
Why are partial evaluation and supercompilation

still not widely used in practice?

Reflections in light of Russian work on metacomputation

Andrei V. Klimov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Moscow, Russia

Seminar ruSTEP 13.01.2022 DRAFT for PEPM’22

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

Gartner Hype Cycle

Metacomputation is somewhere here

Source (without Metacomputation): https://www.gartner.com/en/marketing/research/hype-cycle

2 / 16

https://www.gartner.com/en/marketing/research/hype-cycle

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

Founders of the area of metacomputation (1970–80s–...)

Andrei Ershov (1931–1988) Valentin Turchin (1931–2010)

Neil D. JonesYoshihiko Futamura

Partial Evaluation,

first spec(spec,spec)

Mixed Computation Supercompilation

Futamura Projections,

Generalized Partial Computation

Alberto Pettorossi

Logic Program Transformation

and Verification

3 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

Metacomputation

metaprogram

manipulates

data

program

manipulates

self-application

“We must learn

how to manipulate

computer programs

like we manipulate

numbers in Fortran.”

Valentin Turchin, 1971

A compiler compiler

could be produced by

specialization of

a specializer

with respect to itself

3rd Futamura Projection

This is a large-scale metasystem transition in terms of the evolution theory by Valentin Turchin:

– Valentin Turchin. The Phenomenon of Science: A cybernetic approach to human evolution, 1977.

According to the theory and observations of the general evolution of the world:

– slow periods of change alternate with rapid transitions leading to a new level of control and

the emergence of a next-level metasystem, the growth of the penultimate level

Based on this, Valentin Turchin expected to see a burst of program analysis and transformations.

– Has this been happening indeed?

metametaprogram

manipulates

self-application

4 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

Examples of program manipulation

• Compilers, interpreters and other

language processors if similar kind

• Various program analyses

used in compilers and in other tools

• Abstract interpretation

– monovariant, polyvariant

• Program specialization

– Partial evaluation

– Supercompilation

– Partial deduction

• Program fusion

– Deforestation

– Supercompilation

– Partial deduction

• Program inversion

– Supercompilation

– Partial deduction

• Program verification

– various methods

• etc.

Program manipulation in practice

• Simply put, according the previous slide,

all this activities are metacomputation

• However, as is usually the case in general evolution,

small changes and the emergence of simple control

relate to the level before the next metasystem transition

• Therefore, we call it metacomputation when program

analysis and transformation is “enough” non-trivial,

complex and deep

• The border is rough and approximate, usually revealed by

“sudden” growth of complexity:

– in our subjective opinion, it is somewhere between

abstract interpretation and specialization,

– or in between monovariant and polyvariant abstract

interpretation

• The challenges, obstacles and methods in these areas

have much in common from a bird’s eye view

• Note: We should distinguish:

– problems and tasks vs. methods to solve them

5 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

1. Easy analysis and transformations with low computational complexity (~linear)

– Optimizing compilers

– Working in “black-box” mode without human intervention

– Obstacle: low complexity, preferably not greater than linear (in practice)

– Conclusion: Metacomputation lies beyond this level

2. Complex algorithms, almost automatic

– Model Checking, SAT-solvers – unexpected success

– CAD/CAM system for hardware engineering (engines, planes, cars, etc.) with supercomputing

– Observation: at certain level of hardware/software evolution there is an explosion of applications and

rapid development of methods

– Obstacle: exponential growth of required resources and computer time

– Conclusion: Metacomputation tools should use full power of modern supercomputers

3. Human-machine systems

– A human makes decisions where a machine cannot

• while a computer guarantees correctness

– A human knows what is needed, while the machine does not know the goal

• specifying what is needed is practically impossible

– Obstacle: the lack of adequate human-machine interfaces, dialogue systems

– Conclusion: Metacomputation tools must be in modern IDEs with human-machine interface

The large-scale MST is already happening and accelerating in the last decade!

Three levels of obstacles, challenges and approaches to solve

6 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

• Abstract interpretation and similar program analyses

– monovariant – widely used

– polyvariant – rear cases

• Program generation tools – great diversity

– the majority are special purpose ones

– built-in some languages, e.g., C++ templates

– recall the surge and decline of macroprocessors
in 1960-80s

• Partial Evaluation – a lot of interesting theoretical works

– rear business cases (only recently)

• Supercompilation

– still in research and developments of prototypes

• Staged computation – manual separation of binding times

– present in practice, but how widely is it used?

– languages: MetaML, MetaOCaml

– systems: lightweight modular staging

• Model Checking

– very successful method for a particular domain

• Program verification, theorem provers, proof assistants

– rapidly developing during the last decade

What do we observe in practice?

In short, Supercompilation is a

trace-based program transformation

1. Oracle GraalVM with Truffle

Language Implementation Framework

with a specializer inside

for implementing DSLs

by writing an interpreter

2. Julia language compiler contains

a specializer w.r.to types

3. AnyDSL compiler framework for

domain-specific libraries (DSLs)

Are there more business cases?

Interestingly, all these specializers

use online Partial Evaluation

without Binding-Time Analysis and

with manual annotations and/or

appropriate programming style

7 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

1969–1973 Yoshihiko Futamura: Partial Evaluation of Computation Process and 3 Futamura Projections

(we learned about them about 1980)

1985–1993... Neil Jones et al. invented Partial Evaluation with Binding-Time Analysis,

evaluated spec(spec, spec) in 1985 and a lot of work and results after

1988–1990s Yoshihiko Futamura: Generalized Partial Computation

(~supercompilation with additional information propagation using a theorem prover)

1990 Philip Wadler: Deforestation (and later variations by other authors)

1993-1996 Morten Sørensen, Robert Glück, Neil Jones: Positive Supercompilation

Morten Sørensen’s master thesis: “Turchin’s Supercompiler Revisited” with a linear limit

early 1990s Valentin Turchin learned the idea of termination by Kruskal homeomorphic embedding

(from the partial deduction community?) and used it in supercompilation

1991–... Partial Deduction, Logic Program Specialization – a lot of people contributed

1990s–... Robert Glück et al.: a series of papers on various aspects of metacomputation

2006–... Geoff Hamilton et al.: Distillation (~higher-order supercompilation)

4 PhD theses on supercompilation

2001–2002 Jens Peter Secher: “Driving in the Jungle” (a paper title, not the thesis)

2007–2008 Neil Mitchell (Colin Runciman adv.): “Transformation and Analysis of Functional Programs”

(a supercompiler for Haskell)

2007–2008 Peter Jonsson (John Nordlander adv.): “Positive Supercompilation for a Higher-Order

Call-By-Value Language”

2010–2013 Maximilian Bolingbroke (Simon Peyton Jones adv.): “Call-by-need supercompilation” (for Haskell)

Selected Western work in metacomputation

which mostly influenced work in Russia

8 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

mid 1970s Andrei Ershov coined the concept of generative extension and realized the importance

of specialization in a variety of system programming tasks and initiated the development

of mixed computation

o for imperative languages from the very beginning, working with states

1977–1996 Development of theory of mixed computation and partial evaluation

an attempt to go into practice by implementing a specializer for Modula-2

o Andrei Ershov

o Michael Bulyonkov

o Vladimir Itkin

o Boris Ostrovsky

As I learned from private conversations, they stalled on the problem of side effects and mutable

objects.

Mixed Computation in Novosibirsk, Russia

9 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

1974–1975 Valentin Turchin gave a series of seminars on supercompilation with core ideas (driving,

configuration analysis, neighborhood analysis, termination) to a group of students in Moscow

1977 Valentin Turchin publishes the three “metasystem transition schemes” equivalent to

Futamura Projections (metacomputation MST schemes would be later generalized)

1980–1996 A series of papers by Valentin Turchin on supercompilation of Refal

– CYNU Report 1980 contains a lot of ideas (underdeveloped till now)

1980s Valentin Turchin developed first supercompilers for his functional language Refal (CUNY, NY)

– Supercompilation looks difficult; core notions are not separated well enough

1987–1990 Contributions of Sergei Romanenko to results on Partial Evaluation in DIKU

– The invention of PE by Neil Jones at al. inspired to look for simpler metacomputation and

splitting supercompilation into pieces, besides great achievement of spec(spec, spec)

1990s Research into theory of supercompilation and simplification of supercompilers with DIKU

– S. Abramov, And. Klimov, Yu. Klimov with N. Jones, R. Glück, M. Sørensen, et al.

1995 Sergei Abramov: book and doctor thesis “Metacomputation and its applications”

1993–2000s Andrei Nemytykh continues developing Turchin’s series of supercompilers for Refal

2007 Andrei Nemytykh: book and PhD thesis “Supercompiler SCP4: General Structure”

– A lot of interesting experiments with supercompilation

– Proving reachability in Petry Nets (counter systems) by supercompilation

1998–2000s Суперкомпилятор JScp для языка Java (Aнд.В. Климов, Арк.В. Климов, А.Б. Шворин)

2002–2009 Partial evaluator CILPE for MS CIL.NET (Yuri Klimov, et al.)

2008–2010 Многоуровневый суперкомпилятор языка с функциями высших порядков

Supercompilation and partial evaluation in Russia (1)

10 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

1974–1975 Valentin Turchin gave a series of seminars on supercompilation with core ideas (driving, configuration

analysis, neighborhood analysis, termination) to a group of students in Moscow

1977 Valentin Turchin publishes the three “metasystem transition schemes” equivalent to

Futamura Projections (metacomputation MST schemes would be later generalized)

1980–1996 A series of papers by Valentin Turchin on supercompilation of Refal

– CYNU Report 1980 contains a lot of ideas (underdeveloped till now)

1980s Valentin Turchin developed first supercompilers for his functional language Refal (CUNY, NY)

– Supercompilation looks difficult; core notions are not separated well enough

1987–1990 Contributions of Sergei Romanenko to results on Partial Evaluation in DIKU

– The invention of PE by Neil Jones at al. inspired to look for simpler metacomputation and

splitting supercompilation into pieces, besides great achievement of spec(spec, spec)

1990s Research into theory of supercompilation and simplification of supercompilers with DIKU

– S. Abramov, And. Klimov, Yu. Klimov with N. Jones, R. Glück, M. Sørensen, et al.

1995 Sergei Abramov: book and doctor thesis “Metacomputation and its applications”

1993–2000s Andrei Nemytykh continues developing Turchin’s series of supercompilers for Refal

2007 Andrei Nemytykh: book and PhD thesis “Supercompiler SCP4: General Structure”

– A lot of interesting experiments with supercompilation

– Proving reachability in Petry Nets (counter systems) by supercompilation

2010 Andrei Klimov: proof that multi-result supercompilation solves a formally defined class of tasks

– the first formal characteristic of the power of supercompilation

Supercompilation and partial evaluation in Russia (1)

11 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

Theory and supercompiler prototypes

2008–2010 Ilya Klyuchnikov (PhD), Sergei Romanenko: Multilevel supercompiler for a higher-order language

– termination of a new version homeomorphic embedding for configurations with higher-order terms

2006–2012 Supercompilation relation and domain-specific multi-results supercompilers

– Andrei Klimov, Ilya Klyuchnikov, Sergei Romanenko

2012–2017 Sergei Grechanik (PhD): “Proving properties of functional programs by means of equality saturation”

– multi-result supercompilation with equality saturation

– a kind of higher-order supercompilation, but this is not studied yet

Going to practice

1998–2000s Andrei Klimov, Arkady Klimov, Artem Shvorin: Supercompiler JScp for Java (version 1.4)

– (discussion on the next slide)

2002–2009 Yuri Klimov (PhD): Specialization of programs in object-oriented languages

– polyvariant partial evaluator CILPE for MS CIL.NET

– further development after Ulrik Schultz (1999–2000)

2017–... Igor Adamovich: Partial evaluator JaSpe for Java (discussion on the next-next slide)

Future research directions

• Multi-lever and higher-order supercompilation (including distillation by J. Hamilton)

• Multi-result supercompilation

• Partial evaluation and supercompilation for object-oriented languages

• Synthesis of partial evaluation and supercompilation (~supercompilation in D-part)

Supercompilation and partial evaluation in Russia (2)

12 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

• The first version of Java Supercompiler JScp was developed in 1999–2003 at a startup

Supercompilers, LLC, and then gradually improved, experimenting with applications

– Founders: Valentin Turchin, Yuri Mostovoy

– Main developers: Andrei Klimov, Arkady Klimov, Artem Shvorin

– Methods are mainly unpublished

– Several papers with demo problems

• Main observations:

– A lot of manual control through variety of options is needed to achieve good results

– Residual code is surprisingly understandable, but it is difficult to capture how it has been produced

and difficult to put into correspondence with source code without appropriate tools in IDE

– It is clear what tools should to be implemented in an IDE to make life easier

Java Supercompiler JScp

13 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

• We expect that Partial Evaluation with Binding-Time Analysis would come into wide practice earlier than

Supercompilation, since its behavior is more understandable for the user due to clear separation of statically

evaluated and revisualized code

– First business cases of PE listed above (Oracle GraalVM, Julia, AnyDSL) do not use BTA

• psychological reason: maybe, BTA requires some nother way of thinking

• objective reason: the lack of good tools

– It seems like just attention and investment from software giants (like Microsoft) are required,

but it's surprising that no company has done this for 3 decades

• For practice, polyvariant

Binding-Time Analysis is required,

which is not so easy to visualize

• Polyvariant BTA has much more

degrees of freedom, which require

user control, than monovariant BTA

• Therefore, a good human-machine

interface is needed to use PE in practice

• Screenshot of an example

Java program in Eclipse IDE with

Java specializer JaSpe plugin

from a recent paper by Igor Adamovich

Partial Evaluation is best suited for human-machine interaction

among specialization methods

14 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

• Compilers from interpreters by Futamura-Turchin Projections

– this task does not become a “killer app” as production of compilers is not expensive enough

– nevertheless: the modern wave of DSLs requires such technologies

– example: Oracle GraalVM – polyglot VM with Truffle compiler with partial evaluator inside

• Fusion of components of applications assembled by component programming of various kinds

– raising demand, especially after Moore's law has slowed down

– however: modern component programming is parallel and concurrent

– metacomputation of parallel programs is required (but almost no research!)

• Compression of hierarchies of simulation models as a way towards scalable simulation

– to overcome the main obstacle of simulation: diverse granularity of levels of hierarchy

– simulation resembles interpretation: specialization of a simulator w.r.t. to a model

• Program verification is a meta-activity on programs without genuine metacomputation now

– equivalent transformation to better verifiable form

– verification by program transformation (to a form with evident answer)

– example: using supercompilation as normalization in modern proof assistants

• Artificial Intelligence really requires a lot of metacomputation tools to go beyond Neural Networks

– manipulating models of the world (the main omission of the modern AI on Neural Networks)

– managed, controlled, artificial evolution (considered too slow now, but this is to be changed)

“Killer” applications and problems to solve

15 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

1. Easy analysis and transformations with low computational complexity (~linear)

– Optimizing compilers

– Working in “black-box” mode without human intervention

– Obstacle: low complexity, preferably not greater than linear (in practice)

– Conclusion: Metacomputation lies beyond this level

2. Complex algorithms, almost automatic

– Model Checking, SAT-solvers – unexpected success

– CAD/CAM system for hardware engineering (engines, planes, cars, etc.) with supercomputing

– Observation: at certain level of hardware/software evolution there is an explosion of applications and

rapid development of methods

– Obstacle: exponential growth of required resources and computer time

– Conclusion: Metacomputation tools should use full power of modern supercomputers

3. Human-machine systems

– A human makes decisions where a machine cannot

• while a computer guarantees correctness

– A human knows what is needed, while the machine does not know the goal

• specifying what is needed is practically impossible

– Obstacle: the lack of adequate human-machine interfaces, dialogue systems

– Conclusion: Metacomputation tools must be in modern IDEs with human-machine interface

The large-scale MST is already happening and accelerating in the last decade!

As Conclusion: Return to the three levels

16 / 16

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

• Основная идея ответа на поставленный вопрос в том, что дело оказалось труднее, чем мечталось отцам-основателям

этого научного направления — Валентину Турчину, Андрею Ершову и, наверно, Ёcихико Футамуре и Нилу Джоунсу тоже.

• «Великого оптимизатора программ», работающего нажатием кнопки, не получилось. Первым (общеизвестным)

препятствием стала далеко не линейная сложность алгоритмов, не укладывающихся в парадигму использования

оптимизирующих компиляторов. Вторым (не столь очевидным) — принципиальная невозможность «перекладывания»

этой деятельности на машину. Из причин этого отметим:

– отсутствие понятия «наиболее оптимизированная программа», к которому могли бы приближаться алгоритмы,

– главное: отсутствие у машины представлений о целях преобразований, которые варятся в голове у пользователя,

а специфицировать непонятно как.

• Тем не менее, подходы к построению систем метавычислений, полезных на практике, существуют, только до сих пор им

не уделялось достаточного внимания. Отбросив надежды на легкость задачи, обсудим, как быть дальше:

– не бояться использовать всю мощность современных параллельных компьютеров и суперкомпьютеров;

– не бояться алгоритмов, которые требуют такой мощности;

– главное: строить человеко-машинные системы, диалоговые метавычислительные инструменты, комфортные для

пользователей при решении текущих программистских задач;

– а для этого: реализовывать инструменты для распространенных языков и погружать в привычные

интегрированные среды (IDE) и демонстрировать образцы решения задач.

• В качестве материала для выводов используем российский опыт работ по метавычислениям (что отражено в заголовке)

и лишь скороговоркой обозначим западные работы, наиболее значимые для нас. У этого две причины:

– субъективная: хочется назвать малоизвестные работы близких коллег;

– объективная: из опубликованных западных работ трудно извлечь отрицательный опыт, так как обычно такие

результаты не публикуется, а про свои работы мы знаем, куда стремились, что получилось и где споткнулись.

Extra slide: Conclusion in Russian

(копия аннотации)

17 / 16

