
Experimenting with Alias Calculi
for a Simple Imperative Language
with Decidable Pointer Arithmetic

(A talk for ruSTEP —

https://persons.iis.nsk.su/en/ruSTEP.)

Niolay V. Shilov and Leonid I. Lygin

Innopolis University

October 7, 2021

1/52

Outline

Introduction

Programming Language MoRe

Memory Leak Calculus for MoRe

Implementation and Testing

Conclusion

References

2/52

Calculi story in brief

The first Calculus
Alias calculus was proposed by Bertrand Meyer in 2011 in
• Meyer B. Steps Towards a Theory and Calculus of Aliasing.

International Journal of Software and Informatics, special issue
(Festschrift in honor of Manfred Broy), 2011., pp. 77-115.

for a model programming language with a single data type for
abstract pointers. This original calculus is a set-based formalism
insensitive to the control flow; it is a set of syntax-driven rules how to
compute an upper approximation aft(S,P) for aliasing after the
execution of a program P for a given initial aliasing S.

3/52

Calculi story in brief

Further Progress with the Calculus
The main focus of the original Alias Calculus was object-oriented
programs, with further developments not on the calculus itself, but
rather on additional tooling to provide a whole software verification
framework
• Kogtenkov A., Meyer B., and Velder S.Alias calculus, change

calculus and frameinference.Science of Computer Programming,
vol.97, 2015, pp. 163-172.

4/52

Calculi story in brief

The most recent Progress with the Calculus
The most recent development here is the AutoAlias tool, presented
by
• Rivera V, and Meyer B.AutoAlias: Automatic Variable-Precision

Alias Analy-sis for Object-Oriented Programs. SN Computer
Science, vol. 1, n.12, 2020

which introduces variable-precision aliasing analysis, meaning you can
adjust your precision level depending on your needs (whether you
need “fast and dirty” or “slow and accurate”).

5/52

Calculi story in brief

MoRe Calculus
In 2014 by N. Shilov, A. Satekbayeva, and A. Vorontsov suggested in
• Shilov N., Satekbayeva A., Vorontsov A. Alias calculus for a

simple imperative languagewith decidable pointer arithmetic.
Bulletin of the Novosibirsk Computing Center, series: Computer
Science. 2014. n. 37, pp. 131-147.

an alias calculus for a more realistic (but still a model) procedural
programming language MoRe that has addressable memory and
pointer arithmetic.

6/52

Calculi story in brief

MoRe Calculi
In the talk we report an implementation of an aliasing analysis
prototype tool for MoRe. The tool is based on a new light version of
the alias calculus designed for memory leak analysis. It had been
tested using a number of short snippets of MoRe code that contain
various memory leak bugs and has demonstrated its correctness (by
finding these bugs).

7/52

Programming Language MoRe

(Abstract) Syntax

P ::= var V = C | skip | V := T |

V := cons(C ∗) | [V] := V | V := [V] | dispose(V) |

(P;P) | (if F then P else P) | (while F do P).

8/52

Programming Language MoRe

Types
• The language has two data types that are called addresses and

integers with an implicit type casting from integers to addresses.
• The integer data type is explicit while the address data type is

implicit: only the integer values are depictable and all variables
in MoRe are integer by default.
• Address values result from integer values after the implicit type

casting, and integer expressions are interpreted as addresses only
in the special syntactic context.

9/52

Programming Language MoRe

Memory Model
A memory consisting of two disjoint parts:
• a static memory (conventionally) called stack and
• a dynamic memory (conventionally) called heap.

A state is a pair of mappings s = (s.st, s.hp) (or, for short,
s = (st, hp), or (st, hp) when s is implicit), where:
• st is a state of the stack, i.e. a partial mapping (with a finite

domain) from variables V to integers INT (understood as their
values), i.e. st : V fin−→ INT ,
• hp is a state of the heap, i.e. a partial mapping (with a finite

domain) from addresses ADR to integers INT (understood as
referenced values), i.e. hp : ADR fin−→ INT .

10/52

Programming Language MoRe

Semantics of Expressions (terms)
• Since the expressions T are constructed from the constants C

and variables V , every expression t ∈ T in every stack state
st : V fin−→ INT has a definite or an indefinite value
st(t) ∈ INT ∪ {ω};
• the exceptional indefinite value may result from division by 0,

use of an undeclared variable, or use of a variable with an
indefinite value.

11/52

Programming Language MoRe

Semantics of Formulas
Since the logical formulas F are constructed using the Boolean
connectives from equalities and inequalities, every formula φ ∈ F in
any stack state st : V fin−→ INT can be
• either true (valid) st |= φ,
• or false (invalid) s 6|= φ,
• or indeterminate st |=?φ.

12/52

Programming Language MoRe

Semantics of Formulas (cont.)
• if both expressions of an equality/inequality have the definite

values in st, the truth value of this equality/inequality is
according to the values of the expressions;
• if one or both expressions of an equality/inequality have the

indefinite values in st, the value of this equality/inequality in st
is indeterminate;
• if all subformulas of a Boolean formula are true or/and false in

st, then the truth value of the formula is defined in the standard
Boolean manner;
• if a subformula of a Boolean formula is indeterminate in st, then

the formula is also indeterminate.

13/52

Programming Language MoRe

Structural Operational Semantics (SOS)
SOS is an inference system for deduction of triples of the form

s〈α〉s ′

where s is a state, s ′ is a state or an exception abort (an exceptional
state or situation), and α is a program; the intuition behind this triple
is as follows: the program α converts the input state s into the
output “state” s ′ (that may be an exception).

14/52

Programming Language MoRe

Structural Operational Semantics (cont.)
The inference rules are syntax-driven and have the following form:

s1〈α1〉s ′1 . . . sn〈αn〉s ′n
s〈α〉s ′ condition

where n ≥ 0 is the number of premises of the rule, and condition is
an applicability condition; the inference rules without premises (i.e.
when n = 0) are axioms.

15/52

Programming Language MoRe

Sample axioms: Variable Declaration
If a variable has not been declared yet, it can be declared and
initialized by a constant value, but an attempt to re-declare the
variable results in an exception:
• (st,hp)〈var x=c〉(st∪(x 7→c), hp) if x 6∈ dom(st);

• (st,hp)〈var x=c〉abort otherwise.
Here and after (a 7→ b) denotes a singleton function with the graph
{(a, b)}.

16/52

Programming Language MoRe

Sample axioms: Direct Assignment
If a variable has been declared and a term has a definite value, the
assignment updates the value of the variable by the value of the
term; otherwise the assignment results in an exception:
• (st,hp)〈x :=t〉(upd(st,x ,st(t)), hp) if x ∈ dom(st) and st(t) ∈ INT ;

• (st,hp)〈x :=t〉abort otherwise.
Here and after upd(f , a, b) denotes an update for the function f , i.e.
such a function that for every argument value c

upd(f , a, b)(c) =
{

b, if a ≡ c ,
f (c), if c 6≡ a.

17/52

Programming Language MoRe

Sample axioms: Indirect Assignment
If the variables x and y have been declared, the cell pointed by x has
been allocated, the indirect assignment updates the value of this cell
in the heap by the value of y ; otherwise the attempt of the indirect
assignment results in an exception:
• (st,hp)〈[x]:=y〉(st, upd(hp, in2ad(st(x)), st(y)))

if x , y ∈ dom(st) and in2ad(st(x)) ∈ dom(hp);

• (st,hp)〈[x]:=y〉abort otherwise.

18/52

Programming Language MoRe

Sample axioms: Memory Allocation
The command cons allocates (if possible) a fresh heap “segment”,
initializes the cells within the segment by constant values, and saves
the first address of the segment in a specified declared variable;
otherwise the allocation results in an exception:
• (st,hp)〈x :=cons(c0,...ck)〉(upd(st,x ,l), hp ∪ hp′)

if x ∈ dom(st),
addresses in2ad(l + 0), . . . in2ad(l + k) are disjoint,
{in2ad(l + 0), . . . in2ad(l + k)} ∩ dom(hp) = ∅,
and hp′ = ((in2ad(l + 0) 7→ c0), . . . (in2ad(l + k) 7→ ck));

• (st,hp)〈x :=cons(c0,...ck)〉abort otherwise.

19/52

Programming Language MoRe

Sequential Composition Inference Rule
If the first subprogram aborts, then the composition aborts; otherwise
the second subprogram should be applied to the result of the first one:

s〈α〉abort
s〈α;β〉abort

s〈α〉s ′ s′〈β〉s ′′

s〈α;β〉s ′′

20/52

Programming Language MoRe

Choice Axiom and Inference Rules
If the choice condition is true, then select then-branch; if the
condition is false, then select else-branch; otherwise the choice results
in an exception:
• s〈α〉s ′

s〈if φ then α else β〉s ′ if s.st |= φ

• s〈β〉s ′

s〈if φ then α else β〉s ′ if s.st 6|= φ

• s〈if φ then α else β〉abort if s.st |=?φ

21/52

Programming Language MoRe

Loop Axioms and Rule
If the loop condition is true, one iteration is executed and the loop
should be attempted again; if the condition is false, the loop halts; if
the condition is indeterminate, the loop results in an exception:
• s〈α〉s ′ s ′〈while φ do α〉s ′′

s〈while φ do α〉s ′′ if s.st |= φ

• s〈while φ do α〉s if s.st 6|= φ

• s〈while φ do α〉abort if s.st |=?φ

22/52

Memory Leak Calculus for MoRe

Preliminaries
Let us fix a MoRe-program and refer the program as a (program)
context. All variables, expressions and programs within this section
are variables, expressions and sub-programs of this fixed context.
An address variable is any variable x that occurs (in the context) in
• the left-hand side of any memory allocation x := cons(. . .),
• a variable in the left-hand side of any indirect assignment

[x] := . . . ,
• a variable in the right-hand side of any dereferencing · · · := [x],
• a variable in any memory deallocation operator dispose(x),
• any address expression;

23/52

Memory Leak Calculus for MoRe

Preliminaries (cont.)
Address expressions (in the context) are
• all address variables,
• all subexpressions of any address expression,
• all expressions t, constructed from C and V using addition and

subtraction which occur in the right-hand side of any assignment
to any address variable x := t,
• all expressions x + 1, . . . x + k such that the program has the

memory allocation x := cons(c0, . . . , ck).
For any set of address expressions AS and any set of address
variables D ⊆ AV , let AS(D) be the set of all address expressions in
AS that do not use variables other than in D.

24/52

Memory Leak Calculus for MoRe

Expression Aliasing
• A pair of aliases (synonyms) is an equality of two address

expressions.
• Recall that all address expressions in AE are linear expressions

with integer coefficients.
Hence the pairs of synonyms over AE look like Diophantine equations
over integers. Nevertheless we consider all these pairs as equations
over (ADR , 0, 1,+,−) assuming implicit type casting.

25/52

Memory Leak Calculus for MoRe

Configurations
A configuration is a triple Cnf = (I ,A, S) consisting of
• a set I ⊆ AV of address variables,
• a set of address expressions A ⊆ AE (I).

Comment: The set I represents currently available initialized address
variables, the set A — currently available address expressions that
point onto the allocated memory, and the set S is a system of
equalities specifying which expressions currently definitely are aliases.

26/52

Memory Leak Calculus for MoRe

(Alias) Configurations
For any configuration Cnf = (I ,A, S), let
• &Cnf be the conjunction of all pairs of synonyms in S;
• the closure cls(Cnf) be the set of synonyms
{e ′ = e ′′ : e ′, e ′′ ∈ AE (I), TADR ` &Cnf → (e ′ = e ′′)}.

A state s = (st, hp) satisfies the configuration Cnf (s |= Cnf), when
• I is the set of all address variables that are declared in st (i.e.

I = dom(st));
• st(A) = {st(e) : e ∈ A} is the set of the allocated heap

elements in hp (i.e. st(A) = dom(hp));
• all synonyms in cls(Cnf) are valid in s, i.e.

in2ad(st(e ′)) = in2ad(st(e ′′)) for every pair of synonyms
e ′ = e ′′ in S.

27/52

Memory Leak Calculus for MoRe

(Alias) Distributions
• For any two configurations Cnf ′ = (I ′,A′, S ′) and

Cnf ′′ = (I ′′,A′′, S ′′), let us say that they are equivalent if I ′ = I ′′,
for every e ′ ∈ A′ there exists e ′′ ∈ A′′ such that
TADR ` &Cnf ′ → (e ′ = e ′′) (and vice versa).
• A distribution (or alias distribution) is an arbitrary finite set of

configurations in which every two configurations are not
equivalent.
• If D is an arbitrary set of configurations (a distribution in

particular), then its refinement is a distribution rfn(D) obtained
from D by leaving a single configuration in each equivalence
class in D.

28/52

Memory Leak Calculus for MoRe

The Calculus
We define the distribution converter

λα : MoRe. λD : distribution. aft(D, α)

by induction on program structure:
• the induction base defines the converter for individual operators;
• the induction step defines the converter for compound programs.

The definition is executable in nature (i.e. the definition is an
algorithm) and an exercise of this algorithm may cast (i.e. make)
some warnings in run-time.

29/52

Memory Leak Calculus for MoRe

Individual Operators
For operators that do not change the address variables, we have:
• aft(D, skip) = D;
• aft(D, var x = c) = D, if x is not an address variable;
• aft(D, x := t) = D, if x is not an address variable;
• aft(D, x := [y]) = D, if x is not an address variable;
• aft(D, [x] := y) = D, if y is not an address variable.

30/52

Memory Leak Calculus for MoRe

Individual Operators (cont.)
If x is any address variable, the distribution aft(D, var x = c) is
obtained as follows. Let Cnf = (I ,A, S) be an arbitrary configuration
in D. If x ∈ I then the algorithm makes re-initialization warning. Let
Cnfvar x=c = (Ivar x=c ,Avar x=c , Svar x=c), where
• Ivar x=c = I ∪ {x},
• Avar x=c = {e ′ ∈ AE (Ivar x=c) :

TADR ` &Cnf → (e ′c/x = e ′′) for some e ′′ ∈ A},
• Svar x=c = cls(

{e ′ = e ′′ : e ′, e ′′ ∈ AE (Ivar x=c) and TADR ` &Cnf → (e ′c/x =
e ′′c/x)}).

Then let aft(D, var x = c) be rfn{Cnfvar x=c : Cnf ∈ D}.

31/52

Memory Leak Calculus for MoRe

Individual Operators (cont.)
If x is any address variable, the distribution aft(D, x := t) is obtained
as follows. Let Cnf = (I ,N , S) be an arbitrary configuration in D. If
x 6∈ I or t has an uninitialized variable (i.e. not in I) then the
algorithm makes un-initialization warning. Let
Cnfx :=t = (Ix :=t ,Ax :=t , Sx :=t), where
• Ix :=t = I ,
• Ax :=t = {e ′ ∈ AE (Ix :=t) :

TADR ` &Cnf → (e ′t/x = e ′′) for some e ′′ ∈ A},
• Sx :=t = cls(

{e ′ = e ′′ : e ′, e ′′ ∈ AE (Ix :=t) and TADR ` &Cnf → (e ′t/x =
e ′′t/x)}).

32/52

Memory Leak Calculus for MoRe

(cont. from the previous slide)
If there exists e ′′ ∈ A such that TADR 6` &Cnf → (e ′t/x = e ′′) for
every e ′ ∈ Ax :=t , then the algorithm makes memory-leak warning.
Then let aft(D, x := t) be rfn{Cnfx :=t : Cnf ∈ D}.

33/52

Memory Leak Calculus for MoRe

Individual Operators (cont.)
The distribution aft(D, x := cons(c0, . . . ck)) is obtained as follows.
Let Cnf = (I ,A, S) be an arbitrary configuration in D. If x 6∈ I then
the algorithm makes un-initialization warning. Let z be a new (fresh)
variable and let Cnfx :=consk be (Ix :=consk , Ax :=consk , Sx :=consk), where
• Ix :=consk = I ,
• Ax :=consk = A ∪ {x , (x + 1), . . . (x + k)},
• Sx :=consk = cls(

{e ′ = e ′′ : e ′, e ′′ ∈ AE (Ix :=consk), TADR ` &Cnf → e ′z/x =
e ′′z/x}).

34/52

Memory Leak Calculus for MoRe

(cont. from the previous slide)
If there exists e ′′ ∈ A such that TADR 6` &Cnf → (e ′z/x = e ′′) for
every e ′ ∈ Ax :=cons(c0,...ck), then the algorithm makes memory-leak
warning. Then let aft(D, x := cons(c0, . . . ck)) be
rfn{Cnfx :=consk : Cnf ∈ D}.

35/52

Memory Leak Calculus for MoRe

Individual Operators (cont.)
If x is any address variable, the distribution aft(D, x := [y]) is
obtained as follows. Let Cnf = (I ,A, S) be an arbitrary configuration
in D. If x 6∈ I or y 6∈ I , then the algorithm makes un-initialization
warning. If TADR 6` &Cnf → (y = e) for every e ∈ A, then the
algorithm makes un-allocation warning. Let z be a new (fresh)
variable and let Cnfx :=(new z) be (Ix :=(new z), Ax :=(new z), Sx :=(new z)),
where
• Ix :=(new z) = I ,
• Ax :=(new z) = A,
• Sx :=(new z) = cls(

{e ′ = e ′′ : e ′, e ′′ ∈ AE (Ix :=(new z)), TADR ` &Cnf → e ′z/x =
e ′′z/x}).

36/52

Memory Leak Calculus for MoRe

(cont. from the previous slide)
If there exists e ′′ ∈ A such that TADR 6` &Cnf → (e ′z/x = e ′′) for
every e ′ ∈ Ax :=(new z), then the algorithm makes memory-leak
warning. Then let aft(D, x := [y]) be
rfn

(
{Cnfx :=(new z) : Cnf ∈ D} ∪ {Cnfx :=t : Cnf ∈ D

& t ∈ AE (I)}).

37/52

Memory Leak Calculus for MoRe

Individual Operators (cont.)
The distribution aft(D, dispose(x)) is obtained as follows. Let
Cnf = (I ,A, S) be an arbitrary configuration in D. If x 6∈ I , then the
algorithm makes un-initialization warning. If
TADR 6` &Cnf → (x = e) for every e ∈ A, then the algorithm makes
un-allocation warning. Let Cnfdispose(x) = (Idsp(x), Adsp(x), Sdsp(x)),
where
• Idsp(x) = I ,
• Adsp(x) = A \ {e ∈ AE (Idsp(x)) : TADR ` &Cnf → (e = x)},
• Sdsp(x) = cls(
{e ′ = e ′′ : e ′, e ′′ ∈ AE (Idsp(x)/x), TADR ` &Cnf → (e ′ = e ′′)}).

Then let aft(D, dispose(x)) be rfn{Cnfdispose(x) : Cnf ∈ D}.

38/52

Memory Leak Calculus for MoRe

Compound Programs
• aft(D, (α; β)) = aft(aft(D, α), β);
• aft(D, if φ then α else β) = rfn(aft(D, α) ∪ aft(D, β));
• aft(D, while φ do α) = rfn(⋃i≥0 aft(D, αi)),

where α0 ≡ skip, and αi+1 ≡ (αi ;α) for any i ≥ 0.

39/52

Implementation and Testing

Overall Design

Figure: Linter structure

40/52

Implementation and Testing

Outline of the Data Flow
• Source code comes in through the parser (and syntax analyzer)

that transforms it into an AST (abstract syntax tree).
• The AST is then passed into the validator core, where it is first

pre-analyzed for address expressions and other information, and
then processed statement-by-statement using the aft
transformer that produces warnings in the process.
• Some operations can lead to inconsistent systems. The solver is

invoked to resolve the situation.

41/52

Implementation and Testing

Parser
To parse the MoRe source code, we used tspeg — a tool that
generates a parser (and a syntax analyzer) in TypeScript using a PEG
(parsing expression grammar) — a definition language that is similar
to context-free grammar rules but provides a different interpretation
for the choice operator.

42/52

Implementation and Testing

Processing Distributions
• Advancing the distribution requires checking whether a system

of equations with address variables implies another equality of
inequality.
• Solving such a problem in general is very hard, but our language

only allows linear expressions with address variables - expressions
of form ax + b, where a and b are all integer vectors and x is a
vector of address variables.
• Checking satisfiability for a system is then an ILP (integer linear

programming) problem, which can already be solved efficiently
by existing methods.

43/52

Implementation and Testing

Solving Logical Inference
To check if a boolean formula S implies another linear constraint
cnew , one can just check if introducing the inverse of the new
constraint, ¬cnew , is making the formula unsatisfiable:

S → cnew ⇔ ¬sat(S) ∨ (sat(S) ∧ ¬sat(S ∧ ¬cnew))

The important part is sat(S) ∧ ¬sat(S ∧ ¬cnew), which means that if
the implementation holds onto a satisfiable formula, checking
implication of another constraint can be reduced to checking
satisfiability of a slightly tweaked formula.

44/52

Implementation and Testing

MIP vs. SMT
• Firstly we attempted to use existing MIP

(Mixed-Integer-Programming) solvers. Unfortunatly, all tried
MIP solvers (python-mip, and google-ortools) do not have
any method to to convert a complicate propositional
combination of integer linear constraints to DNF (Disjunctive
Normal Form, disjunction-of-conjunctions).
• So we have replaced this whole module with z3 — an SMT

solver, instead of a MIP one. The reason for this is that the
previous MIP solver could only check satisfiability of a system of
equations in the usual meaning (i.e., a conjunction of equations),
z3, being an SMT solver, can check satisfiability for any boolean
formula of equations (in our case — any “tree” of conjunctions,
dis junctions, and equations themselves as propositions).

45/52

Implementation and Testing

Evaluation
The evaluation is done on fabricated simple examples, because all
considered real-world applications are not applicable for one (or both)
of the following reasons:
• The memory-related programming error is related to

object-oriented variable scope or lifetime. A lot of these
examples were in C++, where there are smart pointers, move
constructors, and the memory model is more complex than the
one in MoRe, thus the implemented validator is unable to
“understand” what is going on.
• The memory-related programming error is related to a missing

free() call. As MoRe does not support procedure calls, it has
no concept of variable scope, and the validator cannot tell that
exiting a function without freeing the array should be an error.

46/52

Implementation and Testing

Benchmarks and Metrics
• The “run-time” chart displays (in seconds) how much time did

the linter take to process the corresponding program.
• The “solver calls” chart displays how many times did the linter

call the solver core. This requires a separate process, and is
generally slow, so this is a useful metric to minimize.
• The “equations” chart displays the total amount of equations at

the end of processing the program. This metric is useful because
solver’s complexity involves it, so minimizing amount of
equations maximizes performance.

47/52

Implementation and Testing

Benchmarks and Metrics (cont.)
In general (with exceptions being “disposeUnallocated” and
“whileUnallocated”) the run-time of the linter decreases in the
following order: “non-light without cache” (NL-NC), “non-light with
cache” (NL-C), “light without cache” (L-NC), “light with cache”
(L-C).

48/52

Conclusion

Contribution Summary
• We define a new variant of alias calculus (designed for memory

leaks analysis) with support for pointer arithmetic;
• a validation tool based on the calculi was prototyped (with aid

of the z3 solver) and evaluated its performance on a set of
program examples.

49/52

Conclusion

Limitations and Future Work
• Testing has proven perspectives of the Calculi for static analysis,

while implementation scalability and utility for industrial code
analysis need further research.
• One other possible improvement is scalability of the theory —

the current calculi are intraprocedural, meaning that the
underlying language, MoRe, does not support procedure calls.
That is a significant drawback, because the calculus does not
have any way of determining one major class of memory leaks
regarding “hanging” pointers that are not freed when a
procedure (function) exits.

50/52

Conclusion

Limitations and Future Work (cont.)
The tool was only evaluated without comparison with other tools on
a limited set of example programs, which presents two major further
research avenues:
• Compare the implemented tool with other similar tools. This

might showcase strengths and weaknesses, as well as provide
useful insights into how to further improve the tool.
• Test the implementation using larger examples. All presented

examples contain no more than 20 lines of code. Testing using
larger examples might show major performance bottlenecks.

51/52

Main References

Andersen L.O. Program Analysis and Specialization for the C Programming Language. Ph.D. Thesis, DIKU, University of
Copenhagen, Denmark, 1994.

Kogtenkov A., Meyer B., and Velder S. Alias calculus, change calculus and frame inference. Science of Computer
Programming, vol.97, 2015, pp. 163-172.

Meyer B. Steps Towards a Theory and Calculus of Aliasing. International Journal of Software and Informatics, special issue
(Festschrift in honor of Manfred Broy), 2011., pp. 77-115.

Reynolds J.C. Separation Logic: A Logic for Shared Mutable Data Structures. Proceedings of 17th IEEE Symposium on
Logic in Computer Science (LICS 2002). IEEE Computer Press., 2002, pp. 55-74.

Rivera V, and Meyer B. AutoAlias: Automatic Variable-Precision Alias Analysis for Object-Oriented Programs. SN Computer
Science, vol. 1, n.12, 2020, 15 p. https://doi.org/10.1007/s42979-019-0012-1

Shilov N., Satekbayeva A., Vorontsov A. Alias calculus for a simple imperative languagewith decidable pointer arithmetic.
Bulletin of the Novosibirsk Computing Center, series: Computer Science. 2014. n. 37, pp. 131-147.

Steensgaard B. Points-to Analysis in Almost Linear Time. POPL’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 1996, pp. 32-41.

52/52

https://doi.org/10.1007/s42979-019-0012-1

	Introduction
	Programming Language MoRe
	Memory Leak Calculus for MoRe
	Implementation and Testing
	Conclusion
	References

