to decompositions in many standard DLs.
To formulate SO decompositions succinctly, we write ∃σ.ϕ
to denote ∃P.ϕ[P/σ], where either σ is a predicate and P
a fresh predicate variable of the same arity as σ, or σ is
an individual constant and P a fresh individual variable.
Clearly, sig(∃σ.ϕ) = sig(ϕ) \ {σ}. ∃Σ.ϕ is shorthand for
∃σ1 · · · ∃σn.ϕ if Σ = {σ1, . . . , σn}.
Theorem 4 (Characterization) Let T ⊆fin SO and ∆ ⊆
sig(T ). A partition Σ1, . . . ,Σn of sig(T ) \∆ is a signature
∆-decomposition of T in SO iff

{∃Σ1.
∧
ϕ∈T

ϕ, · · · ,∃Σn.
∧
ϕ∈T

ϕ} |= T (∗)

where Σi :=
⋃

1≤j≤n,j 6=i Σj .



Proof. “⇒”. Assume that the partition Σ1, . . . ,Σn of
sig(T ) \ ∆ is a ∆-decomposition of T in SO realized by
T1, . . . , Tn. To show that (∗) holds, let I be a model of the
left-hand side of (∗). Then I is a model of Ti for 1 ≤ i ≤ n:
since I |= ∃Σi.

∧
ϕ∈T ϕ, there is a modelJ of T that agrees

with I on the interpretation of all symbols from Σi ∪ ∆;
since T |= T1 ∪ · · · ∪ Tn, we have J |= Ti and due to
sig(Ti) ⊆ Σi ∪ ∆, it follows that I |= Ti as stated. Thus
I |= T1 ∪ · · · ∪ Tn and T1 ∪ · · · ∪ Tn |= T yields that I is a
model of T , as required.

“⇐” If (∗) holds, then Ti = {∃Σi.
∧
ϕ∈T ϕ}, 1 ≤ i ≤ n,

clearly realize Σ1, . . . ,Σn. o

As a consequence of the proof of Theorem 4, for each
decomposition Σ1, . . . ,Σn in SO, there exists a realiza-
tion of the canonical (though rather uninformative) form
Ti = {∃Σi.

∧
ϕ∈T ϕ}, 1 ≤ i ≤ n. Clearly, this canon-

ical form relies on second-order quantifiers and does not
exist in (fragments of) FO. As a first application of Theo-
rem 4, one can show that there always exists a unique finest
∆-decomposition in SO.

Theorem 5 (Unique Finest Decomposition) Let T ⊆fin
SO, ∆ ⊆ sig(T ), and let Σ1, . . . ,Σn and Π1, . . . ,Πm be ∆-
decompositions of T in SO. Then the partition Σi∩Πj for all
i, j with Σi ∩Πj 6= ∅ of sig(T ) \∆ is a ∆-decomposition of
T in SO. Thus, there exists a unique finest ∆-decomposition
of T in SO.

In the following example, we compute the finest ∆-
decomposition in SO of concept hierarchies.

Example 6 Let T be a concept hierarchy, i.e., a finite set of
inclusions A v B between concept names A,B. A realiza-
tion of the unique finest ∆-decomposition in SO of T is ob-
tained by first adding to T all CIs A v B with T |= A v B
that contain at most one non-∆ symbol. Then remove from
the resulting TBox all A v B with two non-∆-symbols for
which there exists D ∈ ∆ with A v D,D v B ∈ T ,
and denote by T ′ the resulting TBox. It can be shown that
sdeco∆(T ′) is the unique finest ∆-decomposition of T in
SO which, in this case, is realized using again a concept hi-
erarchy and no second-order quantifiers.

Although there is always a unique finest decomposition in
SO, the theories that realize this (finest) decomposition are
generally not uniquely determined. To see this, consider the
TBox T = {> v AuB1uB2} and let ∆ = {A}. Then the
unique finest ∆-decomposition {B1}, {B2} is realized by
both {> v A uB1}, {> v B2} and {> v B1}, {> v A u
B2}. Clearly, there are no two sets in these two realizations
that are logically equivalent.

We now present a condition under which realizations are
unique, for many fragments of SO. Say that T1, T2 ⊆ L
are ∆-inseparable w.r.t. L if, and only if, T1 |= ϕ iff
T2 |= ϕ for all ϕ in L such that sig(ϕ) ⊆ ∆. Clearly, if
∆ contains the signatures sig(T1) and sig(T2), then T1 and
T2 are ∆-inseparable w.r.t. L iff they are logically equiv-
alent. Otherwise, ∆-inseparability is weaker than logical

equivalence and is an extension of the notion of a con-
servative extension (for which, in addition to being ∆-
inseparable, it is required that T1 ⊆ T2 and ∆ = sig(T1))
that has been used to develop a formal framework for mod-
ular ontologies and module extraction (Konev et al. 2009;
Lutz and Wolter 2010). Note that for the canonical re-
alization Ti = {∃Σi.

∧
ϕ∈T ϕ}, 1 ≤ i ≤ n, of Theo-

rem 4 we have that Ti, Tj are ∆-inseparable w.r.t. SO for
all 1 ≤ i, j ≤ n.

Definition 7 (Unique Decomposition Realizations) Let L
be a fragment of SO. We say that L has unique decompo-
sition realizations (UDR) if for all satisfiable T ⊆fin L and
all finite L-realizations T1, . . . , Tn and T ′1 , . . . , T ′n of a ∆-
decomposition of T such that

• Ti, Tj are ∆-inseparable w.r.t. L for i, j ≤ n and
• T ′i , T ′j are ∆-inseparable w.r.t. L for i, j ≤ n,

we have Ti ≡ T ′i for all i ≤ n.

UDR has interesting consequences. For example, if
T1, . . . , Tn satisfy the conditions of Definition 7 and L
has UDR, then one can show that T is a conservative ex-
tension of each Ti (i.e., Ti |= ϕ iff T |= ϕ for all ϕ
with sig(ϕ) ⊆ sig(Ti)). Thus, realizations satisfy the ba-
sic conditions for logic-based ontology modules as pro-
posed and discussed in (Cuenca Grau et al. 2006; 2008;
Konev et al. 2009).

Theorem 8 SO has UDR.

One can show that the canonical realization provided by
Theorem 4 satisfies the conditions of Definition 7 for SO.
Therefore, by Theorem 8, all realizations of a given ∆-
decomposition that satisfy the conditions of Definition 7 for
SO are equivalent to its canonical realization.

In this section, we have seen that decompositions in SO
have a variety of desirable properties. The aim of the next
section is to investigate in how far these are also enjoyed by
decompositions in DLs.

Signature decompositions and parallel
interpolation in DLs

By definition, if L1 is a fragment of L2, then every ∆-
decomposition of some T in L1 is a ∆-decomposition of
T in L2. In particular, every ∆-decomposition of T in some
fragment of SO is a ∆-decomposition of T in SO. In this
section, we show that for many DLs the converse implica-
tion holds as well and that, therefore, DLs inherit many of
the desirable properties of decompositions in SO.

Definition 9 (L-decompositions = SO-decompositions)
Let L be a fragment of SO. We say that L-decompositions
coincide with SO-decompositions if for every T ⊆fin L
and every signature ∆ ⊆ sig(T ), the ∆-decompositions of
T in L coincide with the ∆-decompositions of T in SO.



Before we provide methodologies for proving this property
for a wide range of DLs, we provide a counterexample show-
ing that ALCO-decompositions do not coincide with SO-
decompositions.

Example 10 Let ∆ = ∅ and T consist of the ALCO-
inclusions

{a} v (∃r.¬{a}) u (∀r.¬{a}), > v {b} t {b′},

¬{a} v (∃r.{a}) u (∀r.{a}), {a′} v {a′}.
By the CI > v {b}t {b′}, each model of T has at most two
domain elements. Using the two CIs involving a it is, there-
fore, easy to see that T axiomatizes the class of two-element
interpretations in which b, b′ denote distinct elements and r
is a symmetric and irreflexive relation that connects the two
domain elements. In particular, T “says nothing” about a
and a′. Thus, the finest ∆-decomposition in SO (and FO)
of T is {a}, {a′}, {r}, {b, b′}. In contrast, one can show
that there is no finer ∆-decomposition of T in ALCO than
sdeco∆(T ) which coincides with {a, r}, {a′}, {b, b′}. An-
other ∆-decomposition of T in ALCO, which is incompat-
ible with sdeco∆(T ), is given by {a′, r}, {a}, {b, b′}. It fol-
lows thatALCO TBoxes do not always have a unique finest
∆-decomposition in ALCO.

We now introduce an interpolation property that is not only
sufficient to prove that SO-decompositions coincide with L-
decompositions, but also implies UDR.

Definition 11 (Parallel Interpolation) LetL be a fragment
of SO, (T1, T2) be two sets of SO-sentences, α an SO-
sentence with T1 ∪ T2 |= α, and ∆ a signature. A pair
(T ′1 , T ′2 ) with T ′i ⊆ L for i = 1, 2 is called a ∆-parallel
interpolant of (T1, T2) and α in L if the following conditions
hold:

• Ti |= T ′i for i = 1, 2;
• sig(T ′i ) \∆ ⊆ sig(Ti) ∩ sig(α) for i = 1, 2;
• T ′1 ∪ T ′2 |= α.

L has the parallel interpolation property (PIP) if for all
T1, T2 ⊆ L, all α ∈ L, and all signatures ∆ such that

1. sig(T1) ∩ sig(T2) ⊆ ∆,
2. T1 ∪ T2 |= α,
3. T1 and T2 are ∆-inseparable w.r.t. L,

there exists a ∆-parallel interpolant of (T1, T2) and α in L.

The main reason for studying parallel interpolation is the
following result.

Theorem 12 Let L be a fragment of SO with the PIP. Then

1. L-decompositions coincide with SO-decompositions.
2. L has UDR.

In particular, every T ⊆fin L has a unique finest ∆-
decomposition in L.

Proof. (Sketch for Point 1) Assume that Σ1,Σ2 is a ∆-
decomposition in SO of T . It follows from Theorem 4
that {∃Σ2.

∧
ϕ∈T ϕ,∃Σ1.

∧
ϕ∈T ϕ} |= T . Let S1 and S2

be the subsets of L obtained from T by replacing all predi-
cates in Σ2 and Σ1, respectively, by fresh predicates. Then
S1∪S2 |= T and the componentwise union of the ∆-parallel
interpolants of (S1,S2) and α in L, α ∈ T , realizes Σ1,Σ2

in L. o

The proof shows that an algorithm computing ∆-parallel in-
terpolants in L can be directly employed to construct a re-
alization in L of a given ∆-decomposition. As the focus of
this paper is on signature decompositions rather than real-
izations, we concentrate on proving the PIP and leave the
computation of ∆-parallel interpolants for future work.

In FO, it is easy to prove the equivalence of the PIP
and the standard Craig interpolation property (Parikh 1999;
Kourousias and Makinson 2007). Unfortunately, this is not
the case for DLs because the proof uses the fact that FO-
sentences are closed under Boolean operations and this typi-
cally does not hold for DLs (e.g., there does not exist a TBox
T in ALC that is equivalent to ¬(> v A)). This also im-
plies that recent results on the existence and computation
of Craig interpolants in DL using tableaux are not directly
applicable (Seylan, Franconi, and de Bruijn 2009). Never-
theless, it turns our that many DLs have the PIP:

Theorem 13 The following DLs have the PIP: EL, ELH,
ALC, ALCI, ALCQ, ALCQI.

With the exception of ELH, for which a proof is given in the
full version of this paper, Theorem 13 is proved by employ-
ing known results regarding the interpolation and Robinson
joint consistency properties of DLs. Namely, let L be a set
of sentences in FO. We say that L has the Robinson Joint
Consistency Property (RJCP) if the following holds for all
T1, T2 ⊆ L and all signatures ∆: if sig(T1) ∩ sig(T2) ⊆ ∆
and T1 and T2 are ∆-inseparable w.r.t. L, then

T1 ∪ T2 |= α ⇔ T1 |= α

for all sentences α in L with sig(α) ⊆ sig(T1). We say
that L has the Boolean Craig Interpolation Property (BCIP)
if for all T ⊆ L and all Boolean combinations ϕ of L-
sentences the following holds: if T |= ϕ, then there ex-
ists a Boolean combination ψ of L-sentences with sig(ψ) ⊆
sig(T )∩sig(ϕ) such that T |= ψ and ψ |= ϕ. Finally, we say
that L has the disjoint union property if the following holds
for all T ⊆ L: for all families Ii, i ∈ I , of interpretations
the following conditions are equivalent:
• all Ii, i ∈ I , are models of T ;
• the disjoint union of all Ii, i ∈ I , is a model of T .
Note that EL, ELH,ALC,ALCQI and all standard dialects
of DL-Lite have the disjoint union property. Examples of
DLs without the disjoint union property are DLs with nomi-
nals or the universal role. Now one can prove the following
equivalences.

Theorem 14 Let L be a fragment of FO with the disjoint
union property. Then the following conditions are equiva-
lent:



• L has the PIP;
• L has RJCP;
• L has the BCIP.

We come to the proof of Theorem 13: the PIP of EL follows
from Theorem 34 and its RJCP proved in (Lutz and Wolter
2010). The PIP of ALC, ALCQ, ALCI, and ALCQI fol-
lows from Theorem 34 and their BCIP proved in (Konev et
al. 2009). It remains to apply Theorem 34.

It is interesting to observe that the addition of role inclu-
sions to EL preserves the PIP. This is true for DL-Lite (see
the analysis below) as well, but expressive DLs with role
inclusions typically do not have the PIP:

Example 15 ALCH does not have the PIP. Let ∆ =
{r1, r2}, α = ∀r1.A v ∃r2.A, T1 = {> v ∃r1.> u
∃r2.>}, and T2 = {s v r1, s v r2,> v ∃s.>}. Then
T1 ∪ T2 |= α but there does not exist a ∆-parallel inter-
polant of (T1, T2) and α in ALCH. We note that it remains
an open problem whether ALCH-decompositions coincide
with SO-decomposition.

We now show how the PIP can be restored for expressive
DLs with role inclusions and/or nominals by including into
∆ all role and individual names. To obtain the PIP in the
presence of nominals we take, in addition, the @-operator
from hybrid logic (Areces and ten Cate 2006) (an alternative
approach to restoring the PIP is to admit Boolean TBoxes or,
equivalently, the universal role). Given a DL L, we denote
by L@ the DL obtained from L by adding the @-operator as
a new concept constructor: if a is an individual name and C
an L@-concept, then @aC is an L@ concept. In every inter-
pretation I, (@aC)I = ∆I if aI ∈ CI and (@aC)I = ∅
otherwise. The following theorem can now be proved by ex-
tending results and techniques introduced in (ten Cate 2005;
ten Cate et al. 2006).

Theorem 16 Assume L ∈ {ALCH,ALCHI, ALCO@,
ALCHO@,ALCHIO@}. Then ∆-parallel interpolants
exist in L for every (T1, T2) in L and L-inclusion α such
that 1.–3. from Definition 11 hold and ∆ contains all role
and individual names in T1, T2, α.

In particular, for every T in L and ∆ containing all role
and individual names in T , ∆-decompositions of T in SO
coincide with ∆-decompositions of T in L.

Computing decompositions in expressive DLs
We now exploit the results of the previous two sections to
analyze the computational complexity of the problem of
computing, given T ⊆fin L and ∆ ⊆ sig(T ), the finest
∆-decomposition of T in L. We confine ourselves to lan-
guages L in which SO-decompositions coincide with L-
decompositions and, therefore, can assume that unique finest
decompositions always exist and coincide with the finest ∆-
decomposition in SO. In this section, we prove tight com-
plexity bounds for a range of expressive DLs; in the next
section, we consider lightweight DLs.

It will be convenient to reformulate the problem of
computing the finest ∆-decomposition as a decision prob-
lem. Say that a signature Σ (concept C, CI α) is
∆-decomposable w.r.t. a TBox T iff there exists a ∆-
decomposition Σ1, . . . ,Σn of T such that Σ 6⊆ Σi ∪ ∆
(sig(C) 6⊆ Σi ∪∆, sig(α) 6⊆ Σi ∪∆) for all i ≤ n. Decid-
ing ∆-decomposability in L means, given a TBox T in L,
∆ ⊆ sig(T ), and σ1, σ2 ∈ sig(T ), to check whether σ1 and
σ2 are ∆-decomposable w.r.t. T . ∆-decomposability may
be viewed as the decision problem associated with comput-
ing the finest ∆-decomposition of T : it is not difficult to see
that the finest ∆-decomposition of T coincides with the par-
tition of sig(T )\∆ induced by the equivalence relation∼ de-
fined by setting σ1 ∼ σ2 iff {σ1, σ2} are ∆-indecomposable
w.r.t. T .

Theorem 17 (Complexity of ∆-decomposability)
InALC,ALCI,ALCQ, orALCQI, ∆-decomposability is
EXPTIME-complete.

Proof. We start with the upper bound. Assume a TBox T
in L, a signature ∆ ⊆ sig(T ), and σ1, σ2 ∈ sig(T ) \ ∆
are given. Enumerate all (exponentially many) partitions
Σ1,Σ2 of sig(T ) \∆ such that σ1 ∈ Σ1 and σ2 ∈ Σ2. Then
σ1, σ2 are ∆-decomposable w.r.t. T if, and only if, at least
one these partitions is a ∆-decomposition of T . It is thus
sufficient to show that the latter problem can be decided in
EXPTIME. Assume Σ1,Σ2 is given. By Theorem 4, Σ1,Σ2

is a ∆-decomposition of T in SO (and, therefore, by the PIP,
in L) if, and only if,

{∃Σ2.
∧

CvD∈T

C v D,∃Σ1.
∧

CvD∈T

C v D} |= T .

By introducing fresh predicates for the existentially quan-
tified variables, this condition can be checked using stan-
dard subsumption checking w.r.t. L-TBoxes, thus in EXP-
TIME (Baader et al. 2003). For the EXPTIME-lower bound,
observe that a TBox T is unsatisfiable iff A,B are ∆-
decomposable w.r.t. T ∪ {A v B}, where A,B are concept
names that do not occur in T . Checking unsatisfiability of
TBoxes in L is ExpTime-hard (Baader et al. 2003). o

Clearly, this proof does not provide a practical method for
computing finest decompositions. For expressive DLs we
leave as future work. Theorem 17 can be generalized in var-
ious directions. In the proof, we did not use any specific
properties of L, except that SO-decompositions coincide
with L-decompositions. Thus the same proof can be used
to show that for any such language L in which subsumption
is at least EXPTIME-hard, checking ∆-decomposability of
two symbols is of the same complexity as subsumption. To-
gether with Theorem 16, we also obtain the following result.

Theorem 18 In ALCH, ALCHI, ALCO@, ALCHO@,
andALCHIO@, ∆-decomposability with ∆ containing all
role and invidual names from the input TBox is EXPTIME-
complete.



For languages L in which reasoning is strictly less complex
than EXPTIME, the proof does not necessarily work because
the enumeration step for the signature partitions requires ex-
ponential time already. In particular, we cannot use the proof
to establish tractability of ∆-decomposability for DLs such
as DL-Lite and EL in which subsumption is tractable.

Decomposition in DL-Lite
Our aim in this section is to establish the PIP and prove
tractability of computing the finest ∆-decomposition for
members of the DL-Lite family of description logics (Cal-
vanese et al. 2009). We start by investigating the basic lan-
guage DL-Litecore and then move via DL-Litehorn and full
DL-Litehorn to DL-LiteHhorn, the extension of DL-Litehorn
with role hierarchies. Using the techniques introduced in
this section, it is rather straightforward to extend the re-
sults presented here to other DL-Lite dialects such as DL-
LiteR, DL-LiteF , and DL-LiteNhorn (Calvanese et al. 2006;
Artale et al. 2009). The algorithms in this and the sub-
sequent section work by first converting the input TBox
T into an equivalent TBox T ′ in which every CI is ∆-
indecomposable w.r.t. T . It is not hard to show that, then,
sdeco∆(T ′) coincides with the finest ∆-decomposition of
T ′, and thus of T . In contrast to the “non-constructive”
second-order approach underlying the proof of Theorem 17,
this also allows to compute a realization T1, . . . , Tn formu-
lated in the same language as the input TBox T .

Recall that basic DL-Lite concepts B are defined as

B ::= > | ⊥ | A | ∃r | ∃r−,
where A ranges over NC and r over NR. DL-Litecore-
inclusions take the form B1 v B2 and B1 v ¬B2, where
B1, B2 are basic DL-Lite concepts. A DL-Litecore-TBox is
a finite set of DL-Litecore-inclusions.

Theorem 19 DL-Litecore has the PIP. For DL-Litecore-
TBoxes T and signatures ∆, one can compute in poly-
nomial time a realization in DL-Litecore of the finest ∆-
decomposition T .

Proof. The algorithm is rather straightforward and almost
identical to the algorithm for concept hierarchies in Exam-
ple 6. First add to T all DL-Litecore CIs B1 v B2 with
T |= B1 v B2 and containing not more than one non-∆-
symbol. Now remove from the resulting TBox all B1 v B2

containing two non-∆-symbols for which there exists a con-
cept D that is either a basic DL-Lite concept or its nega-
tion and such that sig(D) ⊆ ∆ and T |= B1 v D and
T |= D v B2. For the resulting TBox T ′, one can show that
sdeco∆(T ′) coincides with the finest ∆-decomposition of
T . The correctness of this algorithm and the PIP are proved
in the full version, but can also be derived from results for
more expressive DL-Lite dialects given below. o

The construction above can easily be generalized to DL-Lite
dialects admitting no conjunctions on the left-hand side of
CIs such as DL-LiteR, DL-LiteF , and the dialect underpin-
ning OWL2-QL.

The construction of realizations of finest ∆-
decompositions becomes more involved if axioms with

conjunctions on the left hand side of CIs are admitted. To
illustrate our approach, we provide an example.

Example 20 Let ∆ = {D1, D2} and

T = {A1 uA2 v B,A1 v D1, A2 v D2, D1 uD2 v A1}.

In the spirit of the proof of Theorem 19, let us try to re-
place CIs in T to make sdeco∆(T ) as fine-grained as pos-
sible. Since no CI except α0 = (A1 u A2 v B) contains
more than one non-∆-symbol, all CIs distinct from α0 are
∆-indecomposable w.r.t. T and replacing them is of no help.
So the only CI we attempt to replace is α0. Intuitively, α0 is
∆-decomposable w.r.t. T because A1 u A2 is equivalent to
a concept not using A1 in T \ {α0}. More precisely,

T \ {α0} |= (A1 uA2) ≡ (D1 uA2).

Thus we can replace in T the CI α0 by D1 u A2 v B. The
resulting TBox realizes the partition {A2, B}, {A1} which
can be shown to be the finest ∆-decomposition of T . Note
that we could have used D1 uD2 uA2 instead of D1 uA2.

Example 20 suggests to extend the algorithm in the proof of
Theorem 19 as follows: for each CI C0 v B0 in a TBox T
under consideration, we check whether C0 can be replaced
by a concept C ′0 with sig(C ′0) \∆ ( sig(C0) \∆ such that

T ≡ (T \ {C0 v B0}) ∪ {C ′0 v B0}.

When searching for such a C ′0, it turns out to be sufficient
to consider concepts C ′0 that are equivalent to C0 w.r.t. T \
{C0 v B0}. In other words, it is sufficient to search for an
explicit definition

C0 ≡ C ′0
of C0 that follows from T \ {C0 v B0} and in which C ′0 is
a concept using less non-∆-symbols than C0. If one adopts
this approach, it remains to find a polytime algorithm search-
ing for explicit definitions of a conceptC0 within a signature
Σ. In the case of DL-Lite, one can employ the following
greedy algorithm: for a finite signature Σ, let ConsT ,Σ(C0)
consist of all basic DL-Lite concepts D with sig(D) ⊆ Σ
such that T |= C0 v D. This set is finite (in fact, of linear
size in the size of Σ) because there are only linearly many
basic DL-Lite concepts over any finite signature. It can also
be computed in polynomial time. Thus, we can form the
conjunction over all concepts in ConsT ,Σ(C0), which, for
simplicity, we denote by ConsT ,Σ(C0) as well. In Exam-
ple 20, one obtains

ConsT \{α},{D1,D2,A2}(A1 uA2) = D1 uD2 uA2.

By definition, ConsT ,Σ(C0) is the most specific Σ-concept
subsuming C0 w.r.t. T . Thus, we obtain that there exists
an explicit definition C ′0 of C0 w.r.t. T \ {C0 v B0} using
symbols in Σ only if, and only if,

T \ {C0 v B0} |= ConsT \{C0vB0},Σ(C0) v C0,

and, if this happens to be the case, then
ConsT \{C0vB0},Σ(C0) is such a definition. Finally, to
test whether there is some Σ containing less non-∆-symbols
than sig(C0) with this property, one can go through all



Input: Propositional DL-Litehorn TBox T and signature ∆ ⊆
sig(T ).

Apply exhaustively the following transformation rule to each
α = C v B ∈ T such that |sig(α) \∆| ≥ 2.
1. If T \ {α} |= α
2. Then
3. T := T \ {α}.
4. Else
5. If sig(C) 6⊆ ∆, sig(B) 6⊆ ∆, and T |= ConsT ,∆(C) v B
6. Then
7. T := (T \ {α});
8. T := T ∪{ConsT ,∆(C) v B} ∪

S
B′∈ConsT ,∆(C)

{C v B′}

9. If for some X ∈ sig(C) \∆
10. T \ {α} |= ConsT\{α},(sig(C)\{X})∪∆(C) v C
11. Then
12. T := (T \ {α}) ∪ {ConsT\{α},(sig(C)\{X})∪∆(C) v B}

Figure 2: Procedure RewritePropDL-Litehorn

Σ := (∆ ∪ sig(C0)) \ {X} for X ∈ sig(C0) \∆. Since the
finest decomposition is unique, the order in which we go
through such Σ’s does not matter.

We now present the algorithm implementing this ap-
proach in detail. Recall that a DL-Litehorn-inclusion takes
the form B1 u · · · uBm v B, where the B1, . . . , Bm and B
are basic DL-Lite concepts. We first consider propositional
DL-Litehorn, i.e., DL-Litehorn-inclusions and TBoxes not
containing any roles. Of course propositional DL-litehorn is
nothing else but propositional Horn-logic. We first observe
that DL-Litehorn and propositional DL-Litehorn have the PIP;
so it does not make any difference whether we consider sig-
nature decompositions realized in DL-Litehorn or in SO:

Lemma 21 DL-Litehorn and propositional DL-Litehorn have
the PIP.

Proof. It is shown in (Kontchakov, Wolter, and Za-
kharyaschev 2010) that DL-Litehorn has the RJCP. By Theo-
rem 34, DL-Litehorn has the PIP. The same proof works for
propositional DL-Litehorn. o

Theorem 22 For any propositional DL-Litehorn TBox T , the
algorithm in Figure 2 runs in poly-time and outputs an
equivalent TBox T ′ in which every CI is ∆-indecomposable
w.r.t. T . Thus, sdeco∆(T ′) coincides with the finest ∆-
decomposition of T .

Proof. We provide a sketch of the correctness proof; a de-
tailed proof can be found in the full version. Denote by T
the output of the algorithm in Figure 2. It can be verified
that this TBox is equivalent to the original TBox. Moreover
it has the following properties:

(Red) For every α ∈ T with |sig(α) \ ∆| ≥ 2, we have
T \ {α} 6|= α;

(Def) If for some α = (C v B) ∈ T and Σ ⊆ sig(C) \∆
we have

T \ {α} |= ConsT\{α},Σ∪∆(C) v C,

then Σ = sig(C) \∆.
(Int) For any C v B ∈ T such that sig(C) 6⊆ ∆ and

sig(B) 6⊆ ∆, we have

T 6|= ConsT ,∆(C) v B.

Thus, it is sufficient to prove the following

Claim. If a TBox T has properties (Red), (Def), and (Int),
then every CI in T is ∆-indecomposable w.r.t. T .

Proof of Claim. Suppose that some α = C v B ∈ T is
∆-decomposable w.r.t. T . Then either

(a) there exists a signature ∆-decomposition Σ1, Σ2 of T
such that sig(C) ∩ Σi 6= ∅ for i = 1, 2 or

(b) there exists a signature ∆-decomposition Σ1, Σ2 of T
such that sig(C) ∩ Σ2 6= ∅, sig(C) ⊆ Σ2 ∪ ∆, and
sig(B) ⊆ Σ1.

We show that, in both cases, a contradiction can be derived.
We use the following notation for renaming symbols within
concepts, CIs, and TBoxes. Let D be a concept. By DΣ1

we denote the concept obtained from D by replacing every
occurrence of a symbol x ∈ Σ2 with a fresh symbol x′. By
DΣ2 we denote the concept obtained from D by replacing
every occurrence of a symbol x ∈ Σ1 with a fresh symbol
x†. The CIs αΣ1 , αΣ2 and TBoxes TΣ1 , TΣ2 are defined
in the same way. Recall from Theorem 4 that Σ1,Σ2 is a
∆-decomposition of T if, and only if,

TΣ1 ∪ TΣ2 |= α

for all α ∈ T .
Consider now Case (a). By (Red), we have T \ {α} 6|= α.

Therefore,

(T \ {α})Σ1 ∪ (T \ {α})Σ2 6|= α. (1)

On the other hand,

TΣ1 ∪ TΣ2 |= α,

since Σ1,Σ2 is a ∆-decomposition of T . Thus, there exists
i ∈ {1, 2} such that

TΣ1 ∪ TΣ2 |= C v CΣi
(2)

because otherwise, by (1) we would find a (propositional)
model I
• satisfying (T \ {α})Σ1 ∪ (T \ {α})Σ2 and C;
• and refuting CΣ1 , CΣ2 , and B.
For such an I we would have I |= αΣ1 and I |= αΣ2 and,
therefore, I |= TΣ1 ∪ TΣ2 but I 6|= C v B, which is a
contradiction.

Now one can show (the proof is non-trivial and given in
the full paper) that (2) implies

T \ {α} |= ConsT \{α},∆∪(Σi∩sig(C)))(C) v C,
which contradicts (Def).

In Case (b), one can show (the proof is non-trivial) that

T |= ConsT ,∆(C) v B,
which contradicts (Int). o



Input: DL-Litehorn TBox T and signature ∆ ⊆ sig(T ).
1. Let TAux := {∃r v ⊥ | T |= ∃r v ⊥}
2. Let T PRes := RewritePropDL-Litehorn (T

P ∪ T PAux,∆
P )

3. Let T ′ be the result of replacing in T PRes expressions of the
form P∃r , for r ∈ NR, with ∃r and P∃r− with ∃r−.

4. Return T ′

Figure 3: Procedure RewriteDL-Litehorn

We now consider DL-Litehorn. The following lemma shows
that reasoning in DL-Litehorn can be reduced to reasoning in
propositional DL-Litehorn. Its proof is similar to the ones of
results in (Artale et al. 2009) relating DL-Lite dialects and
fragments of first-order logic.

Given a DL-Litehorn concept C (CI C v B or TBox T ,
respectively), we consider a propositional DL-Litehorn con-
cept CP (propositional CI CP v BP or propositional TBox
T P ) obtained by replacing every occurrence of an expres-
sion of the form ∃r (resp. ∃r−) with its surrogate, a fresh
concept name P∃r (resp. P∃r− ). We assume that surrogates
do not occur in the given DL-Litehorn concept (CI, TBox, re-
spectively). Let Σ be a signature. We define its propositional
counterpart as

ΣP = {A | A ∈ Σ, A ∈ NC}∪{P∃r, P∃r− | r ∈ Σ, r ∈ NR}.
The following is readily checked.

Lemma 23 Let C v B be a DL-Litehorn CI, and T a
satisfiable DL-Litehorn TBox such that for all roles r, if
T |= ∃r v ⊥, then ∃r v ⊥ ∈ T . Then T |= C v B
if, and only if, T P |= CP v BP .

Using Lemma 23 one can now prove the correctness of
the algorithm given in Figure 3.

Theorem 24 The algorithm RewriteDL-Litehorn given in Fig. 3
transforms a given DL-Litehorn TBox into an equivalent
DL-Litehorn TBox in which every CI is ∆-indecomposable.

Finally, we consider DL-LiteHhorn, the extension of
DL-Litehorn with role inclusions r v s. This time, we em-
ploy a reduction of DL-LiteHhorn to DL-Litehorn.

Lemma 25 Let T be a DL-LiteHhorn TBox and ∆ a signature.
Let T 0 be the set of CIs in T and set

T ′ = T 0 ∪ {∃r v ∃s,∃r− v ∃s− | r v s ∈ T }.
Then T |= α if, and only if, T ′ |= α for all CIs α in
DL-Litehorn.

Using this reduction, one can show that DL-LiteHhorn has the
PIP and one can prove the correctness of the algorithm given
in Figure 4.

Theorem 26 The algorithm RewriteDL-LiteHhorn
given in Fig. 4

transforms a given DL-LiteHhorn TBox into an equiva-
lent DL-LiteHhorn TBox in which every inclusion is ∆-
indecomposable.

Input: DL-LiteHhorn TBox T and signature ∆ ⊆ sig(T ).
1. Let TC be the the set of CI in T
2. Let TR be the the set of RI in T
3. TC := TC ∪ {∃r v ∃s | T |= ∃r v ∃s} ∪ {∃r v ⊥ | T |=
∃r v ⊥}
4. TC := RewriteDL-Litehorn (TC ,∆)
5. For all r v s ∈ TR do
6. If TC |= ∃r v ⊥
7. Then TR := TR \ {r v s}
8. Else if TR |= r v t and TR |= t v s for some t ∈ ∆
9. Then
10. TR := (TR \ {r v s}) ∪ {r v t} ∪ {t v s}
11. Return (TC ∪ TR)

Figure 4: Procedure RewriteDL-LiteHhorn

Decomposition in EL
We have seen already (Theorem 13) that EL and ELH have
the PIP. In this section, we focus on computing the finest
∆-decompositions in EL. In contrast to DL-Lite, we have
partial results only. Call an EL-TBox T role-acyclic if there
does not exist an EL-concept C and role names r1, . . . , rn
with n ≥ 1 such that T |= C v ∃r1. · · · ∃rn.C Note that
acyclic terminologies such as SNOMED CT satisfy this con-
dition.

Theorem 27 Let
1. ∆ = ∅ and T be an arbitrary EL-TBox; or
2. ∆ arbitrary and T be a role-acyclic TBox.
Then the finest ∆-decomposition of T can be computed in
polynomial time.

It remains an open problem whether this results holds for ar-
bitrary EL-TBoxes. We nowgive a sketch of the main ideas
behind the proof for Point 2. First, using results from (Lutz
and Wolter 2010), one can transform any given EL-TBox
T0 and signature ∆0 into a new TBox T and signature ∆
(which is, modulo fresh definitions A ≡ C, equivalent to
T0) such that the finest ∆-decomposition of T can be trans-
formed in linear time into the finest ∆0-decomposition of T0

and such that:
(Dec) if C v D ∈ T , then D is ∆-indecomposable w.r.t. T .
The full version describes how T and ∆ can be computed.
Given T and ∆ satisfying (Dec), we want to proceed in the
same way as for DL-Lite: a CI α = (C v D) ∈ T should be
simplified toC ′ v D ifC ′ is an explicit definition ofC rela-
tive to T \{α} using less non-∆-symbols than C. This sim-
plification will again rely on sets of concepts ConsT ,Σ(C)
consisting of all EL-concepts D such that T |= C v D
and sig(D) ⊆ Σ. However, there are two additional difficul-
ties compared to DL-Lite: first, we do not currently know
whether this approach is complete for arbitrary EL-TBoxes.
For this reason, our procedure is restricted to role-acyclic
TBoxes. Second, even for role-acyclic TBoxes, explicit defi-
nitions can be of exponential size. Even worse and as shown
by the following example, this problem actually manifests



itself in realizations of finest ∆-decompositions, which can
also be of exponential size.

Example 28 Let T consist of Ai ≡ ∃ri.Ai+1 u ∃si.Ai+1,
for 0 ≤ i < n, and An ≡ >. For

∆ = {r0, . . . , rn−1, s0, . . . , sn−1},
the finest ∆-decomposition of T is {A0}, . . . , {An} be-
cause we can define a realization T0, . . . , Tn by setting, in-
ductively,

Tn = {An ≡ >},
Ti = {Ai ≡ ∃ri.Ci+1 u ∃si.Ci+1},

where
Cn = ⊥, Ci = ∃ri.Ci+1 u ∃si.Ci+1.

This realization is of exponential size and that there does
not exist any smaller realization of {A0}, . . . , {An} using
EL-TBoxes: the smallest explicit definition of A0 that does
not use the symbols {A1, . . . , An} corresponds to the con-
cept representing the binary tree with edges si and ri and is,
therefore, of exponential size.

To resolve this problem, we consider realizations not in EL
but in the extension ELν+ of EL by greatest fixpoints intro-
duced and investigated in (Lutz, Piro, and Wolter 2010). In
this language, explicit definitions are always of polynomial
size, they can be computed in polynomial time, and, impor-
tantly, reasoning is still tractable. It will be convenient for us
to use a syntactic variant, ELst, of ELν+ using simulation
quantifiers instead of greatest fixpoints. To define ELst, let
I1 and I2 be interpretations, d1 ∈ ∆I1 , d2 ∈ ∆I2 and Σ a
signature. A relation S ⊆ ∆I1 ×∆I2 containing (d1, d2) is
a Σ-simulation from (I1, d1) to (I2, d2) if
• for all concept names A ∈ Σ and all (e1, e2) ∈ S, if
e1 ∈ AI1 , then e2 ∈ AI2 ;

• for all role names r ∈ Σ, all (e1, e2) ∈ S, and all e′1 ∈
∆I1 with (e1, e

′
1) ∈ rI1 , there exists e′2 ∈ ∆I2 such that

(e2, e
′
2) ∈ rI2 and (e′1, e

′
2) ∈ S.

The relationship between EL and simulations has been in-
vestigated and employed extensively (Lutz and Wolter 2010;
Lutz, Piro, and Wolter 2010). One important connection
is that whenever there is a Σ-simulation from (I1, d1) to
(I2, d2), then d2 is an instance of any Σ-concept of which
d1 is an instance; the converse holds for all interpretations
of finite outdegree. We now define ELst-concepts, CIs, and
TBoxes by simultaneous induction as follows, see (Lutz,
Piro, and Wolter 2010):
• every EL-concept (CI, TBox) is an ELst-concept (CI,

TBox);
• if C is an ELst-concept, T is an ELst-TBox, and Σ a

signature, then ∃simΣ.(T , C) is an ELst-concept;

• if C and D are ELst-concepts, then C v D is an ELst-
CI; a finite set of ELst CIs is an ELst-TBox.

The semantics of simulation operators is defined as fol-
lows. For any interpretation I and d ∈ ∆I , let d ∈
(∃simΣ.(T , C))I iff there exists a model J of T with a
d′ ∈ CJ such that there is a Γ-simulation from (J , d′) to
(I, d), where Γ = (sig(T ) ∪ sig(C)) \ Σ.

Example 29 Consider the TBox T from Example 28. Then

T |= Ci ≡ ∃sim{A0, . . . , An}(T , Ai),

for all i ≤ n. Thus, one can realize {A0}, . . . , {An} using
the TBoxes Ti = {Ai ≡ ∃sim{A0, . . . , An}(T , Ai)}.

Now consider the sets of concepts ConsT ,Σ(C). In con-
trast to the DL-Lite case, these sets can clearly be infinite.
In the case of role-acyclic TBoxes, though, one can show
that there always is a finite set of EL-concepts equivalent to
ConsT ,Σ(C). To avoid exponential size as in Example 28,
we now show how to use simulation quantifiers to give a
succinct representation of this finite set.

Even for arbitrary TBoxes, it is possible to prove that the
concept ∃simΓ.(T , C), where Γ = sig(T , C)\Σ, represents
ConsT ,Σ(C) in the sense that

• T |= C v ∃simΓ.(T , C) and
• T |= ∃simΓ.(T , C) v D for all D ∈ ConsT ,Σ(C).
Since for role-acyclic TBoxes ConsT ,Σ(C) is equivalent to
a finite set of EL-concepts, we thus obtain the following.

Proposition 30 Let T be a role-acyclic TBox and C an
EL-concept. For Γ = sig(T , C) \ Σ, the concept
∃simΓ.(T , C) is equivalent to the conjunction over all con-
cepts in ConsT ,Σ(C).

It follows that we can use the linear size concept
∃simΓ.(T , C) in place of ConsT ,Σ(C). The algorithm pre-
sented in Figure 5 is now almost a copy of the transforma-
tion algorithm for propositional DL-Litehorn in Figure 2. As
reasoning in ELst is still tractable (Lutz, Piro, and Wolter
2010), this algorithm runs in polynomial time. A detailed
(and rather involved) proof of the following result is given
in the full paper.

Theorem 31 The algorithm RewriteEL given in Fig. 5
transforms a given role-acyclic EL-TBox satisfying (Dec)
into an equivalent ELst-TBox in which every CI is ∆-
indecomposable.

Conclusion
We have established the theoretical foundations for a syntax-
independent approach to signature decomposition in ontolo-
gies. Our investigation has been inspired by previous work
in propositional logic, belief revision, and abstract logi-
cal calculi (Parikh 1999; Kourousias and Makinson 2007;
Ponomaryov 2008). Of course, a semantic approach leads
to reasoning services of higher complexity than purely syn-
tactic approaches. Still, the results are quite promising:
for many lightweight DLs, the main reasoning problem
is still tractable and for expressive DLs it is not harder
than subsumption checking. This shows that signature
decomposition is computationally much simpler than se-
mantically complete approaches to other modularization
tasks such as module extraction, conservative extensions,
and forgetting/uniform interpolation (Konev et al. 2009;



Input: EL TBox T satisfying (Dec) and signature ∆ ⊆ sig(T ).

Apply exhaustively the following transformation rule to each
α = C v B ∈ T such that |sig(α) \∆| ≥ 2.
1. If T \ {α} |= α
2. Then
3. T := T \ {α}.
4. Else
5. If sig(C) 6⊆ ∆, sig(D) 6⊆ ∆, and

T |= ∃sim(sig(T ) \∆).(T , C) v D
6. Then
7. T := (T \ {α});
8. T := T ∪ {C v ∃sim(sig(T ) \∆).(T , C)}

∪{∃sim(sig(T ) \∆).(T , C) v D}
9. If forX ∈ sig(C)\∆ and Γ = {X}∪sig(T )\(∆∪sig(C))
10. T \ {α} |= ∃simΓ.(T \ {α}, C) v C
11. Then
12. T := (T \ {α}) ∪ {∃simΓ.(T \ {α}, C) v D}

Figure 5: Procedure RewriteEL

Lutz, Walther, and Wolter 2007; Cuenca Grau et al. 2008).
Future work will include decomposition experiments with
existing ontologies and the development of guidelines to de-
termine meaningful ∆’s.
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Proofs for Section “Signature Decompositions”
For the convenience of the reader, we formulate the results
to be proved again.

Theorem 5 Let T ⊆fin SO, ∆ ⊆ sig(T ), and let
Σ1, . . . ,Σn and Π1, . . . ,Πm be ∆-decompositions of T in
SO. Then the ∆-decomposition with signatures Σi ∩Πj for
all i, j with Σi ∩Πj 6= ∅ is also a ∆-decomposition of T in
SO. Thus, there exists a unique finest ∆-decomposition of
T in SO.

Proof. Let T , ∆, Σ1, . . . ,Σn and Π1, . . . ,Πm be as in
the lemma and let Ω1, . . . ,Ωk be an enumeration of the sig-
natures Σi ∩ Πj for those i, j with Σi ∩ Πj 6= ∅. Clearly,
Ω1, . . . ,Ωk is a partition of sig(T ) \ ∆. By Theorem 4, it
suffices to show that

∃Ω1.
∧
ϕ∈T

ϕ ∧ · · · ∧ ∃Ωk.
∧
ϕ∈T

ϕ |= T (†)

To prove (†), let I be a model of the left-hand side of this
entailment. It is enough to show that I |= ∃Σi.

∧
ϕ∈T for

1 ≤ i ≤ n because then, the fact that Σ1, . . . ,Σn is a ∆-
decomposition of T and Theorem 4 yield I |= T .

Fix a Σi. By choice of I, there is a model Ii,j of T
that agrees with I on the interpretation of Σi ∩ Πj , for all
1 ≤ i ≤ n and 1 ≤ j ≤ m with Σi ∩ Πj 6= ∅. Let
j1, . . . , jp ∈ {1, . . . ,m} be the set of those indices j` such
that Σi ∩ Πj` 6= ∅. Now let J be the interpretation that
agrees

• with Ii,j` on the interpretation of all symbols from Πj` ,
for 1 ≤ ` ≤ p;

• with some Ix,y on the interpretation of all symbols from
Πj , for all Πj with Σi ∩Πj = ∅.

To show I |= ∃Σi.
∧
ϕ∈T , it clearly suffices to prove that

1. I and J agree on the interpretation of all symbols in Σi;
2. J |= T .

For Point 1, first note that Σi =
⋃

1≤`≤p(Σi ∩ Πj`). Thus,
it suffices to show that I and J agree on the interpretation
of all symbols in Σi ∩Πj` , for 1 ≤ ` ≤ p. But this is clearly
since I and Ii,j` agree on the interpretation of all symbols
in Σi ∩ Πj` , and so do Ii,j` and J . For Point 2, recall that
Π1, . . . ,Πm is a ∆-decomposition of T . By definition of
J , the models Ii,j of T show that J |= ∃Πj .

∧
ϕ∈T ϕ. By

Theorem 4, we thus get J |= T . o

Theorem 8 SO has unique decomposition realizations.

Proof. Let T ⊆fin SO, ∆ ⊆ sig(T ), Σ1, . . . ,Σn a ∆-
decomposition of T in SO, and T1, . . . , Tn and T ′1 , . . . , T ′n
realizations of Σ1, . . . ,Σn in SO such that

• Ti, Tj are ∆-inseparable w.r.t. SO for i, j ≤ n and

• T ′i , T ′j are ∆-inseparable w.r.t. SO for i, j ≤ n.

Fix an i ≤ n. We have to show that Ti |= T ′i and T ′i |= Ti,
and concentrate on the former since the latter is symmetric.
Let I be a model of Ti. Then all of T1, . . . , Tn are satisfiable:

if Tj was unsatisfiable, then Tj |= F (where F abbreviates
∃x.(x 6= x)), which implies Ti |= F since Ti and Tj are
∆-inseparable w.r.t. SO and sig(F ) = ∅ ⊆ ∆, which in
turn contradicts the existence of I. It is shown in (Konev et
al. 2009) that satisfiability of T1, . . . , Tn together with their
∆-inseparability implies that there are models I1, . . . , In of
T1, . . . , Tn, respectively, that satisfy

• I1|∆ = · · · = In|∆, where Ii|∆ denotes the restriction of
Ii to only the symbols in ∆;

• Ii = I.

Let J be the model obtained by interpreting all symbols
from Σi ∪ ∆ as in Ii. Since sig(Ti) ⊆ Σi ∪ ∆, J is
clearly a model of T1 ∪ · · · ∪ Tn. Thus, it is also a model
of T , whence of T ′1 , . . . , T ′n. Since sig(T ′i ) ⊆ Σi ∪∆, and
J |Σi∪∆ = Ii|Σi∪∆ = I|Σi∪∆, I must also be a model of
T ′i as required. o

Proofs for “Signature decompositions and
parallel interpolation in DLs”

Theorem 12 Let L be a fragment of SO with the parallel
interpolation property. Then

• L-decompositions coincide with SO-decompositions.

• L-decompositions have unique realizations.

In particular, there always exists a unique finest signature
∆-decomposition in L.

Proof. Point 1. We prove this result for ∆-
decompositions into two signatures. The generaliza-
tion to ∆-decompositions into n > 2 signatures is
straightforward and left to the reader. Assume T in
L and ∆ are given. Assume that Σ1,Σ2 is a ∆-
decomposition in SO of T . It follows from Theorem 4 that
{∃Σ2.

∧
ϕ∈T ϕ,∃Σ1.

∧
ϕ∈T ϕ} |= T . Let S1 and S2 be the

subsets of L obtained from T by replacing all predicates in
Σ2 by fresh predicates in Σ∗2 and all predicates in Σ1 by
fresh predicates in Σ∗1. Then S1 ∪ S2 |= T . Moreover, S1

and S2 are ∆-inseparable w.r.t.L and sig(S1)∩sig(S2) ⊆ ∆.
Thus, by the PIP of L, there exist, for every α ∈ T , paral-
lel interpolants (T 1

α , T 2
α ) in L for (S1,S2) and α. Now let

T ′i =
⋃
α∈T T iα for i = 1, 2. It is not difficult to show that

T ′1 , T ′2 is a realization of Σ1,Σ2 in L.

Point 2. Again we prove this for ∆-decompositions
into two signatures. Assume that T1, T2 and T ′1 , T ′2 real-
ize a ∆-decomposition Σ1,Σ2 of T and that T1, T2 are ∆-
inseparable w.r.t. L and T ′1 , T ′2 are ∆-inseparable w.r.t. L.
Assume w.l.o.g. that T1 |= α but T ′1 6|= α. We may assume
that sig(α) ⊆ Σ1 ∪ ∆. But then T ′1 ∪ T ′2 |= α because
T1 ∪ T2 |= α. It follows from the PIP of L that T ′1 |= α
(see below for a proof of the RJCP from PIP), and we have
derived a contradiction. o

To analyze the PIP and prove the results of this section,
we connect it to two properties previously studied. The first
is the Robinson Joint Consistency Property, the second a
Boolean variant of the Craig Interpolation Property.



Definition 32 (Robinson Joint Consistency Property)
Let L be a fragment of FO. L has the Robinson Joint
Consistency Property (RJCP) if the following holds for any
two (possibly infinite) T1, T2 ⊆ L: if sig(T1) ∩ sig(T2) ⊆ ∆
and T1 and T2 are ∆-inseparable w.r.t. L, then

T1 ∪ T2 |= α ⇔ T1 |= α

for all sentences α in L with sig(α) ⊆ sig(T1).

Definition 33 (Boolean Craig Interpolation) Let L be a
fragment of FO. L has Boolean Craig Interpolation if for
all T ⊆ L and all Boolean combinations ϕ of L-sentences
the following holds: if

T |= ϕ,

then there exists a Boolean combination ψ of L-sentences
with sig(ψ) ⊆ sig(T )∩sig(ϕ) such that T |= ψ and ψ |= ϕ.

We say that a fragment L of FO has the disjoint union
property if the following holds for all T ⊆ L: for all families
Ii, i ∈ I , of interpretations the following conditions are
equivalent:
• all Ii, i ∈ I , are models of T ;
• the disjoint union of all Ii, i ∈ I , is a model of T .
Note that EL, ELH,ALC,ALCQI and all standard dialects
of DL-Lite have the disjoint union property. Examples of
DLs without the disjoint union property are DLs with nomi-
nals or the universal role. We will make frequent use of the
following property of languages L with the disjoint union
property: if

T |=
∧
i∈I

αi →
∨
j∈J

βj

where the αi and βj are L-sentences and T is a set of L-
sentences, then there exists j ∈ J such that

T |=
∧
i∈I

αi → βj .

Theorem 34 Let L ⊆ FO have the disjoint union property.
Then the following conditions are equivalent:

1. L has the Parallel Interpolation Property;
2. L has RJCP;
3. L has the Boolean Craig Interpolation Property.

Proof. (1) implies (2). Assume T1 ∪ T2 |= α, T1, T2 are
∆-inseparable, sig(T1) ∩ sig(T2) ⊆ ∆, and sig(α) ⊆ T1.

Take ∆-parallel interpolants T ′1 , T ′2 of T1, T2 and α in L.
Then sig(T ′2 ) ⊆ ∆. Hence, by ∆-inseparability w.r.t. L of
T1 and T2 and because T2 |= T ′2 , we obtain T1 |= T ′2 . Hence,
T1 |= T ′1 ∪ T ′2 and so from T ′1 ∪ T ′2 |= α we obtain T1 |= α,
as required.

We now prove the equivalence of (2) and (3).

(2) implies (3). Assume that L has RJCP and let T |= ϕ.
We construct an interpolant. By the disjoint union property
we may assume w.l.o.g. that

ϕ =
∧
i∈I

αi → β

where the αi and β are L-sentences and sig(β) ⊆
sig(
∧
i∈I αi).

Let ∆ = sig(T ) ∩ sig(ϕ). Assume there does not exist
a Boolean combination ψ of L-sentences with sig(ψ) ⊆ ∆
such that T |= ψ and ψ |= ϕ. In what follows we set

∧
S =∧

ψ∈S ψ whenever S is a finite set of L-sentences. Let T∆

denote the set of all sentences
∧
T ′ → α such that

• T |=
∧
T ′ → α;

• sig(
∧
T ′ → α) ⊆ ∆;

• T ′ is a finite set of L-sentences;
• α is an L-sentence.
By compactness and the disjoint union property we have
T∆ 6|= ϕ. Take a model I of T∆ and ¬ϕ. Let

Th+(I) = {γ | I |= γ, γ a L-sentence with sig(γ) ⊆ ∆},
Th−(I) = {¬γ | I 6|= γ, γ a L-sentence with sig(γ) ⊆ ∆},
and set

Th(I) = Th+(I) ∪ Th−(I).
Then Th(I)∪T is satisfiable, by the disjoint union property.
For suppose not. Then there are γ1 . . . , γn ∈ Th+(I) and
¬γn+1, . . . ,¬γm ∈ Th−(I) such that

T |= (γ1 ∧ · · · ∧ γn)→ (γn+1 ∨ · · · ∨ γm).

By the disjoint union property, there exists γj , n < j ≤ m,
such that

T |= (γ1 ∧ · · · ∧ γn)→ γj .

But then (γ1∧· · ·∧γn)→ γj ∈ T∆ which is a contradiction
because I is a model of T∆ and I |= γ1 ∧ . . . ∧ γn but I 6|=
γj . It follows that if T ∪ Th+(I) |= γ, then γ ∈ Th+(I)
for all L-sentences γ such that sig(γ) ⊆ ∆. Hence

T ∪ Th+(I), Th+(I) ∪ {αi | i ∈ I}
are ∆-inseparable w.r.t. L. We clearly have

T ∪ Th+(I) ∪ Th+(I) ∪ {αi | i ∈ I} |= β.

Hence, by RJCP, Th+(I) ∪ {αi | i ∈ I} |= β. We have
derived a contradiction since ¬ϕ =

∧
i∈I αi∧¬β is satisfied

in I.

(3) implies (2).
Assume T1 ∪ T2 |= ϕ, sig(T1) ∩ sig(T2) ⊆ ∆, T1 and T2

are ∆-inseparable w.r.t. L, and sig(ϕ) ⊆ sig(T1). We show
that T1 |= ϕ. By compactness, we may assume that T1, T2

are finite. Then we have

T2 |=
∧
T1 → ϕ.

By Boolean Craig Interpolation, there is a Boolean combi-
nation ψ of L-sentences such that

T2 |= ψ, ψ |=
∧
T1 → ϕ

and sig(ψ) ⊆ ∆. We have

T1 |= ψ → ϕ.

Now, assume that T1 6|= ϕ. Take a model I of T1 refuting
ϕ. We show that this leads to a contradiction. By the dis-
joint union property, we may assume that I refutes every



L-sentence β with sig(β) ⊆ ∆ such that T1 6|= β. (If not,
take for every such β with a model Iβ of T1 that refutes β
and take the disjoint union of all Iβ and I.)

We now show that I |= ψ, and thus derive a contradiction
to T1 |= ψ → ϕ. Assume I 6|= ψ. By the disjoint union
property, we may assume w.l.o.g. that ψ is a conjunction of
formulas of the form ∧

αi → β

where the αi and β are L-sentences. Thus, we obtain a con-
junct

χ =
∧
αi → β

of ψ with the properties

• T2 |= χ;

• sig(χ) ⊆ ∆;

• I 6|= χ.

It follows that I |=
∧
αi. By construction of I, I |=

∧
αi.

By ∆-inseparability of T1 and T2 w.r.t. L, T2 |=
∧
αi.

Hence, since T2 |= χ, T2 |= β. By ∆-inseparability of
T1 and T2 w.r.t. L, T1 |= β. Hence I |= β and so I |= χ and
we have a contradiction.

((2) and (3)) implies (1).
Assume T1, T2, α0, and ∆ are given and satisfy the pre-

conditions 1.-3. for the parallel interpolation property. By
compactness, we may assume that T1 and T2 are finite. We
have

T1 |=
∧
T2 → α0.

Thus, there exists a Boolean Craig Interpolant ψ1 for T1 and∧
T2 → α0). We have

T1 |= ψ1, ψ1 |=
∧
T2 → α0.

By the disjoint union property, we may assume that ψ1 is a
conjunction of formulas of the form∧

αi → β,

where αi and β are L-sentences.
The consequence

ψ1 |=
∧
T2 → α0.

is equivalent to
T2 |= ψ1 → α0.

Again, by Boolean Craig Interpolation, we find an inter-
polant ψ2 for T2 and ψ1 → α0. We may assume that ψ2

is of the same form as ψ1 and have

T2 |= ψ2, ψ2 |= (ψ1 → α0).

Summarizing, we have

• T1 |= ψ1, T2 |= ψ2;

• {ψ1, ψ2} |= α0;

• sig(ψi) \∆ ⊆ sig(Ti) ∩ sig(α0), for i = 1, 2.

Thus ψ1, ψ2 satisfy the conditions for parallel interpolants
except that they are not L-sentences but Boolean combina-
tions of L-sentences.

Set Γi = ∆ ∪ (sig(α0) ∩ sig(Ti)) and let

T ′i = {α | Ti |= α, α a L-sentence, sig(α) ⊆ Γi},
for i = 1, 2. We show that T ′1 , T ′2 is a parallel interpolant.
The only non-trvial condition is

T ′1 ∪ T ′2 |= α0.

Assume that this is not the case. Take a model I of T ′1 ∪ T ′2
such that I refutes α0. We may assume that I refutes all
L-sentences β such that
• T ′1 6|= β and sig(β) ⊆ Γ1;
• T ′2 6|= β and sig(β) ⊆ Γ2.
This follows from the disjoint union property and RJCP (be-
cause T ′1 ∪ T ′2 6|= β for such β). We show that I is a model
of ψ1, ψ2, thus obtaining a contradiction. Let

ϕ =
∧
αi → β

be a conjunct of ψ1 and assume I 6|= ϕ. It follows that
I |=

∧
αi. By construction of I, T ′1 |=

∧
αi. Hence T1 |=∧

αi and so T1 |= β. But then T ′1 |= β from which we
obtain I |= β and, therefore, I |= ϕ. We have derived a
contradiction. The same argument can be used to prove that
I |= ψ2. o

Using Theorem 34 we can now prove Theorem 13 for ex-
pressive DLs by applying the result of (Konev et al. 2009)
thatALC,ALCQ,ALCI,ALCQI have the Boolean Craig
Interpolation property.

Theorem 35 ALC,ALCQ,ALCI,ALCQI have Boolean
Craig Interpolation and, therefore, the PIP.

The EL and ELH-part of Theorem 13 follows from The-
orem 34 and the following result:

Theorem 36 EL and ELH have RJCP.

Proof. For EL, this has been proved in (Lutz and Wolter
2010). Here we present the proof for ELH. Note that this is
a non-trivial extension because, as we have seen forALCH,
the addition of role inclusions can easily lead to logics with-
out RJCP.

Assume TBoxes T1 and T2 in ELH are given, they are Σ-
inseparable w.r.t. ELH for sig(T1)∩ sig(T2) ⊆ Σ, and T1 6|=
α, where sig(α) ⊆ sig(T1). We show that T1 ∪ T2 6|= α.

First consider α = r0 v s0. Let Ri = {r v s | r v s ∈
Ti}.
Claim. T1 ∪ T2 |= r v s iff r, s ∈ sig(Ri) and Ri |= r v s
for some i = 1, 2 or there exists s′ ∈ ∆ such thatRi |= r v
s′ andRi′ |= s′ v s, where {i, i′} = {1, 2}.

The proof is straightforward and left to the reader. It fol-
lows immediately that T1 ∪ T2 6|= r0 v s0, as required.

Now assume that α = C0 v D0. We show T1 ∪ T2 6|=
C0 v D0.



In what follows we write

T ∪ Ξ |= C

for a TBox T , a set Ξ of EL-concepts, and a EL-concept C
if in every model I of T and d ∈ ∆I such that d ∈ DI for
all D ∈ Ξ, we have d ∈ CI . Take a model I0 of T1 with
d0 ∈ ∆I0 such that for all EL-concepts C the following
holds:

d0 ∈ CI0 iff T1 ∪ {C0} |= C

Such an interpretation exists by (Lutz and Wolter 2010).
Then d0 ∈ CI0

0 \D
I0
0 . Set ∆0 = ∆d0 = ∆I0 . In the follow-

ing, we construct an interpretation I∗ of T1 ∪ T2 expanding
I0 such that d0 ∈ CI

∗

0 and d0 6∈ DI
∗

0 . We define induc-
tively an infinite sequence I1, I2, . . . of interpretations. The
interpretation I∗ = (∆I

∗
, ·I∗) is then defined as the union

of I0, I1, I2, . . . as follows:

∆I
∗

:=
⋃
i≥0

∆Ii ;

AI
∗

:=
⋃
i≥0

AIi , for all A ∈ NC;

rI
∗

:=
⋃
i≥0

rIi , for all r ∈ NR.

Given an interpretation I and d ∈ ∆I , let dΣ,I denote the
set of EL-concepts E such that sig(E) ⊆ Σ and d ∈ EI .
For any TBox T denote by ItI(d),T a model of T with d in
its domain such that

(∗) d ∈ EItI(d),T iff T ∪ dΣ,I |= E, for all EL-concepts E.

Such an interpretation always exists, see (Lutz and Wolter
2010). Moreover, we may assume that d is not within the
range of any rItI(d),T (if it is, one can use standard un-
ravelling to obtain a model with the required properties).
Let n ≥ 0 and assume the interpretation In with domain
∆n has been defined. If n is even, then take for every
d ∈ ∆n \ ∆n−1 (we set ∆−1 = ∅) the interpretation
Id = ItIn (d),T2 with domain ∆d such that ∆n ∩∆d = {d}
and the ∆d, d ∈ ∆n \ ∆n−1, are mutually disjoint. If n is
odd, then take for every d ∈ ∆n \ ∆n−1 the interpretation
Id = ItIn (d),T1 with domain ∆d such that ∆n ∩∆d = {d}
and the ∆d, d ∈ ∆n \∆n−1, are mutually disjoint. Now set

∆n+1 = ∆n ∪
⋃
d∈∆n\∆n−1

∆d,

AIn+1 = AIn ∪
⋃
d∈∆n\∆n−1

AId .

and

rIn+1 = rIn ∪
⋃

T1∪T2|=svr

sIn ∪
⋃

d∈∆n\∆n−1

rId .

For all d ∈ ∆I
∗

there exists a (uniquely) determined min-
imal natural number n(d) with d ∈ ∆n(d) \ ∆n(d)−1. If
n(d) 6= 0, then there exists a uniquely determined d∗ ∈
∆n(d)−1 with d ∈ ∆d∗ . We set d∗ = d0 for n(d) = 0 and
prove the following by induction on the construction of D.
For all d ∈ ∆I

∗
and EL-concepts D:

• if n(d) is even then

1. if sig(D) ∩ sig(T1) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId ;
2. if sig(D) ∩ sig(T2) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId∗ ;
• if n(d) is odd then

1. if sig(D) ∩ sig(T2) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId ;
2. if sig(D) ∩ sig(T1) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId∗ .

The implications from right to left are trivial, so we consider
the implications from left to right only. We concentrate on
the case n(d) even (the case n(d) odd is proved in the same
way) and prove the induction step for D = ∃r.C. First con-
sider Point 1. So let sig(D) ∩ sig(T1) ⊆ Σ and assume
d ∈ DI

∗
with n(d) even. There exists c ∈ ∆I

∗
such that

c ∈ CI
∗

and (d, c) ∈ rI
∗
. Assume first that c ∈ ∆n(d).

Then, by construction,
• r ∈ sig(T1) (and so r ∈ Σ); or
• r 6∈ sig(T1) and there exists s ∈ Σ such that T1 ∪ T2 |=
s v r and (d, c) ∈ sI∗ .

We obtain n(c) = n(d) and, by IH, c ∈ CIc . We obtain
T2 ∪ cΣ,In(d) |= C. By compactness and closure under con-
junction of cΣ,In(d) , there exists a concept C0 in cΣ,In(d)

with T2 |= C0 v C.
If r ∈ sig(T1), then we get T2 |= ∃r.C0 v ∃r.C. We have

∃r.C0 ∈ dΣ,In(d) and so T2 ∪ dΣ,In(d) |= ∃r.C. But then
d ∈ DId .

If r 6∈ sig(T1), we have T2 |= ∃s.C0 v ∃s.C. We
have ∃s.C0 ∈ dΣ,In(d) and so, because T2 |= s v r,
T2 ∪ dΣ,In(d) |= ∃r.C. But then d ∈ DId .

Now assume c 6∈ ∆n(d). Then c ∈ ∆d, c∗ = d, and
n(c) = n(d) + 1. By induction hypothesis (for n(c) odd),
c ∈ CI∗ iff c ∈ CIc∗ = CId . Hence d ∈ (∃r.C)Id .

Consider now Point 2. Let sig(D) ∩ sig(T2) ⊆ Σ and
d ∈ DI

∗
. There exists c ∈ ∆I

∗
such that c ∈ CI

∗
and

(d, c) ∈ rI
∗
. Assume first that c ∈ ∆d∗ . Then c∗ = d∗

and, by induction hypothesis, c ∈ CId∗ . As we also have
(d, c) ∈ rId∗ , we obtain d ∈ DId∗ .

Now assume c 6∈ ∆d∗ . Then c ∈ ∆d. Then
• r ∈ Σ or
• r 6∈ Σ and there exists s ∈ Σ with T1 ∪ T2 |= s v r and

(d, c) ∈ sI∗

By induction hypothesis c ∈ CIc . Hence T1 ∪ cΣ,In(d)+1 |=
C. By compactness and closure under conjunction of
cΣ,In(d)+1 , there exists a concept C0 in cΣ,In(d)+1 with T1 |=
C0 v C.

Consider the first case: Then T1 |= ∃r.C0 v ∃r.C. We
have d ∈ (∃r.C0)Id . Since sig(∃r.C0) ⊆ Σ it follows from
Σ-inseparability w.r.t. ELH of T1 and T2 and compactness
that ∃r.C0 ∈ dΣ,In(d) . So d ∈ (∃r.C0)Id∗ . Id∗ is a model
of T1. Hence d ∈ (∃r.C)Id∗ .

Consider the second case: Then T1 |= ∃s.C0 v ∃s.C. We
have d ∈ (∃s.C0)Id . Since sig(∃s.C0) ⊆ Σ it follows from
Σ-inseparability w.r.t. ELH of T1 and T2 and compactness
that ∃s.C0 ∈ dΣ,In(d) . So d ∈ (∃s.C0)Id∗ . Id∗ is a model of
T1. Hence d ∈ (∃s.C)Id∗ . Finally, d ∈ (∃r.C)Id∗ follows.

It follows immediately that I∗ is a model of T1 ∪ T2: first
notice that, by definition, I∗ is a model of all r v s ∈ T1 ∪



T2. Moreover for each interpretation Id constructed during
the construction of I∗ as a model of Ti the interpretation of
symbols in sig(Ti) does not change. Now let C v D ∈ Ti.
If CI

∗ \DI∗ 6= ∅, then there exists a an interpretation Id of
Ti with CId \DId 6= ∅ which is a contradiction.

It remains to show that d0 ∈ CI
∗

0 \DI
∗

0 . d0 ∈ CI
∗

by the
claim above and since d0 ∈ CI0 . d0 6∈ DI

∗
follows from

d0 6∈ DI0 and the claim above. o

Finally, we prove Theorem 16.

Theorem 16 Assume L ∈ {ALCH,ALCHI, ALCO@,
ALCHO@,ALCHIO@}. Then ∆-parallel interpolants ex-
ist in L for every (T1, T2) in L and L-inclusion α such that
Conditions 1.-3. from Definition 11 hold and ∆ contains all
role and individual names in T1, T2, α.

Proof. We provide proofs for ALCH and ALCO@. The
remaining proofs are similar and left to the reader. Assume
that T1, T2 are ALCH-TBoxes satisfying the Conditions 1.-
3. for a signature ∆ containing all role names in T1, T2, and
α.

Assume first that α is a concept inclusion C v D and let

D = {r v s | T1 |= r v s}.

Note that sig(D) ⊆ ∆ and D = {r v s | T2 |= r v s}
because T1 and T2 are ∆-inseparable w.r.t. ALCH.

Let 2≤nT be a shorthand for the set
l

r1,...,ri∈∆,i≤n,CvD∈T

∀r1. · · · ∀ri.¬C tD.

One can readily show that

D ∪
⋃
n<ω

2≤nT1 ∪
⋃
i<ω

2≤nT2 |= α.

By compactness, there exists n < ω such that

D ∪2≤nT1 ∪2≤nT2 |= α

Hence,

D |= (
l

F∈2≤nT1

F ) v (((
l

F∈2≤nT2

F ) u C)→ D)

It follows from the analysis of the interpolation property in
modal and hybrid logics in (ten Cate 2005) that there exists
a ALC-concept E1 such that all concept names in sig(E1)
are in

sig(
l

F∈2≤nT1

F ) ∩ sig(((
l

F∈2≤nT2

F ) u C)→ D)

and the following hold:

D |= (
l

F∈2≤nT1

F ) v E1,

D |= E1 v (((
l

F∈2≤nT2

F ) u C)→ D).

We obtain
(a1) T1 |= > v E1

since T1 |= D and because T1 |= > v (
d
F∈2≤nT1

F ).
Moreover,

(a2) sig(E1) \∆ ⊆ sig(T1) ∩ sig(α).

Next observe that a simple rewriting gives

D |= (
l

F∈2≤nT2

F ) v ((E1 u C)→ D)

Again by (ten Cate 2005) there exists a ALC-concept E2

such that all concept names in sig(E2) are in

sig(
l

F∈2≤nT2

F ) ∩ sig((E1 u C)→ D)

such that
D |= (

l

F∈2≤nT2

F ) v E2

and
D |= E2 v (E1 u C)→ D).

But then

(a3) T2 |= > v E2

since T2 |= D and because T2 |= > v (
d
F∈2≤nT2

F ).
Moreover,

(a4) sig(E2) \∆ ⊆ sig(T2) ∩ sig(α).

Finally, we have

(a5) D ∪ {> v E1,> v E2} |= C v D.

Let T ′1 = D ∪ {> v E1} and T ′2 = D ∪ {> v E2}. It
follows from (a1)–(a5) that the pair (T ′1 , T ′2 ) is a ∆-parallel
interpolant of (T1, T2) and α in ALCH.

Now let α be a role inclusion, say α = r v s. As-
sume T1 ∪ T2 |= α. Then T1 ∪ T2 |= ∃r.A v ∃s.A
for a fresh concept name A. Hence, by the result proved
above, there is a ∆-parallel interpolant (T ′1 , T ′2 ) of (T1, T2)
and ∃r.A v ∃s.A. We have sig(T ′i ) ⊆ ∆ for i = 1, 2.
By ∆-inseparability, Ti |= T ′1 ∪ T ′2 for i = 1, 2. But
then T1 |= ∃r.A v ∃s.A. Since A is fresh, this implies
T1 |= r v s. Thus ({α}, {α}) is a ∆-parallel interpolant.

Now we consider ALCO@. Assume that T1, T2 are
ALCO@-TBoxes satisfying the conditions (s1)-(s3) for a
signature ∆ containing all role and individual names in T1,
T2, and α. Assume α = C v D.

Let N denote the set of individual names that occur in
T1, T2, α.

One can readily show that

{@aF | ∃n (F ∈ 2≤nT1 ∪2≤nT2), a ∈ N} |= α.

Thus, by compactness, there exists n < ω with

{@aF | F ∈ 2≤nT1 ∪2≤nT2, a ∈ N} |= α

Hence,

|= (
l

F∈2≤nT1,a∈N

@aF ) v (((
l

F∈2≤nT2,a∈N

@aF )uC)→ D)



It follows again from interpolation results in (ten Cate 2005)
that there exists aALCO@-conceptE1 such that all concept
names in sig(E1) are in

sig(
l

F∈2≤nT1

F ) ∩ sig(((
l

F∈2≤nT2

F ) u C)→ D)

and the following hold:

|= (
l

F∈2≤nT1,a∈N

@aF ) v E1,

|= E1 v (((
l

F∈2≤nT2,a∈N

@aF ) u C)→ D).

Similar to the proof above, we obtain
(a1) T1 |= > v E1

(a2) sig(E1) \∆ ⊆ sig(T1) ∩ sig(α).
Next observe that a simple rewriting gives

|= (
l

F∈2≤nT2,a∈N

@aF ) v ((E1 u C)→ D)

By (ten Cate 2005) there exists a ALCO@-concept E2 such
that all concept names in sig(E2) are in

sig(
l

F∈2≤nT2

F ) ∩ sig(E1 u C)→ D)

such that
|= (

l

F∈2≤nT2,a∈N

F ) v E2

and
|= E2 v (E1 u C)→ D).

But then
(a3) T2 |= > v E2

(a4) sig(E2) \∆ ⊆ sig(T2) ∩ sig(α).
(a5) |= {> v E1,> v E2} |= C v D.

Let T ′1 = {> v E1} and T ′2 = {> v E2}. It follows from
(a1)–(a5) that the pair (T ′1 , T ′2 ) is a ∆-parallel interpolant of
(T1, T2) and α in ALCO@. o

Proofs for the section “Decomposition in
DL-Lite”

In this section, we prove the PIP and give polynomial-
time decomposition algorithms for dialects of DL-Lite. We
also prove the result stated for EL-decompositions. The
algorithms presented in this section transform (in poly-
time) a given TBox T into a fresh TBox T ′ for which
the syntactic ∆-decomposition coincides with the finest ∆-
decomposition of the original TBox.

Once we know that a certain DL has the PIP, we will often
not state explicitly in which language we decompose a given
TBox; we will also often use the fact that then the finest ∆-
decompositions exists without explicitly mentioning it. It
should be clear that the finest ∆-decomposition in L of a
TBox T in which every axiom is ∆-indecomposable in L

coincides with its syntactic decomposition sdeco∆(T ) and
can, therefore, be computed in polynomial time.

Note that every concept using at most one non-∆-symbol
is (T ,∆)-indecomposable (in every T and in any language).
In particular, every concept name and every concept using
only symbols from ∆ is (T ,∆)-indecomposable in every T
and in any language.

Proofs for DL-Litecore

In this subsection, we consider DL-Litecore. We identify
¬¬B with B for any concept B. Recall that DL-Litecore-
inclusions are of the form
• B1 v B2, where B1, B2 are basic DL-Lite concepts, or
• B1 v ¬B2, where B1, B2 are basic DL-Lite concepts.
We provide a direct proof of the PIP and of the correctness
of the algorithm for computing the finest ∆-decomposition
of DL-Litecore-TBoxes. Note that we could instead employ
the results proved below for DL-Litehorn.

Lemma 37 Let T be a satisfiable DL-Litecore TBox. Then
for any concept inclusion C v D, where C,D ∈ NB, we
have T |= C v D if, and only if, one of the following alter-
natives holds.

1. T |= C v ⊥ and there exist B1, . . . , Bn ∈ NB such that
B1 = C and
• Bn = ⊥ or
• there are i, j ≤ n such that Bi = ¬Bj ,
and for any i ∈ {1, . . . , n− 1} we have
• Bi v Bi+1 ∈ T or
• ¬Bi+1 v ¬Bi ∈ T or
• Bi = ∃r, Bi+1 = ∃r−, for some role name r, or
• Bi = ∃r−, Bi+1 = ∃r, for some role name r.

2. T |= > v D and there exist B1, . . . , Bn ∈ NB such that
B1 = >, Bn = D and for any i ∈ {1, . . . , n − 1} we
have
• Bi v Bi+1 ∈ T or
• ¬Bi+1 v ¬Bi ∈ T .

3. T 6|= C v ⊥, T 6|= > v D and there exist B1, . . . , Bn ∈
NB such that B1 = C, Bn = D and for any i ∈
{1, . . . , n− 1} we have
• Bi v Bi+1 ∈ T or
• ¬Bi+1 v ¬Bi ∈ T .

Proof. We prove that if there do not exist B1, . . . , Bn satis-
fying the conditions in Point 1, then T 6|= C v ⊥. Corre-
sponding claims can be proved in the same way for Point 2
and 3 and are left to the reader.

So, assume C v D is given and that

(∗) there do not exist B1, . . . , Bn satisfying the conditions
in Point 1.

To prove that T 6|= C v ⊥ we construct a model I∗ of T
satisfying C.

For B a basic concept or its negation define

C (B) =
{
B′
∣∣∣∣ B′ ∈ NB,∃B′1, . . . , B′l : B′1 = B,B′l = B′

∀i < l : B′i v B′i+1 ∈ T or ¬B′i+1 v ¬B′i ∈ T

}



We build I∗ by constructing interpretations interpretation
Ii = (∆Ii , ·Ii

), i ≥ 0 and then define I∗ as

∆I
∗

=
⋃
i≥0 ∆Ii

AI
∗

=
⋃
i≥0A

Ii , for all A ∈ NC and
rI
∗

=
⋃
i≥0 r

Ii , for all r ∈ NR.

Let

∆I0 = {d0},
C (d0) = C (C),
AI0 = {d0 | A ∈ C (C)}, for all A ∈ NC, and
rI0 = ∅, for all r ∈ NR.

For uniformity of the notation, we define ∆−1 = ∅. For
i ≥ 0 we set

∆Ii+1 = ∆Ii ∪
⋃

di∈∆Ii\∆Ii−1 ,

∃r∈C (di)

{d∃r
−

i+1 } ∪
⋃

di∈∆Ii\∆Ii−1 ,

∃r−∈C (di)

{d∃ri+1},

where d∃r
−

i+1 and d∃ri+1 represent new elements added to the
domain ∆Ii when we are to satisfy ∃r and ∃r−;

C (d∃ri+1) = C (∃r); C (d∃r
−

i+1 ) = C (∃r−);

rIi+1 = rIi ∪
⋃

di∈∆Ii\∆Ii−1 ,

∃r∈C (di)

{(di, d∃r
−

i+1 )} ∪

⋃
di∈∆Ii\∆Ii−1 ,

∃r−∈C (di)

{(d∃ri+1, di)},

for all r ∈ NR;

AIi+1 = AIi∪{d∃ri+1 | A ∈ C (∃r)}∪{d∃r
−

i+1 | A ∈ C (∃r−)},

for all A ∈ NC. It follows immediately from (∗) that C (d0)
does not contain ⊥ nor any {B,¬B}. Then, using again (∗)
it can be shown that no C (∃r) (and no C (∃r−)) used in the
definition of any AIi+1 contains ⊥ nor any {B,¬B}. It is
now straightforward to prove that I∗ is a model of T and
d0 ∈ CI

∗
, as required. o

Corollary 38 DL-Litecore has the PIP.

Proof. Let T1 and T2 be DL-Litecore TBoxes, C v D a
concept inclusion, and ∆ a signature such that sig(T1) ∩
sig(T2) ⊆ ∆, T1∪T2 |= α, and T1 and T2 are ∆-inseparable
w.r.t. DL-Litecore.

We consider the case sig(C) ⊆ Σ1, sig(D) ⊆ Σ2, T1 ∪
T2 6|= C v ⊥, T1 ∪ T2 6|= > v D (the remaining cases are
similar and left to the reader). Then, by Lemma 37, there
exist B1, . . . , Bn ∈ NB such that B1 = C, Bn = D and for
any i ∈ {1, . . . , n− 1} we have
• Bi v Bi+1 ∈ T1 ∪ T2 or

• ¬Bi+1 v ¬Bi ∈ T1 ∪ T2.

Since sig(T1) ∩ sig(T2) ⊆ ∆, there must exist i, j such that
Bi ∈ ∆, Bj ∈ ∆, B1, . . . , Bi−1 ∈ Σ1, Bj+1, . . . , Bn ∈
Σ2. Using the condition that T1, T2 are ∆-inseparable, one
can now easily prove Tk |= Bi v Bj for k = 1, 2. Thus,
T ′1 = {C v Bj} and T ′2 = {Bj v D} form a ∆-parallel
interpolant of (T1, T2) and C v D. o

Lemma 39 Let T be a DL-Litecore-TBox. Let B1 v B2 be
a DL-Litecore inclusion with T |= B1 v B2. If B1 v B2 is
not (T ,∆)-indecomposable, then there exists D ∈ NB such
that sig(D) ⊆ ∆ and T |= B1 v D and T |= D v B2.

Proof. Follows from Lemma 37. o

From this lemma and the PIP we immediately obtain the fol-
lowing theorem which implies that our algorithm for com-
puting the finest ∆-decomposition of DL-Litecore-TBoxes
is correct.

Theorem 19 DL-Litecore has the PIP. For DL-Litecore-
TBoxes T and signatures ∆, one can compute in poly-
nomial time a realization in DL-Litecore of the finest ∆-
decomposition T .

Proofs for DL-Litehorn

In what follows we prove that given a DL-Litehorn TBox the
algorithm in Fig. 2 outputs a TBox in which every axiom
is ∆-indecomposable. We consider the propositional case
first, that is, we assume that expressions of the form ∃r and
∃r− do not occur in the given TBox. In this case, a concept
is satisfiable if, and only if, it is satisfiable in a one-element
model. Then for any interpretation I with DI = {d} we
denote d ∈ CI by I |= C, for any propositional concept C.

We will use the following naming convention. Fix a TBox
T and mutually disjoint sets ∆, Σ1, Σ2 such that ∆ ∪ Σ1 ∪
Σ2 = Σ for Σ = sig(T ). Consider fresh signatures Σ′ =
{x′ | x ∈ Σ} and Σ† = {x† | x ∈ Σ}. Let C (C v B or
T ) be a Σ-concept (Σ-concept inclusion or Σ-TBox, resp.).
By CΣ1 ((C v B)Σ1 or TΣ1 , resp.) we denote a concept
(concept inclusion, TBox, resp.) obtained from C (C v B
or T ) by replacing every occurrence of a symbol x ∈ Σ2

with x′. By CΣ2 ((C v B)Σ2 or TΣ2 , resp.) we denote a
concept (concept inclusion, TBox, resp.) obtained from C
(C v B or T ) by replacing every occurrence of a symbol
x ∈ Σ1 with x†.

Lemma 40 Let T be a propositional TBox and ∆, Σ1, and
Σ2 mutually disjoint signatures such that sig(T ) = ∆∪Σ1∪
Σ2. For any B ∈ sig(TΣ1) ∪ {⊥}, if

TΣ1 ∪ TΣ2 |= C v B

then

TΣ1 |= ConsTΣ1 ,∆∪(Σ1∩sig(C))(CΣ1) v B



Proof. Suppose that C is of the form C1 u C2 u C3, where
sig(C1) ⊆ ∆, sig(C2) ⊆ Σ1, and sig(C3) ⊆ Σ2.

If TΣ1 |= ConsTΣ1 ,∆∪(Σ1∩sig(C))(CΣ1) v ⊥, then the
lemma is trivial. Thus, we can assume that there exists a
model of TΣ1 satisfying ConsTΣ1 ,∆∪(Σ1∩sig(C))(CΣ1).

Take the (uniquely determined) model I1 of TΣ1 such that
for any concept A we have I1 |= A if, and only if

TΣ1 |= ConsTΣ1 ,∆∪(Σ1∩sig(C))(CΣ1) v A.

Notice that I1 |= C1 u C2.
Observe that, for all A ∈ ∆ ∪ {⊥}, the following condi-

tions are equivalent:

• TΣ1 |= ConsTΣ1 ,∆∪(Σ1∩sig(C))(CΣ1) v A,

• TΣ2 |= ConsTΣ2 ,∆∪(Σ2∩sig(C))(CΣ2) v A.
Thus, we also have the (uniquely determined) model I2 of
TΣ2 such that any concept A we have I2 |= A if, and only if

TΣ2 |= ConsTΣ2 ,∆∪(Σ2∩sig(C))(CΣ2) v A.

We have I2 |= C3. We have

• for any concept A ∈ ∆: I1 |= A if, and only if I2 |= A;

• for any A ∈ sig(TΣ2) \∆: I1 6|= A;

• for any A ∈ sig(TΣ1) \∆: I2 6|= A.

Thus, I = I1 ∪ I2 is a model for TΣ1 ∪ TΣ2 and I |= C.
Now assume that TΣ1 ∪ TΣ2 |= C v B. Then

I |= B. Hence I1 |= B and we obtain TΣ1 |=
ConsTΣ1 ,∆∪(Σ1∩sig(C))(CΣ1) v B, as required. o

Theorem 22 For any propositional DL-Litehorn TBox T , the
algorithm in Figure 2 runs in poly-time and outputs a TBox
T ′ in which every CI is ∆-indecomposable w.r.t. T . Thus,
sdeco∆(T ′) coincides with the finest ∆-decomposition of
T .

Proof. First, we show that the algorithm in Fig. 2 termi-
nates and prove the complexity bound. Let N be the num-
ber of axioms in T and L = max{|sig(C) \ ∆| | C v
B ∈ T }. Notice that no transformation rule is applicable
to α1 = ConsT ,∆(C) v B introduced in line 8 of the al-
gorithm (since |sig(α1) \ ∆| = 1). Notice further that the
condition in Line 5 does not hold for α2 = C v B′ in-
troduced in Line 8 nor for any rewritings of α2 (since the
rewriting rule in Line 12 does not change the right-hand size
of an axiom and sig(B′) ⊆ ∆). Therefore, Line 12 can ex-
ecute at most |∆| · N · L2 times; and line 8 can execute at
most N times.

We prove now that if a TBox T has properties (Red),
(Def), and (Int), then every CI in T is ∆-indecomposable
w.r.t. T .

Suppose that some α = C v B ∈ T is not
∆-indecomposable then either there exist a signature ∆-
decomposition Σ1, Σ2 of T such that sig(C) ∩ Σi 6= ∅ for
i = 1, 2 or there exist a signature ∆-decomposition Σ1, Σ2

of T such that sig(C) ∩ Σ2 6= ∅, sig(C) ⊆ Σ2 ∪ ∆, and
B ∈ Σ1. We show that in both cases these assumptions lead
to a contradiction.

Consider the first case. Suppose that there exists i ∈
{1, 2} such that

(T \ {α})Σ1 ∪ (T \ {α})Σ2 |= C v CΣi

Then, by Lemma 40, since sig(CΣi) ⊆ sig(Ti),

(T \ {α})Σi
|= Cons(T \{α})Σi

,∆∪(Σi∩sig(C)))(CΣi
) v CΣi

.

After renaming the signatures appropriately, we get

T \ {α} |= ConsT \{α},∆∪(Σi∩sig(C)))(C) v C,

contradicting (Def). Therefore,

(T \ {α})Σ1 ∪ (T \ {α})Σ2 6|= (C v CΣi
)

for i = 1, 2. Consider a model I of (T \ {α})Σ1 ∪ (T \
{α})Σ2 such that we have for any concept name A: I |= A
if, and only if (T \ {α})Σ1 ∪ (T \ {α})Σ2 |= C v A. In
particular, I |= C. Then I 6|= CΣi

for i = 1, 2. Thus,
I |= CΣi

v BΣi
, and so I |= TΣi

. Since Σ1, Σ2 is a
decomposition of T and I |= α, we have

(T \ {α})Σ1 ∪ (T \ {α})Σ2 |= α

contradicting (Red), since |sig(α) \∆ ≥ 2|.
Consider now the second case. By Lemma 40 (using

renaming), T |= ConsT ,∆∪(Σ1∩sig(C))(C) v B. Since
Σ1 ∩ sig(C) = ∅, ConsT ,∆∪(Σ1∩sig(C))(C) = ConsT ,∆(C),
therefore, T |= ConsT ,∆(C) v B, contradicting (Int).

o

Lemma 41 Let T be a DL-Litehorn TBox and ∆ ⊆ sig(T ) a
signature such that

• if T |= ∃r v ⊥ for some role r then ∃r v ⊥ ∈ T ;
• every axiom in T P is ∆P -indecomposable.

Then every axiom in T is ∆-indecomposable.

Proof. Suppose there exists an α ∈ T , which is not ∆-
indecomposable. Then there exists a ∆-decomposition Σ1,
Σ2 of T , such that Σi ∩ sig(α) 6= ∅ for i = 1, 2. Let T1,
T2 realise Σ1, Σ2. Then, by Lemma ??, T P1 ∪ T P2 ≡ T P .
Thus, T P1 , T P2 realize the ∆P -decomposition sig(T P1 ) \∆,
sig(T P2 ) \ ∆ of T P . This shows that αP is not ∆P -
indecomposable, and so we have derived a contradiction.

o

Notice that the converse does not hold. Consider T = {∃ru
∃r− v A,∃r v B,B v ∃r} and ∆ = {B}. Then every
axiom in T is ∆-indecomposable but its propositional coun-
terpart T P = {P∃r u P∃r− v A,P∃r v B,B v P∃r−} can
be decomposed as {B u P∃r− v A,P∃r v B,B v P∃r−}.

Theorem 24 The algorithm RewriteDL-Litehorn given in
Fig. 3 transforms a given DL-Litehorn TBox into an
equivalent DL-Litehorn TBox in which every axiom is ∆-
indecomposable.

Proof. Clearly, (T ′)P = T PRes so, by Lemma 41, every ax-
iom in T ′ is ∆-indecomposable. o



Proofs for DL-LiteHhorn

To prove the PIP for DL-LiteHhorn we prove first prove that
reasoning in DL-LiteHhorn can be reduced to reasoning in
DL-Litehorn.

Lemma 25 Let T be a DL-LiteHhorn TBox and ∆ a signature.
Let T 0 be the set of CIs in T and set

T ′ = T 0 ∪ {∃r v ∃s,∃r− v ∃s− | r v s ∈ T }.

Then T |= α if, and only if, T ′ |= α for all CIs α in
DL-Litehorn.

Proof. The “if” direction is obvious. For the “only if” direc-
tion we show that given an arbitrary model I ′ of T ′ one can
construct a model I of T such that ∆I = ∆I

′
and for any

d ∈ ∆I and any DL-Litehorn concept D we have d ∈ DI if,
and only if, d ∈ DI′ . The required I differs from I ′ only in
the way how roles are interpreted, namely, for any role name
s:

sI = sI
′
∪
⋃
rv∗T s

rI
′
, (∗)

where r v∗T s denotes there exist t1, . . . , tn such that r =
t1, s = tn and ti v ti+1 ∈ T or t−i v t−i+1 ∈ T . That is,
whenever (u, v) ∈ rI and r v s ∈ T we also have (u, v) ∈
sI . It should be clear that for any d ∈ ∆I and DL-Litehorn

concept C we have d ∈ CI
′

implies d ∈ CI . We prove
the inverse by induction on the structure of C. Since the
interpretation of concept names in I coincides with I ′, we
have d ∈ AI implies d ∈ AI′ . Let C be of the form ∃s and
d ∈ (∃s)I . Then there exists d′ ∈ ∆I such that (d, d′) ∈ sI ,
that is either (d, d′) ∈ sI′ or (d, d′) ∈ rI′ for some role r
such that r v∗T s. In the latter case, d ∈ (∃r)I′ and, since
T ′ |= ∃r v ∃s, d ∈ (∃s)I′ . The case of a conjunctive C
is trivial. Every role inclusion of the form r v s ∈ T is
satisfied in I because of (∗). Thus I is a model of T . o

Corollary 42 DL-LiteHhorn has the PIP.

Proof. Let T1 and T2 be DL-LiteHhorn TBoxes, α a con-
cept or role inclusion, and ∆ a signature such that sig(T1) ∩
sig(T2) ⊆ ∆, T1∪T2 |= α, and T1 and T2 are ∆-inseparable
w.r.t. DL-LiteHhorn. Consider cases.

Suppose that α = C v B is a concept inclusion. Notice
that C and B are DL-Litehorn concepts, so, by Lemma 25,
T 0

1 ∪ T 0
2 ∪ {∃r v ∃s,∃r− v ∃s− | r v s ∈ (T1 ∪ T2)} |=

C v B, where T 0
i is the set of concept inclusion in Ti for

i = 1, 2. Let T ′i = T 0
i ∪ {∃r v ∃s,∃r− v ∃s− | r v s ∈

Ti}. Clearly, sig(T1) ∩ sig(T2) ⊆ ∆, T ′1 ∪ T ′2 |= C v B
and T ′1 and T ′2 are ∆-inseparable w.r.t. DL-Litehorn. Since
DL-Litehorn has the PIP there exist DL-Litehorn TBoxes T ′′1
and T ′′2 such that (T ′′1 , T ′′2 ) is a ∆-parallel interpolant of
(T ′1 , T ′2 ) and α. But then T1 |= T ′′1 and T2 |= T ′′2 and so
(T ′′1 , T ′′2 ) is a ∆-parallel interpolant of (T1, T2) and α, as
required.

Suppose now that α = r v s is a role inclusion such
that, w.l.o.g., r ∈ sig(T1) and s ∈ sig(T2). Then either

T1∪T2 |= ∃r v ⊥ or there exist roles t1, . . . , tn ∈ sig(T1)∪
sig(T2) such that r = t1, tn = s and ti v ti+1 ∈ T1 ∪
T2. In the former case the role inclusion α follows from the
DL-Litehorn concept inclusion ∃r v ⊥ so this case can be
reduced to the one considered above. In the latter case, since
sig(T1) ∩ sig(T2) ⊆ ∆, and T1 and T2 are ∆-inseparable,
there exists t ∈ ∆ such that T1 |= r v t and T2 |= t v s.
Let T ′1 = {r v t} and T ′2 = {t v s}. Then (T ′1 , T ′2 ) is a
∆-parallel interpolant of (T1, T2) and α. o

Lemma 43 Let T be a DL-LiteHhorn TBox T and ∆ ⊆
sig(T ). Let T 0 be the set of concept inclusions in T . Sup-
pose that for any role r if T |= ∃r v ⊥ then T 0 |= ∃r v ⊥.
Let T 1 be the set of role inclusions in T , r v s ∈ T1, and
assume
• there does not exist a role t ∈ ∆ such that T 1 |= r v t

and T 1 |= t v s;
• T 0 6|= ∃r v ⊥.
Then r v s ∈ T is (T ,∆)-indecomposable.

Proof. Assume that T and r v s satisfy the conditions of
the lemma and there exists a ∆-decomposition Σ1, . . . ,Σn
of T such that r ∈ Σi and s ∈ Σj for i 6= j. Let T1, . . . , Tn
realise Σ1, . . . ,Σn. Notice that T |= r v s if, and only if,
T |= ∃r v ⊥ or there exist roles t1, . . . , tn ∈ Σ1 ∪ · · · ∪Σn
such that r = t1, tn = s and ti v ti+1 ∈ T . Notice that,
under the conditions of the lemma, T 6|= ∃r v ⊥ and ti /∈ ∆
for i = 1, . . . , n. Then there must exists i ∈ {1, . . . , n}
and k 6= l such that ti ∈ Σk and ti ∈ Σl contradicting
Σ1, . . . ,Σn being a ∆-decomposition of T . o

Theorem 26 The algorithm in RewriteDL-LiteHhorn
given

in Fig. 4 transforms a given DL-LiteHhorn TBox into an
equivalent DL-LiteHhorn TBox in which every axiom is ∆-
indecomposable.

Proof. By Lemmas 43 and 25. o

Proofs for the section “Decomposition in EL”
For the proofs in this section, we will frequently use the fol-
lowing result from (Lutz and Wolter 2010).

Lemma 44 Let T be a EL-TBox and C,D be EL-concepts.
Suppose T |= C v ∃r.D. Then one of the following holds:
• there is a conjunct ∃r.C ′ of C such that T |= C ′ v D;
• there is a ∃r.C ′ ∈ sub(T ) such that T |= C v ∃r.C ′ and
T |= C ′ v D.

We also require the following interpolation result that can be
proved by close inspection of the proof of Theorem 36.

Theorem 45 Let T1, T2 be EL-TBoxes with sig(T1) ∩
sig(T2) ⊆ ∆. Assume T1 ∪ T2 |= C v D for EL-concepts
C,D such that sig(C) ⊆ sig(T1) and sig(D) ⊆ sig(T2).
Then there exists a EL-concept G with sig(G) ⊆ ∆ such
that T1 |= C v G and T2 |= G v D.



We have seen that in EL finest ∆-decompositions do not
always have realizations of polynomial size. Thus, instead
of computing the finest realization itself, we will construct
a surrogate containing additional concept names as well as
additional non-EL constructors. When introducing new con-
cept names, we will ensure that we obtain safe variants:

Definition 46 (Safe variants) Let T be a TBox. A TBox
T ′ is called a safe variant of T for ∆ if there exists a set C
of conceptsC with sig(C) ⊆ sig(T ) such that eachC ∈ C is
T -equivalent to a (T ,∆)-indecomposable concept C ′ (i.e.,
T |= C ≡ C ′) and

T ′ ≡ T ∪ {AC ≡ C | C ∈ C},

where the AC , C ∈ C are concept names that do not occur
in T . We call such an AC a surrogate of C.

Lemma 47 Let T ′ ≡ T ∪ {AC ≡ C | C ∈ C} be a safe
variant of T for ∆ and let Σi, 1 ≤ i ≤ n, form a partition
of sig(T ) \∆. The following conditions are equivalent:

• Σ1, . . . ,Σn is a signature ∆-decomposition of T ;
• there exist mutually disjoint subsets

Π1, . . . ,Πn,Πn+1, . . . ,Πm of {AC | C ∈ C}
such that Πn+1, . . . ,Πm are non-empty and⋃

1≤i≤m Πi = {AC | C ∈ C} such that
Σ1 ∪ Π1, . . . ,Σn ∪ Πn,Πn+1, . . . ,Πm is a signa-
ture ∆-decomposition of T ′.

It follows that if we are able to compute in polytime a safe
variant T ′ of T for ∆ and its finest ∆-decomposition, then
we obtain, again in polytime, the finest ∆-decomposition of
T .

Consider the following properties of TBoxes:

(R1) If C v D ∈ T , then D is a concept name or of the form
∃r.A, where A is a concept name.

(R2) If C v ∃r.A ∈ T then there does not exist a top-level
conjunct ∃r.C ′ of C with T |= C ′ v A.

(R3) If C v ∃r.A ∈ T , then for every concept D with T |=
C v ∃r.D and T |= D v A we have T |= A v D.

We also require the following property that depends on ∆ ⊆
sig(T ):

(R4) If C v ∃r.A ∈ T , then ∃r.A is (T ,∆)-indecomposable.

Lemma 48 Let T be a TBox and ∆ ⊆ sig(T ). Then one
can construct a safe variant T ′ of T satisfying (R1)–(R4) in
polynomial time.

Proof. Assume T and ∆ are given. Let T0 := T . We apply
the following rewrite rule exhaustively to T0:

(RR0) If C v C1 u C2 ∈ T0, then remove it and add instead
C v C1, C v C2 to T0.

(RR1) If C v ∃r.D ∈ T0 and ∃r.C ′ is a top-level conjunct of C
such that T0 |= C ′ v D, then remove it and add instead
C ′ v D to T0.

(RR2) If C v ∃r.D ∈ T0 and (RR1) is not applicable, then com-
pute the set D of all concepts D0 that occur in sub(T0)
and such that
– T0 |= C v ∃r.D0;
– T0 |= D0 v D,
– there does not exist D′ in sub(T0) with T0 |= C v
∃r.D′ and T0 |= D′ v D0 but T0 66|= D0 v D′.

Replace C v ∃r.D ∈ T0 by
{AD0 v D0, D0 v AD0 , C v ∃r.AD0 , AD0 v D | D0 ∈ D},
where the AD0 are fresh concept names.

It remains to show that T0 has the properties (R1)-(R4). This
follows immediately from the following

Claim. Let T |= C v ∃r.D and assume (RR1) is not ap-
plicable. Assume there does not exist D′ in sub(T ) with
T |= C v ∃r.D′ and T |= D′ v D but T 66|= D v D′.
Then D is T -equivalent to a (T ,∆)-indecomposable con-
cept.

Proof of Claim. Take the finest signature ∆-
decomposition Σ1, . . . ,Σn of T and assume T1, . . . , Tn are
EL-TBoxes that realize this decomposition. Then

T1 ∪ . . . ∪ Tn |= C v ∃r.D
As (RR1) is not applicable by Lemma 44 there exists
∃r.D′ ∈ sub(Ti) for some i ≤ n such that
T1 ∪ . . . ∪ Tn |= C v ∃r.D′, T1 ∪ . . . ∪ Tn |= D′ v D.

We show that D′ is as required. D′ (and even ∃r.D′) is
(T ,∆)-indecomposable because ∃r.D′ ∈ sub(Ti). So, it is
sufficient to show that T |= D v D′. We have T |= C v
∃r.D′. As (RR1) is not applicable and because Lemma 44,
there exists D′′ ∈ sub(T ) such that |= C v ∃r.D′′ and
T |= D′′ v D′. Thus

T |= D′′ v D
and we obtain, because of the conditions of the claim that
T |= D′′ ≡ D. But then T |= D′ ≡ D. We have proved the
claim. The proof shows that (R4) holds as well. o

Thus, in what follows we can work with TBoxes satisfying
(R1)-(R4). Let T be a TBox satisfying (R1)-(R4). Then T
satisfies (R5) if
• it contains no redundant axioms (i.e., if α ∈ T , then T \
{α} 6|= α).

• if C1 v C2 ∈ T , sig(C1) 6⊆ ∆ and sig(C2) 6⊆ ∆, then
there does not exist a concept D with sig(D) ⊆ ∆ such
that T |= C1 v D and T |= D v C2.

We prove that we can work with TBoxes satisfying (R1)-
(R5). First, we require the following

Lemma 49 Assume C0, C1 are T -equivalent to concepts
C ′0, C

′
1 that are (T ,∆)-indecomposable and that T |=

C0 v D and T |= D v C1 where sig(D) ⊆ ∆. Let
∆′ = ∆∪{DC0,C1}, whereDC0,C1 is a fresh concept name,
and let

T ′ = {C0 v DC0,C1 , DC0,C1 v C1}.
Then Σ1,Σ2 is a ∆-decomposition of T if, and only if, it is
a ∆′-decomposition of T ′.



Proof. Assume T1, T2 realizes a ∆-decomposition Σ1,Σ2

of T . Then sig(C ′0) ⊆ Σi and sig(C ′1) ⊆ Σj for some i, j ∈
{0, 1}. We consider the case sig(C ′0) ⊆ Σ1 and sig(C ′1) ⊆
Σ2 and leave the remaining cases to the reader. Let

T ′1 = T1 ∪ {C ′0 v DC0,C1}, T ′2 = T2 ∪ {DC0,C1 v C ′1}.

Then T ′ ≡ T ′1 ∪ T ′2 and so T ′1 , T ′2 realizes the ∆′-
decomposition Σ1,Σ2 of T ′, as required.

Conversely, let Σ1,Σ2 be a ∆′-decomposition of T ′. Take
T1, T2 that realize this decomposition. Let

T ′′ = T ′ ∪ {D ≡ DC0,C1}

and

T ′1 = T1 ∪ {D ≡ DC0,C1}, T ′2 = T2 ∪ {D ≡ DC0,C1}.

Then T ′1 , T ′2 realize the ∆′-decomposition Σ1,Σ2 of T ′′.
Now replace everywhere in T ′′, T ′1 , and T ′2 , the concept D
by DC0,C1 and denote the resulting TBoxes by S, S1, and
S2, respectively. Then

S ≡ T ≡ S1 ∪ S2

and so S1,S2 realizes the ∆-decomposition Σ1,Σ2 of T , as
required. o

Second, we require the following

Lemma 50 Assume that T satisfies (R1)-(R4) and is role
acyclic. If C1 v C2 ∈ T is non-redundant, then C1 is T -
equivalent to a (T ,∆)-indecomposable concept.

Proof. Follows immediately from Lemma 53 below. o

We are now in the position to transform a TBox with (R1)-
(R4) into a TBox with (R1)-(R5).

Theorem 51 Suppose a TBox T satisfies (R1)-(R4). Then
one can construct in polytime a TBox T ′ satisfying (R1)-
(R5) and a ∆′ ⊆ ∆ such that the ∆-decompositions of T
coincide with the ∆′-decompositions of T ′.

Proof. Clearly, by Lemma 49 and Lemma 50, it is sufficient
to show that one can decide in polynomial time whether for
given T |= C1 v C2 there exists a conceptD with sig(D) ⊆
∆ such that T |= C1 v D and T |= D v C2.

Assume T |= C1 v C2. Now, by Theorem 45, there
exists such a D iff

T ∪ T ∆ |= C∆
1 v C2,

where T ∆ andC∆
1 are obtained from T andC1 by replacing

every non-∆-symbol by a fresh symbols (simultaneously).
Clearly, this condition is decidable in polynomial time.

o

From now on we assume that the TBox T and ∆ satisfy
Conditions (R1)-(R5). Observe that we are now in a simi-
lar situation in EL as in our proof for DL-Lite when we had
to move from DL-Litecore to DL-Litehorn. The rewriting
above took care of the right hand side of CIs, and now we
have to consider complex left-hand sides. This is consider-
ably harder for EL than for DL-Litehorn, but the idea is the
same. For a given α = C v D ∈ T , we will be searching
for a concept C ′ such that sig(C ′) \ ∆ ⊆ sig(C) \ ∆ that
is equivalent to C w.r.t. T \ {α}. We first prove a rather
technical lemma that extends the proof of RJCP above. It
will be convenient to have additional notation for signature
renaming.

Assume T and ∆ are fixed. We fix a signature Σ disjoint
from ∆ and consider fresh symbols Xo and X∗ for X ∈ Σ.
Set Σo = {Xo | X ∈ Σ} and Σ∗ = {X∗ | X ∈ Σ}. For a
conceptC with sig(C) ⊆ Σ∪Σo∪Σ∗∪∆, we denote byCo
the resulting concept when every symbol X ∈ Σ is replaced
byXo and every symbolX∗ in C is replaced byXo as well.
C∗ is defined in the same way, with ·o replaced by ·∗. We
also set ro = r∗ = r for all role names r ∈ ∆. (Note that,
by definition, A∗ = Ao = A for all A ∈ ∆). Also, set

T o = {Co v Do | C v D ∈ T },
T ∗ = {C∗ v D∗ | C v D ∈ T }.

For a signature Γ, TBox T ′, and concept C, we denote by

consT ′,Γ(C)

the set of EL-concepts D such that T ′ |= C v D and
sig(D) ⊆ Γ. The purpose of introducing consT ,Γ(C) is
similar to the purpose of ConsT \{α},Σ∪∆(C) in our proof
for DL-Litehorn. Observe, however, that in contrast to DL-
Lite without any restrictions this set is infinite. We use the
notation “T ′,Ξ |= C”, with T ′ a TBox, Ξ a set of concepts,
and C a concept, in the same way as introduced in the proof
of Theorem 36.

Lemma 52 Let T be a TBox, ∆ ⊆ sig(T ), and sig(T ) ⊆
Σ ∪∆. Let C be a concept with sig(C) ⊆ Σo ∪ Σ∗ ∪∆.

(i) The following holds for all D with sig(D) ⊆ Σo ∪∆:
• if T o ∪ T ∗ |= C v D,
• then T o, consT o,∆∪(Σo∩sig(C))(Co) |= D.

(ii) The following holds for all D with sig(D) ⊆ Σ∗ ∪∆:
• if T o ∪ T ∗ |= C v D,
• then T ∗, consT ∗,∆∪(Σ∗∩sig(C))(C∗) |= D.

Proof. (i) and (ii) are dual to each other; we have formulated
both claims explicitly because the proof of (i) and (ii) is by
simultaneous induction on the role depth of C. The case in
which C is a conjunction of concept names is similar to the
induction step and left to the reader.

For the induction step let C be the conjunction of
l

i∈I1

∃roi .Ci u
l

i∈I2

Aoi ,

l

i∈J1

∃r∗i .Ci u
l

i∈J2

A∗i ,



and l

i∈K1

∃ri.Ci u
l

i∈K2

Ai,

where

• ri, i ∈ K1 and Ai, i ∈ K2, are ∆-symbols and

• ri, i ∈ I1 ∪ J1 and Ai, i ∈ I2 ∪ J2, are non-∆-symbols.

Note that Co is the conjunction of
l

i∈I1

∃roi .Coi u
l

i∈I2

Aoi ,

l

i∈J1

∃roi .Coi u
l

i∈J2

Aoi ,

and l

i∈K1

∃ri.Coi u
l

i∈K2

Ai.

Note that the last conjunct equals
l

i∈K1

∃roi .Coi u
l

i∈K2

Aoi .

because ·o is the identity on ∆-symbols. As shown in (Lutz
and Wolter 2010) and used in the proof of Theorem 36 al-
ready, we can take a tree-model Io of T o with root do such
that the following conditions are equivalent for every EL-
concept D:

• do ∈ DIo ;

• T o, consT o,∆∪(Σo∩sig(C))(Co) |= D.

Observe that there are di, i ∈ I1∪K1 with (do, di) ∈ (roi )
Io

and di ∈ (Coi )Io . Clearly, we may assume that the following
conditions are equivalent for every i ∈ I1∪K1 and for every
D:

• di ∈ DIo

• T o, consT o,∆∪(Σo∩sig(Ci))(C
o
i ) |= D

By induction hypothesis, the following holds for all i ∈ I1∪
K1:

(i) for all D with sig(D) ⊆ Σo ∪∆:

• if T o ∪ T ∗ |= Ci v D,

• then T o, consT o,∆∪(Σo∩sig(Ci))(C
o
i ) |= D,

and (ii) for all D with sig(D) ⊆ Σ∗ ∪∆:

• if T o ∪ T ∗ |= Ci v D,

• then T ∗, consT ∗,∆∪(Σ∗∩sig(Ci))(C
∗
i ) |= D.

Thus, we find tree-like models Ii of T o ∪ T ∗, i ∈ I1 ∪K1

with root ci such that

• ci ∈ CIi
i ;

and for all D with sig(D) ⊆ Σo ∪∆

• if ci ∈ DIi , then di ∈ DIo (equivalently,
T o, consT o,∆∪(Σo∩sig(Ci))(C

o
i ) |= D)

and for all D with sig(D) ⊆ Σ∗ ∪∆

• if ci ∈ DIi , then T ∗, consT ∗,∆∪(Σ∗∩sig(Ci))(C
∗
i ) |= D.

For d ∈ ∆Io denote by IΣo∪∆(d) the set of Σo∪∆-concepts
F with d ∈ F I . Now set

S = {d | ∃r ∈ Σo ∪∆ (do, d) ∈ rIo}

and take for every d ∈ S a tree-like model Id with root d
such that
• Id |= T o ∪ T ∗,
• for all conceptsD the following conditions are equivalent:

– d ∈ DId ;
– T o ∪ T ∗, IΣo∪∆(d) |= D.

Construct a new model Jo by setting
• ∆Jo = do ∪

⋃
i∈I1∪K1

∆Ii ∪
⋃
d∈S ∆Id ;

• for all A ∈ ∆ ∪ Σo ∪ Σ∗,

AJo = {d0 | d0 ∈ AIo} ∪
⋃

i∈I1∪K1

AIi ∪
⋃
d∈S

AId ;

• for all r ∈ Σo ∪∆, rJo is the union of

{(do, ci) | r = roi , i ∈ I1 ∪K1},

{(do, d) | ∃r ∈ Σo ∪∆ (do, d) ∈ rIo},
and ⋃

i∈I1∪K1

rIi ∪
⋃
d∈S

rId .

• for all r ∈ Σ∗,

rJo =
⋃

i∈I1∪K1

rIi ∪
⋃
d∈S

rId .

The resulting interpretation has the following properties:
• the following conditions are equivalent for every D with

sig(D) ⊆ Σo ∪∆:
– do ∈ DJo

– T o, consT o,∆∪(Σo∩sig(C))(Co) |= D

• Jo is a model of T o;
• the restriction of Jo to ∆I0 \ {do} is a model of T ∗;
• do is an element of

(
l

i∈I1

∃roi .Ci u
l

i∈I2

Aoi u
l

i∈K1

∃ri.Ci u
l

i∈K2

Ai)Jo .

• for every D with sig(D) ⊆ Σ∗ ∪∆:
– if do ∈ DJo

– then T ∗, consT ∗,∆∪(Σ∗∩sig(C))(C∗) |= D

We prove the last statement and leave the proofs of the re-
maining statements to the reader. Let

D =
l

i∈S1

∃r∗i .C∗i u
l

i∈S2

A∗i u
l

i∈L1

∃ri.C∗i . u
l

i∈L2

Ai

with sig(D) ⊆ Σ∗ ∪∆ and
• r∗i ∈ Σ∗ for i ∈ S1 and A∗i ∈ Σ∗ for i ∈ S2;
• ri ∈ ∆ for i ∈ L1 and Ai ∈ ∆ for i ∈ L2.



Assume do ∈ DJo . Then, clearly, S1 = ∅ and S2 = ∅. Now
assume i ∈ L2. Then T o, consT o,∆∪(Σo∩sig(C))(Co) |= Ai
and so T ∗, consT ∗,∆∪(Σ∗∩sig(C))(C∗) |= Ai, as required.

Now consider an ∃ri.C∗i with i ∈ L1. Then ri ∈ ∆.

Case 1. (do, d) ∈ rJo
i and d ∈ ∆Io . Then

T ∗ ∪ T o, IΣo∪∆(d) |= C∗i .

By compactness, we can take an F ∈ IΣo∪∆(d) with T ∗ ∪
T o |= F v C∗i . By Theorem 45, we have a concept F0 with
sig(F0) ⊆ ∆ such that T o |= F v F0 and T ∗ |= F0 v C∗i .

Thus, we have d ∈ F Io
0 . By definition of Io, ∃ri.F0 ∈

consT o,∆(Co). Thus, ∃ri.F0 ∈ consT∗,∆(C∗). In conclu-
sion, T ∗, consT ∗,∆(C∗) |= ∃ri.C∗i , which implies, as re-
quired, T ∗, consT ∗,∆∪(Σ∗∩sig(C))(C∗) |= ∃ri.C∗i .

Case 2. (do, cj) ∈ rJo
i for some j ∈ K1 such that cj ∈ CIi

j

and cj ∈ (C∗i )Ii .

T ∗, consT ∗,∆∪(Σ∗∩sig(Cj))(C∗j ) |= C∗i .

But then

T ∗, consT ∗,∆∪(Σ∗∩sig(C))(C∗) |= ∃ri.C∗i ,

as required.

In the same way as Jo, we construct a tree-like model J∗
with root d∗ and dual properties (obtained by swapping ·o
and ·∗).

We may assume that J∗ and Jo are disjoint except for
do = d∗. Now take the union J of the two models. One can
prove the following properties:

• do ∈ CJ ;

• J is a model of T o ∪ T ∗;
• if sig(D) ⊆ Σo ∪ ∆ and do ∈ DJ , then
T o, consT o,∆∪(Σo∩sig(C))(Co) |= D.

• if sig(D) ⊆ Σ∗ ∪ ∆ and do ∈ DJ , then
T ∗, consT ∗,∆∪(Σ∗∩sig(C))(C∗) |= D.

Now assume that T o ∪ T ∗ |= C v D, where
sig(D) ⊆ Σo ∪ ∆. Then do ∈ DJ and so, by Point 3,
T o, consT o,∆∪(Σo∩sig(C))(Co) |= D. This proves (i). The
proof for (ii) is the same using Point 4 instead of Point 3.

o

Lemma 53 Assume T is role-acyclic. Let α = (C v
D) ∈ T such that T \ {α} 6|= α and let Σ1,Σ2 be a ∆-
decomposition of T such that

• sig(D) ⊆ Σ1;
• sig(C) ∩ Σ1 6= ∅;
• sig(C) ∩ Σ2 6= ∅.
Then T \ {α}, consT \{α},(Σi∩sig(C))∪∆(C) |= C for some
i ∈ {1, 2}.

Proof. Assume the lemma does not hold and let T , ∆,
α = C v D, and Σ1,Σ2 witness this. We will derive a
contradiction. For a TBox S we denote by SΣ1 the result-
ing TBox when all symbols X in Σ2 are replaced by fresh
symbols X∗ in Σ∗2. Similarly, we denote by SΣ2 the result-
ing TBox when all symbols X in Σ1 are replaced by fresh
symbols X∗ in Σ∗1. The same notation is used for concepts
and concept inclusions. We have

(T \ {α})Σ1 ∪ (T \ {α})Σ2 6|= C v D
because T \ {α} 6|= C v D. Since

TΣ1 ∪ TΣ2 |= C v D,
this implies

(T \ {α})Σ1 ∪ (T \ {α})Σ2 |= C v ∃r1. · · · ∃rn.CΣi

for some i ∈ {1, 2} and some role names r1, . . . , rn and
n ≥ 0. But then, by the acyclicity condition above,

(T \ {α})Σ1 ∪ (T \ {α})Σ2 |= C v CΣi ,

for some i ∈ {1, 2}. Using Lemma 52 and suitable renam-
ings, this implies T \{α}, consT \{α},(Σi∩sig(C))∪∆(C) |= C
for some i ∈ {1, 2}. o

We now face the problem of working with consT ,Σ(C).
Observe that if T is role-acyclic, then consT ,Σ(C) is equiv-
alent to a finite set of concepts. Thus there exists a EL-
concept ConsT ,Σ(C) that is equivalent to consT ,Σ(C); i.e.,
for every interpretation I, we have d ∈ (ConsT ,Σ(C))I if,
and only if, for all F ∈ consT ,Σ(C) we have d ∈ F I . Un-
fortunately, ConsT ,Σ(C) can be of exponential size, and so
we cannot employ it for a polytime algorithm without hav-
ing a succinct representation. We now introduce a very con-
venient representation based on simulation quantifiers. The
formalism is developed for role acyclic TBoxes but can be
easily generalized to arbitrary TBoxes.

Let I1 and I2 be interpretations and Σ a signature. A
relation S ⊆ ∆I1 ×∆I2 is a Σ-simulation from I1 to I2 if
the following holds:
• for all concept names A ∈ Σ and all (d1, d2) ∈ S, if
d1 ∈ AI1 , then d2 ∈ AI2 ;

• for all role names r ∈ Σ, all (d1, d2) ∈ S, and all e1 ∈
∆I1 with (d1, e1) ∈ rI1 , there exists e2 ∈ ∆I2 such that
(d2, e2) ∈ rI2 and (e1, e2) ∈ S.

If d1 ∈ ∆I1 , d2 ∈ ∆I2 , and there is a Σ-simulation S with
(d1, d2) ∈ S, then (I2, d2) Σ-simulates (I1, d1), written
(I1, d1) ≤Σ (I2, d2).

We now introduce the extension of EL with simulation
quantifiers. We define ELs-concepts, concept inclusions,
and TBoxes by simultaneous induction as follows. Concepts
in ELs are defined as follows:
• every EL-concept (concept inclusion, TBox) is a ELs-

concept (concept inclusion, TBox);
• if C is a ELs concept, T is a ELs-TBox, and Σ a signa-

ture, then D = ∃simΣ.(T , C) is a ELs-concept;
• ifC is a ELs concept andD is a EL-concept, thenC v D

is a ELs concept inclusion;



• a finite set of ELs concept inclusions is a ELs-TBox.
Let I be an interpretation. Then we let d ∈
(∃simΣ.(T , C))I iff there exists an interpretation J that is
a model of T with a d′ ∈ CJ and (J , d′) ≤Γ (I, d), where
Γ = (sig(T ) ∪ sig(C)) \ Σ.

The two main results we require are as follows:

Theorem 54 Let T be role acyclic.
(i) For all Σ and EL-concepts C,

∃simΓ.(T , C) ≡ ConsT ,Σ(C);
(i.e, (∃simΓ.(T , C))I = (ConsT ,Σ(C))I for all interpreta-
tions I, where Γ = (sig(T ) ∪ sig(C)) \ Σ.

(ii) Let T be an ELs-TBox and C v D a ELs-concept
inclusion. Then the problem “T |= C v D” is decidable in
polynomial time.

The first part is an immediate consequence of the well-
known connection between simulations and EL-concepts.
The proof is standard, and therefore omitted, see e.g. (Lutz
and Wolter 2010). Observe that as a consequence it is
easily proved that every ELs-TBox (even with nested ap-
plications of simulation quantifiers) based on role-acyclic
TBoxes is equivalent to the EL-TBox obtained by replac-
ing, recursively, simulation quantifiers ∃sim by the corre-
sponding Cons(·). Thus, the ELs-TBoxes we deal with in
this paper inherit all properties we have established for EL-
TBoxes.

The proof of the second part is slightly more involved and
uses a canonical model construction and the fact that it is
decidable in poly-time whether (I1, d1) ≤Σ (I2, d2).

Finally, we are in the position to prove the second part of
Theorem 27.
Theorem 27 (a) For role-acyclic EL-TBoxes, the finest ∆-
decomposition can be computed in polynomial time.
Proof. Let T be role-acyclic and ∆ ⊆ sig(T ). We may
assume that T satisfies conditions (R1)-(R5).

We now compute a ELs-TBox T ′ that is equivalent to T
and such that sdeco∆(T ′) is the finest ∆-decomposition of
T . We proceed as follows: let M = {α1, . . . , αn} be an
enumeration of the C v D ∈ T such that C contains at
least two non-∆-symbols.

1. For 1 ≤ i ≤ n:
2. If T \ {αi} |= αi, set T := T \ {αi}. Otherwise let
αi = C v D and compute a minimal Σ ⊆ sig(C) \ ∆
such that

T \ {αi} |= ∃simΓΣ.((T \ {αi}), C) v C
(we set ΓΣ = sig(T )\ (∆∪Σ)) and set T := T if Σ = ∅,
and
T := (T \ {αi}) ∪ {∃simΓΣ.((T \ {αi}), C) v D},

otherwise.
3. Let T ′ := T .
By definition, T ′ is logically equivalent to T . Thus,
it remains to observe that sdeco∆(T ′) is the finest ∆-
decomposition of T ′. But this follows immediately from
the first part of Theorem 54 and Lemma 53. Finally, T ′ can
be computed in polytime by Theorem 54. o

Finally, we prove the first part of Theorem 27.

Theorem 27 (b) If ∆ = ∅, then the finest ∆-decomposition
of any EL-TBox can be computed in polynomial time.

Proof. Assume T is given and ∆ = ∅. We may assume
that T satisfies conditions (R1)-(R4). Now we apply the
following rule exhaustively to T :
• If C v D ∈ T and T |= C> v D, where C> is obtained

from C by replacing an occurrence of some subconcept
(6= >) of C with >, then T := T \ {α} ∪ {C> v D}.
Call the resulting TBox T ′. Clearly T ′ ≡ T and T ′ can

be computed in polynomial time. We show that sdeco∆(T ′)
is the finest ∆-decomposition of T . Assume that this is not
the case. Since T has properties (R1)-(R4), we then have
a ∆-decomposition Σ1, Σ2 of T ′ and C v D ∈ T ′ such
that sig(D) ⊆ Σ1 but sig(C) 6⊆ Σ1. We use the notation
introduced in the proof of Lemma 53: so we have

T ′Σ1
∪ T ′Σ2

|= C v D.

Since ∆ = ∅, it is readily checked that this implies T ′Σ1
∪

T ′Σ2
|= C∗ v D, where C∗ is obtained from C by replacing

any maximal subconcept ∃r.C ′ with r ∈ Σ2 by> and, in the
resulting concept, any A ∈ Σ2 by >. Thus T |= C∗ v D.
But then the rewriting rule is applicable to T ′ and we have
obtained a contradiction. o


