
POLYNOMIAL APPROXIMATIONS

FOR MODEL CHECKING

(Extended abstract of a SHORT TALK)

N. V. Shilov1,2, N. O. Garanina2

1 Visiting Erskine Fellow, University of Canterbury, Christchurch, New Zealand
e-mail: nikolai.shilov@cosc.canterbury.ac.nz

2 Institute of Informatics Systems, Novosibirsk, Russia,
e-mail: shilov@iis.nsk.su

Key words: µ-Calculus, model checking, complexity.

Abstract. The µ-Calculus of D.Kozen (1983) is a very powerful propo-
sitional program logic with fixpoints. It is widely used for specification
and verification. Model checking is a very popular automatic approach
for verification of specifications of finite state systems. The most effi-
cient algorithms that have been developed so far for model checking
the µ-Calculus in finite state systems have exponential upper bounds.
A.Emerson, C.Jutla, and P.Sistla studied (1993) the first fragment of the
µ-Calculus that permits arbitrary nesting and alternations of fixpoints,
and polynomial model checking in finite state systems. In contrast we
study lower and upper approximations for model checking that are com-
putable in polynomial time, and that can give correct semantics in finite
models for formulae with arbitrary nesting and alternations. A.Emerson,
C.Jutla, and P.Sistla proved also that the model checking problem for the
µ-Calculus in finite state systems is in NP∩co-NP . We develop another
proof (that we believe is a new one) as a by-product of our study.

1 Preliminaries

The µ-Calculus of D.Kozen (µC) [8] is a very powerful propositional program
logic with fixpoints. It is widely used for specification and verification of proper-
ties of finite state systems[2]. Due to this reason we restrict ourself in this paper
by finite state systems also. Please refer to [9] for the elementary introduction
to µC. The comprehensive definition of µC can be found in a recent textbook
[1].)

The syntax of µC is constructed from two disjoint alphabets of propositional
variables (Prp) and action symbols (Act). It consists of formulae: φ::= (¬φ)|
(φ∧ψ)| 〈a〉φ| ([a]φ)| (µp.φ)| (νp.φ), (p ∈ Prp, a ∈ Act, no negative instances
of bounded variables). The semantics of µC is defined in models. A model is a
triple (D,R, V), where the domain D is a non-empty set, the interpretation R

is a total mapping R : Act → 2D×D, the valuation V is another total mapping
V : Prp → 2D. In every modelM = (D,R, V), for every formula φ, the semantics

M(φ) is a subset of the domain D that is defined by induction by the formula
structure.

A propositional variable is said to be a propositional constant in a formula
iff it is free in the formula. A formula is said to be in a normal form iff negation
is applied to propositional constants in the formula only. Due to standard De
Morgan laws and duality of [] and 〈〉, µ and ν, every formula of µC is equivalent
to some formula in the normal form that can be constructed in polynomial time.

Let us extend µC by some new features: total S5 modalities 2 and 3, and
second order (SO) quantifiers ∀ and ∃. The syntax: φ ::= µC | (2φ) | (3φ)
| (∀ p. φ) | (∃ p. φ). The semantics:

– M(2ψ) =

{
D, if M(ψ) = D

∅ otherwise
, M(3ψ) =

{
D, if M(ψ) 6= ∅
∅ otherwise

,

– M(∀p.ψ) = the greatest lower bound of
{
MS/p(ψ) : S ⊆ D

}
,

M(∃p.ψ) = the least upper bound of
{
MS/p(ψ) : S ⊆ D

}
,

where ψ, p range over formulae and propositional variables, and MS/p denotes
the model that agrees with M everywhere but p: VS/p(p) = S.

We also use a variation of the following classical theorem of R. Fagin [5].
(Please refer to [6] for the elementary introduction to descriptive complexity in
general and Fagin theorem in particular. For further details refer to [7].)

A set SET of finite structures is in NP iff there exists a first-order

formula FRM that SET = {STR : STR |= (∃P1...∃Pm FRM)}, where

P1, ... Pm are predicate symbols in FRM .

The theorem implies that for every first-order formula FRM the following set of
finite structures {STR : STR |= (∀P1...∀Pm FRM)} is in co-NP . We generalize
this claim a little bit.

Assume FRM be a first-order formula with predicate symbols P1, ... Pm and
Q1, ... Qn. Assume also that we are interested in finite structures STR where
interpretations of Q1, ... Qn are some explicit second-order functions G1, ... Gn
of interpretations of P1, ... Pm. In this case we say that FRM is a first-order
formula with predicate symbols P1, ... Pm and second-order functions G1, ... Gn.

Proposition1. For all predicate symbols P1, ... Pm, for every first-order for-

mula FRM with predicate symbols P1, ... Pm and some second-order functions,

the following set of finite structures { STR : STR |= (∀P1...∀Pm FRM)} is

in co-NP provided that all used second-order functions are computable in time

polynomial on the structure size.

2 Upper Bound

The model checking problem for the propositional µ-Calculus in finite state
systems is to decide the following set

{
(φ,M, s) : φ is a µC formula, M is a

finite model, and s ∈ M(φ)
}
. The best known complexity class for the model

checking problem for µC in finite models is NP∩co-NP [4]. (It is not known

whether the problem is (in)complete in any of NP and co-NP .) A new proof
for this upper bound is sketched below.

Proposition 2.

– For every propositional variable p, every µC+S5 formula θ in the normal

form, and every its subformula (µp.φ) that is not nested within the scope of

other µ or ν, the following is a tautology: θ ↔
(

∀p.
(
2(φ → p) → θ

p
(µp.φ)

))

.

– For every propositional variable q, every µC+S5 formula θ in the normal

form, and every its subformula (νq.ψ) that is not nested within the scope of

other µ or ν, the following is a tautology: θ ↔
(

∃q.
(
2(q → ψ) ∧ θq(νq.ψ)

))

.

(Here and throughout the paper → and ↔ stay for standard abbreviations for
implication and equivalence, XY

Z is the formula obtained by substituting Y for
all occurrences of Z in X.)

A formula is said to be in the special prefix form iff it looks as follows:

(?) ∀pn. ∃qn. ... ∀p1. ∃q1.
︸ ︷︷ ︸

n times(

2(φ1 → p1) →
(

2(q1 → ψ1) ∧
(
...(2(φn → pn) → (2(qn → ψn) ∧

︸ ︷︷ ︸

n times

θ))...
))

)

where n is some integer, all formulae θ, φ1, ψ1, ..., φn, ψn are quantifier- and
fixpoint-free, and without any instance of any of propositional variables p1, q1,
... pn, qn under negations.

Corollary 3. Every formula of the µ-Calculus is equivalent to some formula in

the special prefix form that can be constructed in polynomial time.

In the following proposition we use symbols of second order functions that
are interpreted in models by second order functions on sets of states. We intro-
duce these symbols and functions for Skolemization of existential quantifiers in
formulae that are in the special prefix forms.

Proposition 4. Let ξ be an arbitrary formula in the special prefix form (?). Let

gn, ... g1 be disjoint symbols of second order functions of 1, ... n arguments

respectively. For every model M there exist total second order functions on sets

of states Gn : (2D)1 → 2D, ... G1 : (2D)n → 2D, with values computable in

polynomial time, that the following equality holds:

M(ξ) = M(G1/g1)...(Gn/gn)

(

∀p1. ... ∀pn.

(

2
(∧i=n

i=1 (φi → pi)
)

→ θ)
)gn(pn)...g1(p1,...pn)

qn...q1

)

.

In combination with proposition 1, it implies the following theorem.

Theorem 5. The model checking problem for the propositional µ-Calculus in

finite models is in NP∩co-NP.

3 Approximating Model Checking

The most efficient algorithms that have been developed so far for model checking
the µC in finite models have exponential upper bounds (ex., [3]). A.Emerson,
C.Jutla, and P.Sistla studied the first fragment of the µ-Calculus that permits
arbitrary nesting and alternations of fixpoints, and polynomial model checking
in finite state systems [4]. The fragment comprises the formulae in the normal
form where only closed subformulae can occur in the range of box [] and at most
one conjunct in every conjunction ∧ is not a closed formula.

We suggest another ”fragment” that enjoys polynomial model checking in
finite models in spite of nesting and amount of alternations. In contrast to the
syntactical definition of the above fragment, the new one has a computational
characterization. It exploits a polynomial approximation algorithm presented
below. The algorithm calculates lower and upper approximations for semantics of
formulae in finite models. If for some formula in some model both approximations
are equal, then the algorithm succeeds in calculation of semantics of the formula
in the model.
Input a formula φ of µC and a finite model M .
Preprocessing. Convert φ into the equivalent normal form and then into the
equivalent special prefix form (see ?). Let two vectors of formulae Φ = (φ1, ...φn)
and Ψ = (ψ1, ...ψn) collect all φ’s and ψ’s in ξ.
Let P j = (P j1, ...P

j
n) and Qj = (Qj

1
, ...Qj

n
) (where j ≥ 0) be vectors of disjoint

variables for sets of states.
Let P

k
= (P

k

1 , ...P
k

n) and Q
k

= (Q
k

1 , ...Q
k

n) (where k ≥ 0) be some other
vectors of disjoint variables also for sets of states.
Let j := 0 and k := 0, Q0 := (∅, ...∅) and P 0 := (D, ...D).
Processing.
Repeat
P j := the least fixpoint of λSn...S1 .

(
M(Qj

n
/qn)...(Qj

1
/q1)(Sn/pn)...(S1/p1)(Φ)

)
,

Qj+1 := the greatest fixpoint of λSn...S1 .
(
M(Sn/qn)...(S1/q1)(P j

n
/pn)...(P j

1
/p1)(Ψ)

)
,

j := j + 1 until Qj = Qj−1.

Repeat chemu ravno Q
k

i ???

P
k

:= the least fixpoint of λSn...S1 .
(
M

(Q
k

n/qn)...(Q
k

1
/q1)(Sn/pn)...(S1/p1)

(Φ)
)
,

Q
k+1

:= the greatest fixpoint of λSn...S1.
(
M

(Sn/qn)...(S1/q1)(P
k

n/pn)...(P
k

1
/p1)

(Ψ)
)
,

k := k + 1 until Q
k

= Qk−1.
Let j := j − 1 and k := k − 1.
Output two sets of states: M(φ) ≡ M(Qj

n
/qn)...(Qj

1
/q1)(P j

n
/pn)...(P j

1
/p1)(θ) and

M(φ) ≡ M
(Q

k

n/qn)...(Q
k

1
/q1)(P

k

n/pn)...(P
k

1
/p1)

(θ).

Proposition6. For every formula φ of the propositional µ-Calculus, and for

every finite Kripke model M , the approximation algorithm returns lower and

upper bounds for semantics of the formula in the model: M(φ) ⊆M(φ) ⊆M(φ).

It implies the following theorem.

Theorem 7. For every formula φ of the propositional µ-Calculus, and for every

finite Kripke model M , if M(φ) = M(φ) then M(φ) = M(φ) = M(φ).

Let us give an example of the formula that is in the proposed fragment:

FAIR ≡ νq .

(

[a]q ∧
(

µp.
(
r ∨ [a]p

))
)

. The formula holds in finite models on

those states where the propositional constant r holds infinitely often along every
infinite a-path that starts from these states. The formula FAIR does not belong
to the fragment of A.Emerson, C.Jutla, and P.Sistla, and we do not know whether
FAIR is equivalent to some formula in the fragment of A.Emerson, C.Jutla, and
P.Sistla.

Let us remark also that our ”fragment” has no restrictions on nesting and al-
ternations. For every n ≥ 1 the formula (µx1.νy1. ...(µxn.νyn.(

∧i=n
i=1 (xi∧yi)))...)

belongs to the ”fragment”, it has (2 × n − 1) alternations of fixpoints and the
nesting level 2 × n.

The Model Checker that utilizes the approximation algorithm is in process
of implementation. It outputs the upper and lower approximations of semantics
of the input formulae in the input finite models (that sometimes are their exact
semantics). An experimental and theoretical study of its utility is a topic for the
further research. In our theoretical studies we hope to develop some syntacti-
cal conditions for input formulae and easy-to-check semantic conditions for input
models that guarantee that the approximation algorithm calculates the exact se-
mantics. At present we can prove a very simple claim of this kind: the algorithm
calculates exact semantics in finite models for all µC formulae without alterna-
tions; in particular, it is correct model checking algorithm for the Computation
Tree Logic (CTL [2]). In our experimental research we hope to demonstrate an
utility of both lower and upper approximations in practical program and system
verification.

Acknowledgement: We would like to thanks anonymous reviewers for com-
ments and suggestions. Unfortunately we are unable to provide all proof within
this extended abstract due to space limitations. But all proofs and the full-body
version of the paper are available upon request.

References

1. Arnold A. and Niwinski D. Rudiments of µ-calculus. North Holland, 2001.

2. Clarke E.M., Grumberg O., Peled D. Model Checking. MIT Press, 1999.
3. Cleaveland R., Klain M., Steffen B. Faster Model-Checking for Mu-Calculus. Lec-

ture Notes in Computer Science, v.663, 1993, p.410-422.

4. Emerson E.A., Jutla C.S., Sistla A.P. On model-checking for fragments of Mu-

Calculus. Lecture Notes in Computer Science, v.697, 1993, p.385-396.

5. Fagin R. Generalized First-Order Spectra and Polynomial-Time Recognizable Sets.

Complexity of Computations, SIAM-AMS Proc., v.7, 1974, p.27-41.

6. Immerman N. Descriptive Complexity: A Logician’s Approach to Computation.

Notices of the American Mathematical Society, v.42, n.10, 1995, p.1127 - 1133.
7. Immerman N. Descriptive Complexity. 1999, Springer-Verlag

8. Kozen D. Results on the Propositional Mu-Calculus. Theoretical Computer Science,
v.27, n.3, 1983, p.333-354.

9. Shilov N.V., Yi K. How to find a coin: propositional program logics made easy.

The Bulletin of the European Association for Theoretical Computer Science, v.75,
2001, p.127-151.

This article was processed using the LATEX macro package with LLNCS style

