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Abstract. We generalize the main notions of Formal Concept Analysis
with the ideas of the semantic probabilistic inference. We demonstrate
that under standard restrictions, our definitions completely correspond
to the original notions of Formal Concept Analysis. From the point of
view of applications, we propose a method of recovering concepts in
formal contexts in presence of noise on data.

1 Introduction

Assume that a scientist needs to classify some finite set of objects with respect to
n attributes. The objects are observed in a number of experiments, where each of
them is assigned a certain set of attributes. The results of each experiment can be
represented as a table, with rows labelled by the object names, columns labelled
by the attribute names, and each cell (i, j) filled iff object i has attribute j.
Having results of one particular experiment it is reasonable to classify the objects
in the following way: put those objects in groups which have a common set of
attributes and no object out of this group has these attributes. It is well known
that the pairs 〈object set, attribute set〉 of this kind can be naturally ordered
and represented in a convenient way as studied in Formal Concept Analysis
[2, 3] (FCA). Now assume that we know the results of the whole body of the
experiments and we would like to build a classification of the objects with respect
to the whole collection of data. Typically, an object may have some attribute
in a number of experiments and lack this attribute in the remaining number of
them. To cope with this ambiguity when building classifications, we employ the
method of semantic probabilistic inference introduced in [10–12]. In this paper,
we generalize the standard notion of truth of an implication on data by means
of a truth valuation based on a probability measure. We define an analog of the
classification unit studied in FCA in terms of fixed points of implications which
hold on data with respect to this valuation. To the best of our knowledge, there
are no published papers describing similar probabilistic approaches. For instance,
in [1] the main notions of Formal Concept Analysis are reformulated in terms
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of a probability logic, but their definitions are not generalized in the scope of
FCA. By this work, we aim at establishing connections between Formal Concept
Analysis and the method of semantic probabilistic inference. The contribution
of this paper is the generalization of the key notions of FCA in terms of the
semantic probabilistic inference.

2 Preliminaries

Let us start with basic definitions and results from Formal Concept Analysis.

Definition 1. A formal context is a triple (G,M, I), where G and M are sets
and I ⊆ G×M is a relation between the elements of G and M. The elements of
G are called objects and the elements of M are called attributes of the context.
We call a context finite if G and M are finite sets.

For brevity, we omit the word “formal” and call the triples (G,M, I) from
the definition above contexts. Every context can be naturally represented in a
tabular form, as noted in the introduction. For a context (G,M, I), we define
the operation ′ on the subsets A ⊆ G and B ⊆ M as follows:

A′ = {m ∈ M |∀ g ∈ A (g, m) ∈ I}, B′ = {g ∈ G |∀ m ∈ B (g,m) ∈ I}.
For g ∈ G, the set {g}′ will be abbreviated by the notation g′.

Definition 2. A concept in context (G,M, I) is a pair (A,B) with A ⊆ G, B ⊆
M, A′ = B, and B′ = A. The set A is called the extent and B the intent of the
concept (A,B).

In fact, a concept can be viewed as the classification unit which groups objects
and attributes of a context.

The following simple fact will is frequently used in proofs of the main claims
in this paper:

Lemma 1. If (G,M, I) is a context and B1, B2 ⊆ M are sets of attributes, then

1. B1 ⊆ B2 =⇒ B′
2 ⊆ B′

1

2. B1 ⊆ B′′
1 .

Definition 3. A (partial) order 6 on concepts is defined as follows: if (A1, B1)
and (A2, B2) are concepts of a context then (A1, B1) 6 (A2, B2) if A1 ⊆ A2 (or,
equivalently by Lemma 1, if B2 ⊆ B1).

Theorem. The relation 6 induces a complete lattice on the set of concepts of a
context, with the infimum and supremum of subsets given, respectively, by:

∧

j∈J

(Aj , Bj) = ( ∩
j∈J

Aj , ( ∪
j∈J

Bj)′′)

∨

j∈J

(Aj , Bj) = (( ∪
j∈J

Aj)′′, ∩
j∈J

Bj).



Example 1. Consider the finite context K = ({g1, g2, g3, g4}, {m1,m2,m3,m4},
I) represented in the tabular form in Figure 1. The lattice of all concepts in con-
text K is given in the same Figure; each element of the lattice is labelled by the
set of objects and the set of attributes which are, respectively, the extent and the
intent of the corresponding concept.

I m1 m2 m3 m4

g1 × × ×
g2 × ×
g3 ×
g4 ×

Fig. 1. A context and the corresponding concept lattice.

The procedures of computing the complete concept lattice for a given finite
context [7, 8] are one of the basic algorithms in Formal Concept Analysis. In
fact, they provide a classification of objects of a context with respect to their
attributes and allow for finding all possible classes.

If K = (G,M, I) is a context, we may speak about the truth of the following
statements on K: “all objects having attribute set B1 ⊆ M also have attributes
B2 ⊆ M”. As all properties of a context are in some sense symmetric with
respect to the sets G and M , we can formulate the similar statements about
subsets of G: “all attributes having the set A1 ⊆ G as their objects also have
the set A2 ⊆ G”. W.l.o.g. we consider the statements only of the first kind. In
fact, they define a monotone operator, an implication, on the boolean algebra of
subsets of M . If a context K is finite, then clearly the set of all such statements
true on K is also finite. Let us formalize the notion of an implication true on a
context by the definitions from Chapter 2.3 in [2].

Definition 4. An implication on a set M is an ordered pair of subsets A,B ⊆ M
denoted as A → B. The set A is called the premise and B the conclusion of the
implication A → B. A subset T ⊆ M respects an implication A → B if A 6⊆ T
or B ⊆ T . A family of subsets of M respects an implication A → B if every set
of this family respects A → B.

An implication A → B holds on a context K = (G,M, I) (notation K |=
A → B) if A,B ⊆ M and the family of sets {g′ | g ∈ G} respects A → B.



The premise of an implication A → B is said to be false on a context K =
(G,M, I) if there is no element g ∈ G such that A ⊆ g′. An implication A → B
is called a tautology if B ⊆ A.

For a context K = (G,M, I), we denote by Imp(K) the set of all implications
on M which hold on K. It is easy to verify that the tautologies and the set of
implications whose premise is false in K are subsets of Imp(K). When ambiguity
does not arise, we will use the same symbol |= to denote that a set or a family
of sets respects an implication.

Every family L of implications on a set M defines the monotone operator fL :
2M → 2M given by

fL(X) = X ∪ {B | A → B ∈ L, A ⊆ X}.

Clearly, for each X ⊆ M , it holds fL(X) = X ⇔ X |= L.

Remark 1. Let L be a family of implications on a set M . Then for each X ⊆ M ,
there exists a minimal set Y ⊆ M such that X ⊆ Y and fL(Y ) = Y .

Therefore, any family L of implications on a set M defines the operator
f̄L : 2M → 2M which for every X ⊆ M gives the minimal subset Y ⊆ M
satisfying the conditions of the remark. Clearly, for each X ⊆ M , we have
fL(X) = X ⇔ f̄L(X) = X.

Remark 2. If K = (G,M, I) is a context and A → B is an implication on M
then K |= A → B ⇔ ∀m ∈ B (K |= A → {m}).

In the following, we consider implications only of the form A → {m} and use
the notation A → m for them.

If K is a context, then for every implication A → m ∈ Imp(K), there exists
a set {A0 → m ∈ Imp(K) | A0 ⊆ A and for each A1 ⊆ A, if A1 ⊂ A0 then
A1 → m 6∈ Imp(K)}. For a context K, let us denote by MinImp(K) the set
of all implications of the form A0 → m ∈ Imp(K) in which the premise A0 is
minimal in the above mentioned sense. We note that this definition is a variant
of the notion of a law in [10–12].

Below, we give a slightly modified formulation of Proposition 20 from [2]
which is central for results in this paper.

Proposition 1. Let K = (G, M, I) be a context, T ⊆ Imp(K) be the set of
tautologies on M , and F ⊆ Imp(K) be the set of implications whose premise is
false on K. Then for every subset B ⊆ M , we have:

1. fMinImp(K)\T (B) = B ⇔ B′′ = B;
2. if B′ 6= ∅ then fMinImp(K)\{F∪T}(B) = B ⇔ B′′ = B.

It is straightforward by Definition 2 that for each context K = (G,M, I), a
subset B ⊆ M is an intent of some concept in context K iff B′′ = B. Therefore,



as soon as a context K = (G,M, I) is given, we have the set Imp(K) of all
implications which hold on K and the fixed points of the operator fMinImp(K)\T :
2M → 2M correspond exactly to the intents of the concepts of K. If we omit the
set F of implications from MinImp(K)\T whose premise is false on K then the
fixed points of fMinImp(K)\{F∪T} : 2M → 2M correspond to the intents of the
concepts of K excluding the single concept (∅,M). Because for each B ⊆ M ,
the condition B′′ 6= M obviously yields B′ 6= ∅.

3 Probabilistic concepts on classes of contexts

In Section 2, we have defined the notion of truth of an implication on a given
context. Let us now demonstrate how this notion can be generalized with a truth
valuation wrt a class of contexts. In this section, we proceed to ideas of the
method of semantic probabilistic inference in application to FCA. As described
in [10–12], the regularities on data (in particular, implications) are formalized
in this method as universal formulas of the first order language of a countable
signature consisting of predicates and constants. Thus, the standard notion of
implication defined in [2] is far more specific than the concept of regularity
on data considered in the semantic probabilistic inference (we note that there
have been studied implications in papers on FCA which also go far beyond the
definitions in [2]). However, in order to show this method useful in the case of
FCA, it will be convenient to stay within the standard algebraic definitions.
For this reason, we further present some restriction of the method of semantic
probabilistic inference in terms common in Formal Concept Analysis.

Definition 5. A class of contexts over sets G and M is a family K = {(G,M,
Ij)}j∈J 6=∅, where for each j ∈ J , the triple (G,M, Ij) is a context. We use the
notation K(G, M) for a class K of contexts over sets G and M . A probability
model of type I is a pair M = (K(G,M), ρ), where G 6= ∅ and ρ is a probability
measure on the set K satisfying the condition: ∀ S1, S2 ⊆ G×M ∀ (G,M, I) ∈ K
S1 6⊆ I or S2 ⊆ I ⇐⇒ ρ({(G,M, Ij) | S1∪S2 ⊆ Ij}) = ρ({(G,M, Ij) | S1 ⊆ Ij}).

For a subset S ⊆ G × M , we call the value of the function νM(S) =
ρ({(G,M, I) ∈ K | S ⊆ I}) the probability of the set S on M.

For brevity, in this section we call the pair (K(G,M), ρ) from the definition
above the probability model or simply, model.

Let M = (K(G,M), ρ) be a probability model and A → m be an implication
on the set M . An instantiation of A → m on the model M is a pair 〈g, A → m〉,
where g ∈ G. The value of the function

µM(〈g,A → m〉) =

{
νM( S∪{<g,m>} )

νM(S) if νM(S) 6= 0, where S = {< g, a >| a ∈ A}
undefined, otherwise

is called the probability of the instantiation 〈g, A → m〉 on the model M.



If M = (K(G,M), ρ) is a probability model and A → m is an implication on
the set M then the value of the function

ηM(A → m) =
{

undefined if ∀g ∈ G µM(〈g, A → m〉) is undefined
infg∈GµM(〈g,A → m〉), otherwise

is called the probability of the implication A → m on the model M.

Remark 3. Let M = (K(G,M), ρ) be a probability model and A → m be an
implication on the set M whose probability is defined on M. Then ηM(A →
m) = 1 iff ∀K ∈ K (A → m ∈ Imp(K)).

Definition 6. Let M = (K(G,M), ρ) be a probability model and imp(M) be
the set of all those implications on M whose probability is defined on M. We
call an implication A → m ∈ imp(M) a probabilistic law on M, if the following
conditions hold:

– ηM(A → m) 6= 0;
– if A0 → m ∈ imp(M) and A0 ⊂ A then ηM(A0 → m) < ηM(A → m).

An implication A → m ∈ imp(M) is called a maximally specific probabilistic
law on M if it is a probabilistic law on M, A 6= {m}, and there is no probabilistic
law A0 → m on M such that A ⊂ A0 and A0 → m is not a tautology.

Remark 4. If an implication is a maximally specific probabilistic law on M
then it is not a tautology.

Definition 7. Let M = (K(G, M), ρ) be a probability model and S(M) be the
set of all maximally specific probabilistic laws on M. An implication A → m ∈
S(M) is called the strongest probabilistic law on M if its probability value on
M is maximal among all implications B → m ∈ S(M). We use the notation
D(M) for the set of all strongest probabilistic laws on M.

Due to the the minor restrictions on the function ρ in the definition of the
probability model, the existence of the maximum in the sense of Definition 7
is not guaranteed. Thus, the existence of the strongest probabilistic laws is not
guaranteed either. However, we describe further in this section a way to define
a probability model (based on a finite class of finite contexts), which gives a
large class of models guaranteeing the existence of such implications. Note that
in general for a given m, there may exist several strongest probabilistic laws of
the form A → m.

Informally, every implication on a probability model can be seen as a “pre-
diction” (wrt some measure of truth) of the fact that each object having the
attributes from the premise will also have the attribute from the conclusion.
Similarly to Formal Concept Analysis (recall Proposition 1), implications in the
method of semantic probabilistic inference are directly related to the process of
grouping objects and attributes into classification units. If data are represented
by a class K of contexts then the choice of implications wrt their probability



on a model (K, ρ) becomes central for generating classes on the basis of the
provided data. The definition of a minimal implication (as given by the set
MinImp(K)), probabilistic law, maximally specific and the strongest proba-
bilistic law are adopted from the corresponding definitions in [10–12, 15] to the
case of FCA. Such implications have a number of useful theoretical and practical
properties which justify their application:

– the set of all minimal implications which hold on every context from a class
K gives, in some sense, an axiomatization of this class of contexts: the im-
plicational theory of K (restricted to implications with non-false premises)
semantically follows from it [10, 12] (the analogue of the Duquenne-Guigues
theorem on implication base [4]);

– a probabilistic law excludes the possibility that an attribute in the conclu-
sion can be “predicted” by a proper subset of the premise with probability
greater than the probability of the law itself; together with the requirement of
maximal specificity, this leads in practice to grouping attributes into smaller
classes, with greater probability [9];

– it is proved in [10, 11] that in case negative information is allowed in implica-
tions, the set of maximally specific probabilistic laws is consistent (i.e. there
can not be a situation when the presence and absence of some attribute are
“predicted” simultaneously);

– the strongest probabilistic laws lead to assigning an attribute to a class which
“predicts” it with maximal probability; at the same time, this does not rule
out situations when the same attribute can belong to different classes [14];

– the Discovery software tool is implemented which allows to find the above
mentioned types of implications on tabular data and compute the corre-
sponding object-attribute classes; this software has proved successful in a
large number of applications [5, 10, 15].

Definition 8. Let M = (K(G,M), ρ) be a probability model of type I. A pair of
sets (A, B) is called a probabilistic concept of a context (G,M, I) ∈ K in model
M if it satisfies the following conditions:

– A ⊆ G, B ⊆ M ,
– fD(M)(B) = B,
– ∃E ⊆ B (f̄D(M)(E) = B and E 6= ∅ 6= E′),
– A =

⋃{E′ | ∅ 6= E ⊆ B, f̄D(M)(E) = B},
where ′ is the operation in the context (G,M, I). The set A is called the extent
and B the intent of the probabilistic concept (A,B).

Therefore, given a probability model M = (K(G,M), ρ), the set of the fixed
points of the operator fD(M) restricts the set of all possible probabilistic concepts
of contexts from the class K in the model M.

Theorem 1. Consider a context K = (∅ 6= G,M, I) and a probability model
M = ({K}, ρ). For all non-empty subsets A ⊆ G and B ⊆ M , the pair (A,B) is
a concept in context K iff (A, B) is a probabilistic concept of context K in model
M.



Let K = {(∅ 6= G,M, Ij)}j∈J 6=∅ be a finite class consisting of finite contexts.
We now describe a natural way to define a probability model (K, ρ) on the class
K. For each context K ∈ K, we set ρ({K}) = 1/|J | and for a subset C ⊆ K
define ρ(C) =

∑
K∈C ρ({K}).

Then ρ is a discrete probability measure on K and for every S ⊆ G × M ,
we have νM(S) = |J̃ |/|J |, where J̃ is the maximal subset of J satisfying the
condition ∀j ∈ J̃ (S ⊆ Ij). It is easy to verify that (K, ρ) is indeed, a probability
model. We call a model defined in this way the frequency probability model (of
type I).

Let us illustrate the given definitions.

Example 2. Consider the sets G = {g1, g2}, M = {m1,m2,m3}, and the class
K = {(G,M, Ij)}j∈{1,2,3} consisting of three contexts given in the tabular form
below.

I1 m1 m2 m3

g1 × ×
g2 ×

I2 m1 m2 m3

g1 × ×
g2 × ×

I3 m1 m2 m3

g1 × ×
g2 × ×

Then the pairs ({g1}, {m1,m2,m3}) and ({g1, g2}, {m1,m2}) are the only prob-
abilistic concepts of the context (G,M, I1) in the frequency probability model
M = (K, ρ).

Proof. The probability measure ρ defines uniquely the value ηM(A → m) for
each implication A → m on the set M . In the tables below, we give the proba-
bility of each implication of the form A → m on M which is not a tautology.

A → m ηM(A → m)
{∅} → m1 2/3
m2 → m1 0
m3 → m1 2/3

m2,m3 → m1 0
{∅} → m2 1/3
m1 → m2 0

A → m ηM(A → m)
m3 → m2 1/3

m1,m3 → m2 0
∅→ m3 0
m1 → m3 0
m2 → m3 0

m1,m2 → m3 0

The premises of those implications which form the set D(M) of the strongest
probabilistic laws on M are written in parentheses. Let us give an example
of computing the probability of one of the implications from the table above:
ηM(m3 → m1) = infg∈G µM(〈g, m3 → m1〉) = infg∈G

νM({<g,m3>,<g,m1>})
νM({<g,m3>}) =

νM({<g1,m3>,<g1,m1>})
νM({<g1,m3>}) = 2/3, because the value of µM(〈g2, m3 → m1〉) is un-

defined due to νM({< g2,m3 >}) = 0. Note that the implication m3 → m1 is
not a probabilistic law, because there exists the implication ∅→ m1 having the
same probability on M.

Let us give the values of the operator fD(M) on the subsets B ⊆ M :



B ⊆ M fD(M)(B)
m1 m1,m2

m2 m1,m2

m3 m1,m2,m3

m1, m2 m1,m2

B ⊆ M fD(M)(B)
m1,m3 m1,m2,m3

m2,m3 m1,m2,m3

m1,m2,m3 m1,m2,m3

∅ m1,m2

Exactly two subsets B ⊆ M satisfy the condition fD(M)(B) = B, namely
the sets {m1,m2} and {m1,m2,m3}. Finally, we have:

⋃
{E′ | ∅ 6= E ⊆ {m1, m2}, f̄D(M)(E) = {m1, m2}} = {g1, g2},

⋃
{E′ | ∅ 6= E ⊆ {m1,m2,m3}, f̄D(M)(E) = {m1,m2,m3}} = {g1}.

The single subset E ⊆ {m1,m2,m3} satisfying the conditions in the definition
of a probabilistic concept is the set {m3} for which we have {m3}′ = g1.

Therefore, we conclude that ({g1}, {m1,m2,m3}) and ({g1, g2}, {m1,m2})
are the only probabilistic concepts of context (G,M, I1) in model M.

4 Probabilistic concepts on one context

In Section 3, we have considered the notion of a probability model of type I
defined on a class of contexts. In fact, every class K of contexts which allows to
define a probability measure, raises a set of probability models and thus defines
possible families of the strongest probabilistic laws. Based on such implications,
we made a “prediction” of the existence of attributes for objects in an arbitrary
chosen context from class K. Similarly to this approach, we may define the
strongest probabilistic laws on the basis of only one given context. For this, we
need only to slightly modify Definition 5 of a probability model.

Definition 9. A probability model of type II (a probabilistic context) is a pair
M = (K, ρ), where K = (G,M, I) is a context and ρ is a probability measure on
the set G satisfying the condition

∀ B, C ⊆ M (B′ ⊆ C ′ ⇔ ρ((B ∪ C)′) = ρ(B′)).

If B → m is an implication on the set M then the value of the function

ηM(B → m) =

{
ρ((B∪{m})′)

ρ(B′) if ρ(B′) 6= 0
undefined, otherwise

is called the probability of B → m on the model M.

For brevity, in this section we call the pair (K, ρ) from the definition above the
probability model or simply, model and use the notation K(G, M) for a context
K over the set of objects G and the set of attributes M .

For a finite context K = (∅ 6= G, M, I), a model M = (K, ρ) is called a
frequency probability model (of type II) if the function ρ is defined as ρ({g}) =



1/|G| for every g ∈ G and ρ(A) =
∑

g∈A ρ({g}) for each subset A ⊆ G. We
have ∀B ⊆ M (ρ(B′) = |B′|/|G|). Note that M is indeed, a model, since for all
subsets B,C ⊆ M it holds that B′ ⊆ C ′ ⇔ (B ∪ C)′ = B′ ⇔ |(B ∪ C)′| = |B′|.
Remark 5. If M = (K(G,M), ρ) is a probability model and B → m is an
implication on M then ηM(B → m) = 1 iff B → m ∈ Imp(K) and B′ 6= ∅
(where ′ is the operation in the context K).

Let us define the notions of a probabilistic law, maximally specific proba-
bilistic law, and the strongest probabilistic law on a model of type II in full
accordance with Definitions 6 and 7. In the following, we use the same notation
D(M) as in Section 3 for the set of all strongest probabilistic laws on a model
M of type II.

Proposition 2. Let M = (K(G,M), ρ) be a probability model and S ⊆ Imp(K)
be the set of all tautologies on M and all the implications whose premise is false
on K. Then we have MinImp(K) \ S ⊆ D(M).

Definition 10. Let M = (K(G,M), ρ) be a probability model of type II. A
pair of sets (A,B) is called a probabilistic concept in model M (a concept in
probabilistic context M) if it satisfies the conditions of Definition 8.

Let M = (K, ρ) be a model with K = (G,M, I). Consider the context
K = (G, M, Ī), where Ī = {< g, m > | g ∈ G, m ∈ f̄D(M)(g′)}, ′ is the
operation in the context K. In other words, we have I ⊆ Ī and the relation Ī is
obtained from I by adding the pairs < g, m > “predicted” by the implications
in D(M). To clarify the connection between the concepts in context K and
probabilistic concepts in model M, we need to note that the following statement
is false in both directions:

for all non-empty subsets A ⊆ G and B ⊆ M , the pair (A, B) is a probabilistic
concept in the model M iff (A,B) is a concept in the context K.

To prove this, it is sufficient to consider any of the contexts K1 = ({g1, g2},
{m1}, I1), K2 = ({g1, g2}, {m1,m2,m3}, I2) given below together with the
corresponding frequency probability models M1 = (K1, ρ1) and M2 = (K2, ρ2).

I1 m1

g1 ×
g2

I2 m1 m2 m3

g1 ×
g2 × ×

For these models, we have D(M1) = {∅ → m1} and D(M2) = {∅ →
m1, {m2} → m3, {m3} → m2}. Therefore, the set of all probabilistic con-
cepts in the model M1 consists of the single concept ({g1}, {m1}) and the set
{ ({g1}, {m1}), ({g2}, {m1,m2,m3}) } represents all the probabilistic concepts
in the model M2.

It is easy to check that for every j = 1, 2, the context Kj is obtained from
Kj by setting Īj = Ij ∪ {< g2,m1 >}. It remains to note that the set of all
concepts in the context K1 consists of the single pair ({g1, g2}, {m1}) and the



set { ({g1, g2}, {m1}), ({g2}, {m1,m2,m3}) } represents all the concepts in the
context K2.

Nevertheless, the following property is guaranteed which characterizes the con-
nection between concepts in a context K and probabilistic concepts in the model
M = (K, ρ).

Theorem 2. Every probability modelM = (K(G,M), ρ) has the following prop-
erties:

1. for each concept (A,B) in context K with A 6= ∅ 6= B, there exists a proba-
bilistic concept (A1, B1) in model M such that A ⊆ A1 and B ⊆ B1;

2. if (A1, B1) is a probabilistic concept in model M then there exists a concept
(A,B) in context K with ∅ 6= A ⊆ A1 and ∅ 6= B ⊆ B1. Moreover, the set
A1 is the union of the extents of some of these concepts.

Below, we give schemas of computation procedures for finding the set of
probabilistic laws and probabilistic concepts on a given frequency probability
model M = (K, ρ), where K = (G,M, I) and ∀m ∈ M ({m}′ 6= ∅).

Let S ⊆ Imp(K) be the set of all tautologies on M and all the implications
whose premise is false on the context K. For the given context K, the cardinality
of MinImp(K)\S can be exponential in the value of |G|×|M |. This follows from
Theorem 1 in [6], where the construction of the corresponding context is given.
By Proposition 2, we have MinImp(K) \ S ⊆ D(M) and by definition, the set
of all probabilistic laws on M contains D(M). For this reason, the procedure
for finding the set of probabilistic laws is based on a heuristic.

Let us introduce some auxiliary definitions. For an implication A → m on a
set M , the length of A → m is the cardinality of the set A; we use the notation
len(A → m). Call an implication A2 → m a specification of an implication
A1 → m if A2 = A1 ∪ {n}, where n ∈ M \ A1. For a family L of implications,
Spec(L) will denote the set of all possible specifications of implications from L.

The computation procedure for finding probabilistic laws is based on the con-
cepts of the semantic probabilistic inference. The main idea is to extend stepwise
the premises of implications and check the conditions in the definition of a proba-
bilistic law at each step. This implements a directed enumeration of implications
which allows to considerably reduce the search space. The reduction is achieved
due to the application of the following heuristic: when the length of the gener-
ated implications reaches a certain value (called the base enumeration depth),
the specification is applied only to those implications which are probabilistic
laws.

For simplicity, we give a schema of the computation procedure for finding
probabilistic laws of the form A → m on the model M for a chosen attribute
m ∈ M . Besides the mentioned probability model M and the element m ∈
M , the additional input parameter of the procedure is the value d of the base
enumeration depth, with 1 6 d 6 |M |. The output of the procedure is the



set of the probabilistic laws found on the model M with the element m in the
conclusion.

At step k = 0, the set imp(M)(k) of implications is generated which consists
of the single implication of zero length of the form R = ∅ → m. For the impli-
cation R, the conditions on a probabilistic law in the Definition 6 are verified.
Denote the set of all probabilistic laws computed at step k of the computation
procedure by REG

(k)
M (m). If R is a probabilistic law then REG

(0)
M (m) = {R}.

Else, we have REG
(0)
M (m) = ∅ and the procedure returns the empty set. Indeed,

in this case we have ηM(∅ → m) = 0 and, by the definition of the model M,
the probability of each implication of the form B → m is either undefined, or
equals zero on M. This means that no such implication can be a probabilistic
law on M.

At step 1 6 k 6 d, the set imp(M)(k) of specifications is computed for
all implications obtained at the previous step whose probability is defined and
not equal to zero or one: imp(M)(k) = Spec({R | R ∈ imp(M)(k−1), 0 <
ηM(R) < 1}). Each implication in this set is of length k. For every implication
from imp(M)(k) the conditions in the definition of a probabilistic law are verified
and thus the set REG

(k)
M (m) is formed.

At step d < k 6 |M |, the set imp(M)(k) of specifications is computed for
all implications obtained at the previous step having a probability less than 1:
imp(M)(k) = Spec({R | R ∈ REG

(k−1)
M (m), ηM(R) < 1}). For each of the

obtained implications the conditions in the definition of a probabilistic law are
verified and thus the set REG

(k)
M (m) is formed. The execution of the computation

procedure ends either on the step k = |M |, or in case at some step d < k < |M |
no probabilistic laws are obtained, i.e. when REG

(k)
M (m) = ∅. The resulting set

of the probabilistic laws for the attribute m returned by the procedure is the
union

⋃
k REG

(k)
M (m).

To select the strongest (wrt the input parameters) probabilistic laws from
the set of the computed implications, it suffices to directly verify the conditions
of Definition 7.

The steps k 6 d of the procedure are called base enumeration steps and those
for k > d are called additional enumeration steps. As proved by experiments, the
base enumeration depth of value d 6 3 suffices in a large number of applications.
In practice, the inequalities in Definition 6 are verified with respect to a statistical
criterion (e.g., Fisher’s exact test for contingency tables) which is applied with
a user defined confidence level α.

Let L be a non-empty set of probabilistic laws on the model M. Note that
in case L is the output of the above given procedure for base enumeration depth
d = |M |, we have L = D(M).

Let us describe an iterative procedure for finding probabilistic concepts in
model M with respect to the family L of implications.
At step k = 1 the following set is generated: C(1) = {f̄L(A∪{m}) | A → m ∈ L}.



At step k > 1, in case C(k−1) = ∅, the procedure returns the list of all the
computed probabilistic concepts. Otherwise, for each B ∈ C(k−1), having the
family of implications LB = {A → m ∈ L | A ⊆ B}, the set A = {g ∈ G |
g′ ∩ B 6= ∅, fLB (g′ ∩ B) = B} is computed. If A 6= ∅ then the pair (A, B)
is added to the list of the computed probabilistic concepts. Further, the set
C(k) = {f̄L(B ∪ C) | B,C ∈ C(k−1), f̄L(B ∪ C) 6∈ C(k−1)} is generated and the
next iteration is executed. The description of the procedure is complete.

Example 3. Consider the contexts K1 and K2 given in Figure 2. The concepts in
context K1 having a non-empty extent and intent are the pairs ({g1, . . . , g20}, {m1,
. . . , m5}) and ({g21, . . . , g40}, {m6, . . . , m10}). The context K2 was obtained
from K1 by adding a random noise. The task was to recover the initial concepts
in context K2. With the given algorithms, the set of the strongest probabilistic
laws on the frequency model M = (K2, ρ) was computed; it consisted of 22
implications. The set of probabilistic concepts in model M turned out to be
equal to the set of concepts in the initial context K1 with non-empty extents
and intents.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10
g1 × × × × ×
g2 × × × × ×
g3 × × × × ×
g4 × × × × ×
g5 × × × × ×
g6 × × × × ×
g7 × × × × ×
g8 × × × × ×
g9 × × × × ×

g10 × × × × ×
g11 × × × × ×
g12 × × × × ×
g13 × × × × ×
g14 × × × × ×
g15 × × × × ×
g16 × × × × ×
g17 × × × × ×
g18 × × × × ×
g19 × × × × ×
g20 × × × × ×
g21 × × × × ×
g22 × × × × ×
g23 × × × × ×
g24 × × × × ×
g25 × × × × ×
g26 × × × × ×
g27 × × × × ×
g28 × × × × ×
g29 × × × × ×
g30 × × × × ×
g31 × × × × ×
g32 × × × × ×
g33 × × × × ×
g34 × × × × ×
g35 × × × × ×
g36 × × × × ×
g37 × × × × ×
g38 × × × × ×
g39 × × × × ×
g40 × × × × ×

K1

m1 m2 m3 m4 m5
g1 × × × × ×
g2 × × × × ×
g3 × × × × ×
g4 × × × × ×
g5 × × × ×
g6 × × × × ×
g7 × × × ×
g8 × × × × ×
g9 × × × ×

g10 × × × ×
g11 × × × ×
g12 × × × ×
g13 × × × × ×
g14 × × × × ×
g15 × × × × ×
g16 × × × × ×
g17 × × × ×
g18 × × × × ×
g19 × × × × ×
g20 × × × × ×

m6 m7 m8 m9 m10
×

×
×

×

×

×

×
×

×
×

×
×

×
g21
g22
g23
g24 ×
g25 ×
g26
g27
g28
g29
g30
g31 ×
g32 ×
g33 ×
g34 ×
g35
g36 ×
g37 ×
g38
g39 ×
g40 ×

× × × ×
× × × ×
× × × ×
× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×

× × × ×
× × × ×

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × ×
× × × × ×
× × × × ×
× × × ×
× × × × ×
× × × × ×

K2

Fig. 2. Recovering concepts in the presence of noise.



5 Conclusions

It easy to note from Definition 5 and 9 that the distinction between the prob-
ability model of type I and II is rather subtle. In particular, for each model
M2 = (K, ρ2) of type II with K = (∅ 6= G,M, I), it is possible to define a
model M1 = (K, ρ1) of type I such that D(M1) = D(M2). It suffices to set
K = {Kg | g ∈ G, Kg = ({h}, M, Ig), Ig = {< h,m >|< g, m >∈ I}} and define
∀ C ⊆ K ρ1(C) = ρ2({g | Kg ∈ C}). Then for every implication B → m on M ,
we have ηM1(B → m) = µM1(〈h,B → m〉) = ρ1({Kg|{<h,n>|n∈B∪{m}}⊆Ig})

ρ1({Kg|{<h,n>|n∈B}⊆Ig}) =
ρ2((B∪{m})′)

ρ2(B′)
and thus ηM1(B → m) = ηM2(B → m) which clearly, yields

D(M1) = D(M2). However, it is important in practice to make a distinction
between the analysis of data represented by a class of contexts and analysis of
data on the basis of a single given context. In the first case, we have a problem of
classification of objects which are observed in a number of experiments in which
every object is assigned a certain set of attributes. In the second case, the classi-
fication of objects is based on a single context which represents the whole body
of experimental data on these objects. A context uniquely determines whether
an object has a particular attribute and Formal Concept Analysis provides tools
for building precise classification of objects on the basis of a given context. On
the other hand, discovering probabilistic laws on a model over a given context
allows to obtain classification units which are stable with respect to noise.

Example 3 demonstrates that the noise of a certain level does not change the
set of concepts in a context, i.e. the set of concepts with a non-empty extent and
intent in a given context is equal to the set of probabilistic concepts in a new
context obtained by adding noise into the initial one. There exist types of noise
(a formal definition is given in [10]) such that any level of a noise of this kind
does not change the set of concepts in a context; such noise is called concept
preserving [10]. This raises the problem of characterization of these types of
noise.

In the definitions of implications and probabilistic laws in this paper, the
notion of negation was not present. Due to this, the formulation of Theorem
2 appeared to be weaker than expected. This is because the negation was not
present in the fundamentals of Formal Concept Analysis and we aimed at giving
the most simple generalization of the basic notions of this method. The general-
ization of FCA according to the given ideas will allow to formalize the notions
of “natural classification” and “idealization” as defined in [10, 13]. The semantic
probabilistic inference which is central in the definitions of probabilistic concepts
has been first introduced for first order logic and provides a method for discov-
ering rather complicated regularities on data in comparison to those considered
in this paper. Moreover, in the relational approach described in monographs [5,
10], it is argued that the formalization of regularities in the language of first
order logic is essential for analyzing the whole body of information contained in
data. Some examples of such regularities are given at the Web page [15] at

http://math.nsc.ru/AP/ScientificDiscovery/pages/Examples of rules.html
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6 Appendix

Proofs for Section 2

Remark 1. Let L be a family of implications on a set M . Then for each X ⊆ M ,
there exists a minimal set Y ⊆ M such that X ⊆ Y and fL(Y ) = Y .

Proof. Consider the following straightforward inductive process of building ex-
tensions of a set X ⊆ M . First, set X0 = X. If a set Xi is constructed then we
define Xi+1 = fL(Xi). Finally, we take Y =

⋃
i∈ω Xi.

Proposition 1. Let K = (G, M, I) be a context, T ⊆ Imp(K) be the set of
tautologies on M , and F ⊆ Imp(K) be the set of implications whose premise is
false on K. Then for every subset B ⊆ M , we have:

1. fMinImp(K)\T (B) = B ⇔ B′′ = B;
2. if B′ 6= ∅ then fMinImp(K)\{F∪T}(B) = B ⇔ B′′ = B.

Proof. Let us first demonstrate that for every subset B ⊆ M , we have fImp(K)(B)
= B iff fMinImp(K)(B) = B. If fImp(K)(B) ⊃ B for some B then (with Remark
2) there is an implication A → m ∈ Imp(K) such that A ⊆ B, but m 6∈ B. Then
there exists A0 → m ∈ MinImp(K) with A0 ⊆ A and thus, A0 ⊆ B, m 6∈ B,
and fMinImp(K)(B) ⊃ B, a contradiction. The reverse direction of the claim is
obvious, since MinImp(K) ⊆ Imp(K).

Similarly, it is not hard to verify that fMinImp(K)\L(B) = B ⇔ fImp(K)\L(B)
= B, where L = T or L = F ∪ T . This follows from the fact that for each
implication A → m on M and every subset A0 ⊆ A, the condition A → m 6∈ T
yields A0 → m 6∈ T . On the other hand, by Lemma 1, it follows from A′ 6= ∅
that A′0 6= ∅. Therefore, we will prove the both claims of the proposition with
respect to the set Imp(K), instead of MinImp(K).

1.⇐: Assume B′′ = B, A1 → A2 ∈ Imp(K)\T , and A1 ⊆ B. We demonstrate
that A2 ⊆ B. For each g ∈ B′, we have g′ ⊇ A2, because g′ ⊇ B′′ = B by Lemma
1 and implication A1 → A2 holds on K. Therefore,

⋂{g′ | g ∈ B′} ⊇ A2. On
the other hand,

⋂{g′ | g ∈ B′} = B′′ and since B′′ = B, we obtain B ⊇ A2.
1.⇒: By Lemma 1, in any case we have B′′ ⊇ B, so let us assume that

fImp(K)\T (B) = B, but B′′ 6⊆ B. Then B 6|= B → B′′ 6∈ T and it is sufficient to
demonstrate B → B′′ ∈ Imp(K) to obtain contradiction.

a) If B′ = ∅ then this obviously holds, since there is no g ∈ G such that
B ⊆ g′, i.e. the premise of the implication is false on K.

b) Let B′ 6= ∅; we need to show that ∀g ∈ G (B ⊆ g′ ⇒ B′′ ⊆ g′). Clearly
∀g ∈ G (B ⊆ g′ ⇔ g ∈ B′) and, by Lemma 1, we have ∀g ∈ B′ (B′′ ⊆ g′).
Therefore, if B ⊆ g′ for some g ∈ G then B′′ ⊆ g′, i.e. B → B′′ ∈ Imp(K).
Moreover, B → B′′ ∈ Imp(K) \ F , because B′ 6= ∅.

2. The sufficiency follows from the proof of claim 1, since the condition
fMinImp(K)\T (B) = B clearly, yields fMinImp(K)\{F∪T}(B) = B. The neces-
sity is proved by item b above.



Proofs for Section 3

Remark 3. Let M = (K(G,M), ρ) be a probability model and A → m be an
implication on the set M whose probability is defined on M. Then ηM(A →
m) = 1 iff ∀K ∈ K (A → m ∈ Imp(K)).

Proof. ⇒: The condition ηM(A → m) = 1 means that for each g ∈ G, the value
of µM(〈g, A → m〉) is either undefined, or equals 1. Thus, for each g ∈ G and
every context K ∈ K, by the definitions of µM and ρ, we have A 6⊆ g′ or m ∈ g′.
This means that ∀K ∈ K (A → m ∈ Imp(K)).

⇐: Assume that ηM(A → m) < 1. Then there is g ∈ G such that the value of
µM(〈g,A → m〉) is defined and strictly less than 1. Then there exists a context
K ∈ K in which A ⊆ g′ and m 6∈ g′, but this means that A → m 6∈ Imp(K).

Theorem 1. Consider a context K = (∅ 6= G,M, I) and a probability model
M = ({K}, ρ). For all non-empty subsets A ⊆ G and B ⊆ M , the pair (A,B) is
a concept in context K iff (A, B) is a probabilistic concept of context K in model
M.

Proof. Let S ⊆ Imp(K) be the set of all tautologies on M and all the implica-
tions whose premise is false on the context K. We demonstrate that MinImp(K)\
S = D(M).

⊆: Consider an arbitrary implication A → m ∈ MinImp(K) \ S. By the
definition of M, for each subset S ⊆ G × M , we have ρ(S) = 0 iff S 6⊆ I. As
the premise A is not false on K, we conclude that the probability of A → m is
defined on M and, by Remark 3, we obtain ηM(A → m) = 1. Due to minimality
of A, every implication A0 → m with A0 ⊂ A does not hold on K. Besides,
A0 is not false on K, since A is not false on K. It follows from Remark 3
that ηM(A0 → m) = 0 and thus, A → m is a probabilistic law on M. Since
ηM(A → m) = 1 and m 6∈ A, we conclude that A → m ∈ D(M).

⊇: By the definition of M, we have ∀S ⊆ G ×M ρ(S) ∈ {0, 1}, hence, for
every implication A → m ∈ D(M), by the definition of a probabilistic law, we
obtain ηM(A → m) = 1. Then, due to the definition of µM, the premise A is
not false on K and by Remark 3 and 4, we obtain that A → m ∈ Imp(K) \ S.
Assume there exists an implication A0 → m ∈ Imp(K) such that A0 ⊂ A. Then
A0 → m ∈ Imp(K)\S and ηM(A0 → m) = 1, but this contradicts the condition
that A → m is a probabilistic law on M; thus, A → m ∈ MinImp(K) \ S.

Let (A,B) be a probabilistic concept of context K in model M. To show that
(A,B) is a concept in context K it is sufficient to verify that A′ = B and B′ = A.
Consider the set C = {E ⊆ B | f̄D(M)(E) = B, E 6= ∅ 6= E′}; it is non-empty by
the definition of a probabilistic concept. For each E ∈ C, due to f̄D(M)(E) = B
and the proved above, there exists an implication E → B ∈ Imp(K). Then
B′ 6= ∅ and since fD(M)(B) = B, by point 2 of Proposition 1, we obtain
B′′ = B. Moreover, it follows from E → B ∈ Imp(K) that for each g ∈ E′

we have g′ ⊇ B. This means that for every g ∈ ⋃{E′ | E ∈ C} = A, we have
g′ ⊇ B and thus, A ⊆ B′. On the other hand, for each E ∈ C, the condition



E ⊆ B yields B′ ⊆ E′, hence, B′ ⊆ ⋃{E′ | E ∈ C} = A. Therefore, we have
A = B′ which together with the condition B′′ = B gives A′ = B.

Let (A,B) be a concept in context K where A and B are non-empty sets.
We show that (A,B) is a probabilistic concept of context K in model M. As
A 6= ∅, B′ = A, we have B′ 6= ∅ and since B′′ = B, by point 2 of Proposition
1 and the proved above, we obtain fD(M)(B) = B. It remains to verify that
A =

⋃{E′ | E ∈ C}, where C = {E ⊆ B | E 6= ∅, f̄D(M)(E) = B}, since
clearly B ∈ C. We have

⋃{E′ | E ∈ C} ⊇ B′ = A. On the other hand, if
g ∈ ⋃{E′ | E ∈ C} then there exists E ∈ C such that g ∈ E′ and thus,
g′ ⊇ E. As f̄D(M)(E) = B, we have E → B ∈ Imp(K), hence g′ ⊇ B and
g ∈ B′ = A. Thus, all the conditions in the definition of a probabilistic concept
are fulfilled.

Proofs for Section 4

Remark 5. If M = (K(G,M), ρ) is a probability model and B → m is an
implication on M then ηM(B → m) = 1 iff B → m ∈ Imp(K) and B′ 6= ∅
(where ′ is the operation in the context K).

Proof. If ηM(B → m) = 1 then ρ(B′) 6= ∅ and thus B′ 6= ∅, i.e. the premise B
is not false on K. On the other hand, this condition means that ρ((B∪{m})′) =
ρ(B′), hence, B′ ⊆ {m}′ which is equivalent to B → m ∈ Imp(K). The same
argument proves the claim in the reverse direction.

Proposition 2. Let M = (K(G,M), ρ) be a probability model and S ⊆ Imp(K)
be the set of all tautologies on M and all the implications whose premise is false
on K. Then we have MinImp(K) \ S ⊆ D(M).

Proof. For each implication B → m ∈ MinImp(K) \ S, it holds that B′ 6= ∅,
hence, by Remark 5, we obtain ηM(B → m) = 1. The condition of maximal
probability for B → m is satisfied and obviously, there can not exist a proba-
bilistic law B1 → m on M with B ⊂ B1. Besides, the implication B → m is
itself a probabilistic law, because, by the condition B → m ∈ MinImp(K) \ S
and Remark 5, for every subset B0 ⊂ B we have ηM(B0 → m) < 1. Thus, all
the conditions in the definition of the strongest probabilistic law are satisfied
and B → m ∈ D(M).

Theorem 2. Every probability model M = (K(G,M), ρ) has the following prop-
erties:

1. for each concept (A,B) in context K with A 6= ∅ 6= B, there exists a proba-
bilistic concept (A1, B1) in model M such that A ⊆ A1 and B ⊆ B1;

2. if (A1, B1) is a probabilistic concept in model M then there exists a concept
(A,B) in context K with ∅ 6= A ⊆ A1 and ∅ 6= B ⊆ B1. Moreover, the set
A1 is the union of the extents of some of these concepts.



Proof. 1. Let S ⊆ Imp(K) be the set of all tautologies on M and all the implica-
tions whose premise is false on K. As (A,B) is a concept in context K, we have
B′′ = B, B′ = A 6= ∅ and by Proposition 1, we obtain fMinImp(K)\S(B) = B.

By Proposition 2, the following inclusion holds: MinImp(K) \ S ⊆ D(M).
Besides, for all families L1 and L2 of implications on M and any subset B ⊆ M ,
if L1 ⊆ L2 then f̄L1(B) ⊆ f̄L2(B); therefore, we have B ⊆ f̄D(M)(B). Denote
B1 = f̄D(M)(B), C = {E ⊆ B1 | f̄D(M)(E) = B1, E 6= ∅ 6= E′}, and A1 =
∪{E′ | E ∈ C}. Then obviously, f̄D(M)(B1) = B1. Note that B ∈ C, A = B′,
and B′ ⊆ A1, thus, we have A ⊆ A1 and (A1, B1) is the required probabilistic
concept in M.

2. Consider the set C = {E ⊆ B1 | f̄D(M)(E) = B1, E 6= ∅ 6= E′} and an
arbitrary E ∈ C. We have MinImp(K)\S ⊆ D(M), so f̄MinImp(K)\S(E) ⊆ B1.
Denote B = f̄MinImp(K)\S(E); then clearly, f̄MinImp(K)\S(B) = B. Besides,
it follows from E 6= ∅ 6= E′ that B 6= ∅ 6= B′, hence, by Proposition 1,
we obtain B′′ = B. On the other hand, we have E ⊆ B, thus, E′ ⊇ B′ and
A1 = ∪{E′ | E ∈ C} ⊇ B′. We conclude that (B′, B) is the required concept in
context K.

Note that the condition B = f̄MinImp(K)\S(E) yields E → B ∈ Imp(K)
which is equivalent to E′ ⊆ B′; therefore, we obtain E′ = B′. Because of the
arbitrary selection of the set E ∈ C and the condition A1 = ∪{E′ | E ∈ C}, we
conclude that A1 is the union of the extents of some concepts (A,B) in context
K with ∅ 6= B ⊆ B1.


