Introduction to the
Refal programming language

Alexander V. Konovalov
Bauman Moscow State Technical University
Moscow

ru-STEP: Russian seminar on Software Engineering,
Theory and Experimental Programming
Innopolis University, June 11 2021

History of the Refal programming language

» 1968: first publication

e Turchin V. F. Metaalgorithmic language. — Cybernetics #4, 1968, p. 116—124
(TypumnH B. ®. MeTaanroputmmnyeckmin A3bik. — KnbepHetmka Ne 4, 1968,
c. 116-124)

* 1974 Basic Refal.
* 1986 Refal-2.

e 198x Refal-5.

* 198x Refal-6.

e 199x Refal Plus
e 2016 Refal-5A

History of metacomputations on Refal

1972-1974 two publications by Turchin:

* Turchin V.F. Equivalent transformation of Recursive Functions defined in the language Refal, in: Trudy Vsesoyuznogo simposiuma
«Teoriya Yazykov i Metody Programmirovania, Alushta,» Kiev, 1972, pp. 31-42

* Turchin V.F. Equivalent transformation of REFAL programs, Avtomatizirovannaya Sistema Upravleniya Stroitelstvom. Trudy TsNIPIASS,
GOSSTROY, Moscow, 1974, pp. 36—68

1980 Turchin V.F. The language Refal — The Theory of Compilation and Metasystem Analysis. Courant Computer
Science Report, Num. 20 (February 1980), New York University

1981 Supercompiler SCP1 (Turchin V.F., Nirenberg R., Turchin D.V.)
1984 Supercompiler SCP2

1986 Turchin V.F. The concept of a supercompiler. ACM Transactions on Programming Languages and Systems. 8
(1986) 292—-325, ACM Press

1987 Refal-4

* Romanenko S.A. Refal-4 — Extension of Refal-2 Providing Expressiveness of the Results of the Driving, Preprint N147, IPM AN SSSR
* Romanenko S.A. Driving for Refal-4 Programs, Preprint N211, IPM AN SSSR

1993 Supercompiler SCP3 (Turchin V.F., Nemytykh A.P.)
1999 Supercompiler SCP4 (Nemytykh A.P., supervised by Turchin V.F.)
2016 Supercompiler MSCP-A (Nepeivoda A.N., supervised by Nemytykh A.P.)

Short introduction to the Refal

 Name “Refal” means Recursive Functional Algorithmic Language.

* Dynamically typed language.

* Base operation is pattern match such as Haskell or Erlang.

* The program is a sequence of functions.

* The function is a sequence of sentences (clauses).

* The sentence is a pair of pattern for argument and result expression.

* The pattern expression contains data constructors and variables.

* The result expression contains data constructors, variables and function calls.

* Thus, the syntax is similar to that of Haskell or Erlang.

Short introduction to the Refal

» Refal is dynamically typed language.
* The single data type is an object expression.
* The object expression is similar to LISP list: it is a sequence of terms.

* The term can be atomic value (“symbo

|”

) or bracket term.

* The bracket term is object expression enclosed to parenthesis.

* The symbol can be character, word (such as LISP quoted name) or number. Some
implementations can provide other symbol types.

* Examples of object expression

'CV Vhl 'al Vrl 'S'

'Chars' /* short equivalent of previous */

Two Words
((1 l_l_l 2) LD | (X '/l
(Lisp McCarthy 1958)

3))
(Turchin Refal 1968)

("C++" Stroustrup 1980)

Short introduction to the Refal

» Variables are written as mode . Index. Mode may be s, t, e, index is identifier
or integer number. Variable modes:
e s-variable can only be matched with one symbol,
 t-variable can only be matched with one term (symbol or expression enclosed to brackets),
* e-variable can be matched with any sequence of terms, including empty ones.

* We can compare Refal variables with filename wildcards (* . txt,
2021-?2?2-?2.z1ip):
* s- and t-variables are equivalent to ? sign (singular character/term),
e e-variables are equivalent to * sign (any string part).

* Examples expression with variables:
* e.BaseName '.txt'
* e.Begin (s.Lang s.Author 1968) e.End
* (t.Left s.0p t.Right)

Short introduction to the Refal

* Function calls are enclosed to angle brackets: <FuncName arg>.
* Functions can take only one argument.
* Function definition has the syntax:

FunctionName {
pattern = result;

pattern = result;

J

Short introduction to Refal

* Examples of the functions:

Factorial {
0O = 1;
s.N = <Mul s.N <Factorial <Sub s.N 1>>>;

ReplaceAtoB {
'A' e.X = '"B' <ReplaceAtoB e.X>;
s.1 e.X = s.1 <ReplaceAtoB e.X>;
/* empty */ = /* empty */;

}

Rev {

t.First e.Middle t.Last = t.Last <Rev e.Middle> t.First;

t.0ne = t.One;
/* empty */ = /* empty */;
}

Refal and other languages

 Compare Refal with some other languages. Refal function:

Factorial {

0 = 1;

s.N = <Mul s.N <Factorial <Sub s.N 1>>>;
}

 Haskell function:

factorial O
factorial n

e Erlang function:

factorial (0) -> 1;
factorial (N) -> N * factorial (N - 1).

* There are similar, don’t it?

1
n * factorial (n - 1)

Refal and other languages

 What are the main differences between Refal and other languages?

Refal and other languages

 What are the main differences between Refal and other languages?

* Firstly, e-variables.

e e-variables allow selects both the first and the last terms
* e.Begin t.Last
e t.First e.End

e Pattern with e-variables may have ambiguous matching. It is important expressive
feature.

Refal and other languages

 What are the main differences between Refal and other languages?

* Firstly, e-variables.

e e-variables allow selects both the first and the last terms
* e.Begin t.Last
e t.First e.End

e Pattern with e-variables may have ambiguous matching. It is important expressive
feature.

* Secondly, repeated variables. If pattern has several variables with same
names, they must have equal values.

Refal and other languages

 What are the main differences between Refal and other languages?

* Firstly, e-variables.

e e-variables allow selects both the first and the last terms
* e.Begin t.Last
e t.First e.End

e Pattern with e-variables may have ambiguous matching. It is important expressive
feature.

* Secondly, repeated variables. If pattern has several variables with same
names, they must have equal values.

* |f we remove e-variables and repeated variables from Refal and require
that the functions return one term, we get erlang-like language.

Refal and other languages

e Data in other languages are created from tuples with fixed arity. E.g.
lists creates from cons-cells with arity 2.

* Main operations are construction new tuple from k children and destruction
tuple giving its elements.
* Refal data are trees with arbitrary count of children.

* Main operations are concatenation, access to first and last children, or cuts it,
iterate by children.

Refal and other languages

 Effective implementation of Refal data is a challenge for language
implementor.

 Several approaches of implementation are known:
e Flat double-linked lists (Refal-2, Refal-5, Refal-5A)
* Double-linked lists with hanging brackets (Refal-6, FLAC)
* Arrays (Refal Plus)

* Each implementation have efficient (0(1)% and unefficient (O(|val|)) base
operations (concatenation, create copy of value, etc)

* Perspective representations:
* Ropes,
* Finger trees,
* Okasaki’s pure functional deques with concatenations.

Expressiveness of the patterns

* Repeated variables can represent values with equal parts.

*s.l s.2 s.3— pattern of three any symbols. Can be matched with
'abc',1 2 3,True False False, 'zzz' etc.

* s.X s.X s.X — pattern of three equal symbols. Can be matched with
'aaa',7 7 7,True True True.

* Equality comparison is a part of language core.

Expressiveness of the patterns

* Ambiguous patterns can perform complex queries.

* If pattern match is ambiguous, match result with shorten first e-
variable is selected.

* If ambiguous match is not resolved, second, third... e-variables are
checked.

* Example 'expressiveness' : e.l 's' e.?2.Match results:
e & 'expre' — e.l, 'siveness' < e.2
e« X 'expres' < e.l, 'iveness' < e.2
e X 'expressivene' < e.l, 's' < e.2
« X 'expressivenes' <« e.l, & « e.2

Expressiveness of patterns

* Functions that replaces 'A' to 'B"':

ReplaceAtoB {
'A' e.X 'B' <ReplaceAtoB e.X>;
s.1 e.X s.l <ReplaceAtoB e.X>;

/* empty */ = /* empty */;

}

e can be rewritten shorter and to more effective:
ReplaceAtoB {

e.X '"A'" e.Y = e.X '"B' <ReplaceAtoB e.Y>;

e. X = e.X;
}

Expressiveness of the patterns

 Set intersection by one recursive function:
/ %
<Intersect (e.Setl) (e.Set?2)> == e.Intersect
*/
Intersect {
(e.Bl t.Rep e.El) (e.B2 t.Rep e.E2)
= t.Rep <Intersect (e.Bl e.El) (e.BZ2 e.E2)>;

(e.Setl) (e.Set2) = /* empty */;
}

Expressiveness of the patterns

* More effective implementation:
/ %
<Intersect (e.Setl) (e.Set?2)> == e.Intersect
*/
Intersect {

(e.Bl t.Rep e.El) (e.B2 t.Rep e.E2)
= t.Rep <Intersect (e.El) (e.B2 e.E2Z)>;

(e.Setl) (e.Set2) = /* empty */;
}

Refal and metacomputations

* Metacomputations are methods to analyze and transform programs
by speculative execution.

 Two main tools of metacomputation are driving and generalization.

* Driving gives parametrized expression and perform one step
of computations. The step may be ambiguous and different
computation ways require different contractions and restrictions
to parameters. Application a sequence of drivings to expression
creates process tree.

* Generalization of two parametrized expressions is building new
expression that original expressions are its special cases.

Refal and driving

* The expression
<F s.X e.¥Y>

* Source program

B
'A' e.B = Aa e.B;
B! — Bb,‘
/* empty */ = Cc;

s.A e.B = Dd s.A;

Refal and driving

* Driving is performed by generalized pattern matching, special case
of unification algorithm.

* For each sentence of driven function equation E : P_ are created,
where E is argument of call, P, — nt" pattern.

* Solution of equation is pair of substitutions: Ct than named
“contractions” and As than named “assignments”. Ct and As must
satisfies the equation:

E // Ct = P // As

* Contractions label tree edges, assignments apply to right parts
of sentences.

Refal and driving

e At 1972 Turchin formulated driving for Strict Refal. Strict Refal is Refal
subset that repeated t- and e-variables are forbidden and pattern must be
unambiguous.

* Driving of Strict Refal programs can be expressed in Strict Refal.
 Driving of Refal-5 with unrestricted patterns can’t be expressed in Refal-5.

e At 1987 Romanenko propose Refal-4 — extension of Refal-2 that driving
transformation is closed on it. But driving algorithm was not proposed.

* Refal supercompilers SCP1, SCP2, SCP3 and SCP4 can transform programs
in the Strict Refal (or subsets of Strict Refal).

* Model supercompiler MSCP-A (Nepeivoda, 2016—) is research
of supercompilation with unrestricted patterns.

Refal and driving

* Unlike other languages driving one
sentence in Refal can provide
several branches.

* The expression
<F A e.X>

* Source program
E

Refal and driving

* Unlike other languages driving tree can have
backtracks.

* The expression (F (eX) {e_;{};:j
<F (e.X) (e.X)>
* Source program

E{
(e.A '"Q' e.B) (e.C '"S'" e.D)
= True;

eX —el'@el

el —meld'$edel —eld'fed

(e.AB) (e.CD) = False;

* Function F returns true if first subargument
contains ' @' and second one contains 'S5 "'.

Refal and driving

* Unlike other languages driving
tree can be infinite.

* The expression
<Eq (A e.X) (e.X A)>
* Source program

BEg |
t.
t.

True;

X X
Y % F'alse;

t.
t.

E:::Eq (AeX)(eX A)Z:J

Refal and generalization

* Two parametrized expressions E, and E, are given. Generalization of it is
expression E . that there are substitutions S; and S, that

E, = E; // 5
E, = E; // S,

* Most specific generalization (MSG) is generalization E that no other
generalization E ' . that there are non-trivial substitution S that

FEc = E'g // S

* MSG iswrittenasEG = E1 M E2.

Refal and generalization

e Unlike other languages MSG in Refal is ambiguous:

A s.1l (e.2) INMNMA (¢.2) = A t.1 e.”’
A s.1l (e.2) MM A (¢.2) = A e.l (e.2)
A s.1l (e.2) NN A (e.2) = e.l s.2 (e.2)

* MSG in some cases may be unexpectable:

A e.l NNe.l] A==e.1l] A e.?

Conclusion

* Patterns in Refal are more powerful that patterns in other languages.
 Effective implementation of Refal data is challenge for programmer.

* Base tools of metacomputations in Refal are not trivial.

Appendix

Implementation of union on Refal

Expressiveness of the patterns

* Set union by one recursive function:
/*
<Union (e.Setl) (e.Set?2)> == e.Union
*/
Union {
(e.Bl t.Rep e.El) (e.B2 t.Rep e.E2)

= t.Rep <Union (e.Bl e.El) (e.B2 e.E2)>;

(e.Setl) (e.Set?2) = e.Setl e.Set’;
}

Expressiveness of the patterns

* More effective implementation:
/%
<Union (e.Setl) (e.Set?2)> == e.Union
*/
Union {
(e.Bl t.Rep e.El) (e.B2 t.Rep e.E2)

= e.Bl t.Rep <Union (e.El) (e.B2 e.E2)>;

(e.Setl) (e.Set?2) = e.Setl e.Set’;
}

