
Introduction to the
Refal programming language

Alexander V. Konovalov
Bauman Moscow State Technical University

Moscow

ru-STEP: Russian seminar on Software Engineering,
Theory and Experimental Programming

Innopolis University, June 11 2021

1

History of the Refal programming language

• 1968: first publication
• Turchin V. F. Metaalgorithmic language. — Cybernetics #4, 1968, p. 116–124

(Турчин В. Ф. Метаалгоритмический язык. — Кибернетика № 4, 1968,
с. 116–124)

• 1974 Basic Refal.

• 1986 Refal-2.

• 198x Refal-5.

• 198x Refal-6.

• 199x Refal Plus

• 2016 Refal-5λ

2

History of metacomputations on Refal
• 1972–1974 two publications by Turchin:

• Turchin V.F. Equivalent transformation of Recursive Functions defined in the language Refal, in: Trudy Vsesoyuznogo simposiuma
«Teoriya Yazykov i Metody Programmirovania, Alushta,» Kiev, 1972, pp. 31–42

• Turchin V.F. Equivalent transformation of REFAL programs, Avtomatizirovannaya Sistema Upravleniya Stroitelstvom. Trudy TsNIPIASS,
GOSSTROY, Moscow, 1974, pp. 36–68

• 1980 Turchin V.F. The language Refal – The Theory of Compilation and Metasystem Analysis. Courant Computer
Science Report, Num. 20 (February 1980), New York University

• 1981 Supercompiler SCP1 (Turchin V.F., Nirenberg R., Turchin D.V.)

• 1984 Supercompiler SCP2

• 1986 Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming Languages and Systems. 8
(1986) 292–325, ACM Press

• 1987 Refal-4
• Romanenko S.A. Refal-4 — Extension of Refal-2 Providing Expressiveness of the Results of the Driving, Preprint N147, IPM AN SSSR
• Romanenko S.A. Driving for Refal-4 Programs, Preprint N211, IPM AN SSSR

• 1993 Supercompiler SCP3 (Turchin V.F., Nemytykh A.P.)

• 1999 Supercompiler SCP4 (Nemytykh A.P., supervised by Turchin V.F.)

• 2016 Supercompiler MSCP-A (Nepeivoda A.N., supervised by Nemytykh A.P.)

3

Short introduction to the Refal

• Name “Refal” means Recursive Functional Algorithmic Language.

• Dynamically typed language.

• Base operation is pattern match such as Haskell or Erlang.

• The program is a sequence of functions.

• The function is a sequence of sentences (clauses).

• The sentence is a pair of pattern for argument and result expression.

• The pattern expression contains data constructors and variables.

• The result expression contains data constructors, variables and function calls.

• Thus, the syntax is similar to that of Haskell or Erlang.

4

Short introduction to the Refal

• Refal is dynamically typed language.

• The single data type is an object expression.

• The object expression is similar to LISP list: it is a sequence of terms.

• The term can be atomic value (“symbol”) or bracket term.

• The bracket term is object expression enclosed to parenthesis.

• The symbol can be character, word (such as LISP quoted name) or number. Some
implementations can provide other symbol types.

• Examples of object expression
• 'C' 'h' 'a' 'r' 's'

• 'Chars' /* short equivalent of previous */

• Two Words

• ((1 '+' 2) '*' (X '/' 3))

• (Lisp McCarthy 1958) (Turchin Refal 1968) ("C++" Stroustrup 1980)

5

Short introduction to the Refal

• Variables are written as mode.Index. Mode may be s, t, e, index is identifier
or integer number. Variable modes:
• s-variable can only be matched with one symbol,
• t-variable can only be matched with one term (symbol or expression enclosed to brackets),
• e-variable can be matched with any sequence of terms, including empty ones.

• We can compare Refal variables with filename wildcards (*.txt,
2021-??-??.zip):
• s- and t-variables are equivalent to ? sign (singular character/term),
• e-variables are equivalent to * sign (any string part).

• Examples expression with variables:
• e.BaseName '.txt'

• e.Begin (s.Lang s.Author 1968) e.End

• (t.Left s.Op t.Right)

6

Short introduction to the Refal

• Function calls are enclosed to angle brackets: <FuncName arg>.

• Functions can take only one argument.

• Function definition has the syntax:

FunctionName {

pattern = result;

…

pattern = result;

}

7

Short introduction to Refal
• Examples of the functions:

Factorial {
0 = 1;
s.N = <Mul s.N <Factorial <Sub s.N 1>>>;

}

ReplaceAtoB {
'A' e.X = 'B' <ReplaceAtoB e.X>;
s.1 e.X = s.1 <ReplaceAtoB e.X>;
/* empty */ = /* empty */;

}

Rev {
t.First e.Middle t.Last = t.Last <Rev e.Middle> t.First;
t.One = t.One;
/* empty */ = /* empty */;

}

8

Refal and other languages

• Compare Refal with some other languages. Refal function:
Factorial {
0 = 1;
s.N = <Mul s.N <Factorial <Sub s.N 1>>>;

}

• Haskell function:
factorial 0 = 1
factorial n = n * factorial (n − 1)

• Erlang function:
factorial(0) -> 1;
factorial(N) -> N * factorial(N − 1).

• There are similar, don’t it?

9

Refal and other languages

• What are the main differences between Refal and other languages?

• Firstly, e-variables.
• e-variables allow selects both the first and the last terms

• e.Begin t.Last

• t.First e.End

• Pattern with e-variables may have ambiguous matching. It is important expressive
feature.

• Secondly, repeated variables. If pattern has several variables with same
names, they must have equal values.

• If we remove e-variables and repeated variables from Refal and require
that the functions return one term, we get erlang-like language.

10

Refal and other languages

• What are the main differences between Refal and other languages?

• Firstly, e-variables.
• e-variables allow selects both the first and the last terms

• e.Begin t.Last

• t.First e.End

• Pattern with e-variables may have ambiguous matching. It is important expressive
feature.

• Secondly, repeated variables. If pattern has several variables with same
names, they must have equal values.

• If we remove e-variables and repeated variables from Refal and require
that the functions return one term, we get erlang-like language.

11

Refal and other languages

• What are the main differences between Refal and other languages?

• Firstly, e-variables.
• e-variables allow selects both the first and the last terms

• e.Begin t.Last

• t.First e.End

• Pattern with e-variables may have ambiguous matching. It is important expressive
feature.

• Secondly, repeated variables. If pattern has several variables with same
names, they must have equal values.

• If we remove e-variables and repeated variables from Refal and require
that the functions return one term, we get erlang-like language.

12

Refal and other languages

• What are the main differences between Refal and other languages?

• Firstly, e-variables.
• e-variables allow selects both the first and the last terms

• e.Begin t.Last

• t.First e.End

• Pattern with e-variables may have ambiguous matching. It is important expressive
feature.

• Secondly, repeated variables. If pattern has several variables with same
names, they must have equal values.

• If we remove e-variables and repeated variables from Refal and require
that the functions return one term, we get erlang-like language.

13

Refal and other languages

• Data in other languages are created from tuples with fixed arity. E.g.
lists creates from cons-cells with arity 2.
• Main operations are construction new tuple from k children and destruction

tuple giving its elements.

• Refal data are trees with arbitrary count of children.
• Main operations are concatenation, access to first and last children, or cuts it,

iterate by children.

14

Refal and other languages

• Effective implementation of Refal data is a challenge for language
implementor.

• Several approaches of implementation are known:
• Flat double-linked lists (Refal-2, Refal-5, Refal-5λ)
• Double-linked lists with hanging brackets (Refal-6, FLAC)
• Arrays (Refal Plus)

• Each implementation have efficient (O(1)) and unefficient (O(|val|)) base
operations (concatenation, create copy of value, etc)

• Perspective representations:
• Ropes,
• Finger trees,
• Okasaki’s pure functional deques with concatenations.

15

Expressiveness of the patterns

• Repeated variables can represent values with equal parts.
• s.1 s.2 s.3 — pattern of three any symbols. Can be matched with
'abc', 1 2 3, True False False, 'zzz' etc.

• s.X s.X s.X — pattern of three equal symbols. Can be matched with
'aaa', 7 7 7, True True True.

• Equality comparison is a part of language core.

16

Expressiveness of the patterns

• Ambiguous patterns can perform complex queries.

• If pattern match is ambiguous, match result with shorten first e-
variable is selected.

• If ambiguous match is not resolved, second, third… e-variables are
checked.

• Example 'expressiveness' : e.1 's' e.2. Match results:
•✔ 'expre' ← e.1, 'siveness' ← e.2

•❌ 'expres' ← e.1, 'iveness' ← e.2

•❌ 'expressivene' ← e.1, 's' ← e.2

•❌ 'expressivenes' ← e.1, ε ← e.2

17

Expressiveness of patterns

• Functions that replaces 'A' to 'B':

ReplaceAtoB {
'A' e.X = 'B' <ReplaceAtoB e.X>;
s.1 e.X = s.1 <ReplaceAtoB e.X>;
/* empty */ = /* empty */;

}

• can be rewritten shorter and to more effective:

ReplaceAtoB {
e.X 'A' e.Y = e.X 'B' <ReplaceAtoB e.Y>;
e.X = e.X;

}

18

Expressiveness of the patterns

• Set intersection by one recursive function:

/*

<Intersect (e.Set1) (e.Set2)> == e.Intersect

*/

Intersect {

(e.B1 t.Rep e.E1) (e.B2 t.Rep e.E2)

= t.Rep <Intersect (e.B1 e.E1) (e.B2 e.E2)>;

(e.Set1) (e.Set2) = /* empty */;

}

19

Expressiveness of the patterns

• More effective implementation:

/*

<Intersect (e.Set1) (e.Set2)> == e.Intersect

*/

Intersect {

(e.B1 t.Rep e.E1) (e.B2 t.Rep e.E2)

= t.Rep <Intersect (e.E1) (e.B2 e.E2)>;

(e.Set1) (e.Set2) = /* empty */;

}

20

Refal and metacomputations

• Metacomputations are methods to analyze and transform programs
by speculative execution.

• Two main tools of metacomputation are driving and generalization.

• Driving gives parametrized expression and perform one step
of computations. The step may be ambiguous and different
computation ways require different contractions and restrictions
to parameters. Application a sequence of drivings to expression
creates process tree.

• Generalization of two parametrized expressions is building new
expression that original expressions are its special cases.

21

Refal and driving

• The expression

<F s.X e.Y>

• Source program

F {

'A' e.B = Aa e.B;

'B' = Bb;

/* empty */ = Cc;

s.A e.B = Dd s.A;

}

22

Refal and driving

• Driving is performed by generalized pattern matching, special case
of unification algorithm.

• For each sentence of driven function equation E : Pn are created,
where E is argument of call, Pn — nth pattern.

• Solution of equation is pair of substitutions: Ct than named
“contractions” and As than named “assignments”. Ct and As must
satisfies the equation:

E // Ct ≡ Pn // As

• Contractions label tree edges, assignments apply to right parts
of sentences.

23

Refal and driving

• At 1972 Turchin formulated driving for Strict Refal. Strict Refal is Refal
subset that repeated t- and e-variables are forbidden and pattern must be
unambiguous.

• Driving of Strict Refal programs can be expressed in Strict Refal.

• Driving of Refal-5 with unrestricted patterns can’t be expressed in Refal-5.

• At 1987 Romanenko propose Refal-4 — extension of Refal-2 that driving
transformation is closed on it. But driving algorithm was not proposed.

• Refal supercompilers SCP1, SCP2, SCP3 and SCP4 can transform programs
in the Strict Refal (or subsets of Strict Refal).

• Model supercompiler MSCP-A (Nepeivoda, 2016—) is research
of supercompilation with unrestricted patterns.

24

Refal and driving

• Unlike other languages driving one
sentence in Refal can provide
several branches.

• The expression

<F A e.X>

• Source program

F {
e.A t.B = (e.A) t.B;
e.Z = e.Z;

}

25

Refal and driving

• Unlike other languages driving tree can have
backtracks.

• The expression

<F (e.X) (e.X)>

• Source program

F {
(e.A '@' e.B) (e.C '$' e.D)
= True;

(e.AB) (e.CD) = False;
}

• Function F returns true if first subargument
contains '@' and second one contains '$'.

26

Refal and driving

• Unlike other languages driving
tree can be infinite.

• The expression

<Eq (A e.X) (e.X A)>

• Source program

Eq {
t.X t.X = True;
t.Y t.Z = False;

}

27

Refal and generalization

• Two parametrized expressions E1 and E2 are given. Generalization of it is
expression EG that there are substitutions S1 and S2 that

E1 = EG // S1
E2 = EG // S2

• Most specific generalization (MSG) is generalization EG that no other
generalization E′G that there are non-trivial substitution S that

EG = E′G // S

• MSG is written as EG = E1 ⊓ E2.

28

Refal and generalization

• Unlike other languages MSG in Refal is ambiguous:

A s.1 (e.2) ⊓ A (e.2) = A t.1 e.2

A s.1 (e.2) ⊓ A (e.2) = A e.1 (e.2)

A s.1 (e.2) ⊓ A (e.2) = e.1 s.2 (e.2)

• MSG in some cases may be unexpectable:

A e.1 ⊓ e.1 A = e.1 A e.2

29

Conclusion

• Patterns in Refal are more powerful that patterns in other languages.

• Effective implementation of Refal data is challenge for programmer.

• Base tools of metacomputations in Refal are not trivial.

30

Appendix
Implementation of union on Refal

31

Expressiveness of the patterns

• Set union by one recursive function:

/*

<Union (e.Set1) (e.Set2)> == e.Union

*/

Union {

(e.B1 t.Rep e.E1) (e.B2 t.Rep e.E2)

= t.Rep <Union (e.B1 e.E1) (e.B2 e.E2)>;

(e.Set1) (e.Set2) = e.Set1 e.Set2;

}

32

Expressiveness of the patterns

• More effective implementation:

/*

<Union (e.Set1) (e.Set2)> == e.Union

*/

Union {

(e.B1 t.Rep e.E1) (e.B2 t.Rep e.E2)

= e.B1 t.Rep <Union (e.E1) (e.B2 e.E2)>;

(e.Set1) (e.Set2) = e.Set1 e.Set2;

}

33

