Why are partial evaluation and supercompilation
still not widely used in practice?

Reflections in light of Russian work on metacomputation

Andrei V. Klimov
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Moscow, Russia

Seminar ruSTEP 13.01.2022 DRAFT for PEPM’22

Expectations

Andrei Klimov

Gartner Hype Cycle

On the Rise At the Sliding Into Climbing Entering
Peal the Trough the Slope the Plateau

Technology Peak of Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity

Source (without Metacomputation): https://www.gartner.com/en/marketing/research/hype-cycle

«Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 2/16

https://www.gartner.com/en/marketing/research/hype-cycle

Founders of the area of metacomputation (1970-80s-...)

Andrei Ershov (1931-1988) Valentin Turchin (1931-2010)

Mixed Computation Supercompilation

Yoshihiko Futamura Neil D. Jones Alberto Pettorossi

,
> b
Futamura Projections, Partial Evaluation, Logic Program Transformation
Generalized Partial Computation first spec(spec,spec) and Verification

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 3/16

Metacomputation

\

@ametaprogram Self-application
manlpulates
Cnetaprogra@ self-application
. manlpulates : :
We must learn A compiler compiler
how to manipulate (ST > could be produced by
computer programs specialization of
like we manlpulate” manipulatesi - a speC|aI|ze_r
numbers in Fortran. with respect to itself
Valentin Turchin, 1971 (data > 3" Futamura Projection

This is a large-scale metasystem transition in terms of the evolution theory by Valentin Turchin:
— Valentin Turchin. The Phenomenon of Science: A cybernetic approach to human evolution, 1977.
According to the theory and observations of the general evolution of the world:

— slow periods of change alternate with rapid transitions leading to a new level of control and
the emergence of a next-level metasystem, the growth of the penultimate level

Based on this, Valentin Turchin expected to see a burst of program analysis and transformations.
— Has this been happening indeed?

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 4/16

Program manipulation in practice

Examples of program manipulation « Simply put, according the previous slide,

- Compilers, interpreters and other all this activities are metacomputation
language processors if similar kind

 However, as is usually the case in general evolution,
small changes and the emergence of simple control
relate to the level before the next metasystem transition

« Various program analyses
used in compilers and in other tools

» Abstract interpretation

— monovariant, polyvariant « Therefore, we call it metacomputation when program
* Program specialization analysis and transformation is “enough” non-trivial,
— Partial evaluation complex and deep

— Supercompilation

— Partial deduction
« Program fusion

— Deforestation

— Supercompilation

— Partial deduction

* The border is rough and approximate, usually revealed by
“sudden” growth of complexity:

— in our subjective opinion, it is somewhere between
abstract interpretation and specialization,

— orin between monovariant and polyvariant abstract

_ _ interpretation
« Program inversion
— Supercompilation * The challenges, obstacles and methods in these areas
— Partial deduction have much in common from a bird’s eye view

 Program verification o _
_ * Note: We should distinguish:
— various methods

. etc — problems and tasks vs. methods to solve them

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 5/16

Three levels of obstacles, challenges and approaches to solve

1. Easy analysis and transformations with low computational complexity (~linear)

Optimizing compilers

Working in “black-box” mode without human intervention

Obstacle: low complexity, preferably not greater than linear (in practice)
Conclusion: Metacomputation lies beyond this level

2. Complex algorithms, almost automatic

Model Checking, SAT-solvers — unexpected success
CAD/CAM system for hardware engineering (engines, planes, cars, etc.) with supercomputing

Observation: at certain level of hardware/software evolution there is an explosion of applications and
rapid development of methods

Obstacle: exponential growth of required resources and computer time
Conclusion: Metacomputation tools should use full power of modern supercomputers

3. Human-machine systems

A human makes decisions where a machine cannot
» while a computer guarantees correctness
A human knows what is needed, while the machine does not know the goal
» specifying what is needed is practically impossible
Obstacle: the lack of adequate human-machine interfaces, dialogue systems
Conclusion: Metacomputation tools must be in modern IDEs with human-machine interface

The large-scale MST is already happening and accelerating in the last decade!

Andrei Klimov

«Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 6/16

What do we observe in practice?

Abstract interpretation and similar program analyses

— monovariant — widely used
— polyvariant — rear cases

Program generation tools — great diversity

— the majority are special purpose ones
— built-in some languages, e.g., C++ templates

— recall the surge and decline of macroprocessors
in 1960-80s

Partial Evaluation — a lot of interesting theoretical works
— rear business cases (only recently)

Supercompilation
— still in research and developments of prototypes

Staged computation — manual separation of binding times

— present in practice, but how widely is it used?
— languages: MetaML, MetaOCaml
— systems: lightweight modular staging

Model Checking
— very successful method for a particular domain

Program verification, theorem provers, proof assistants
— rapidly developing during the last decade

Andrei Klimov «Why...not widely used in practice?»

—

In short, Supercompilation is a
trace-based program transformation

1. Oracle GraalVM with Truffle
Language Implementation Framework
with a specializer inside
for implementing DSLs
by writing an interpreter

2. Julialanguage compiler contains
a specializer w.r.to types

3. AnyDSL compiler framework for
domain-specific libraries (DSLS)

Are there more business cases?

Interestingly, all these specializers
use online Partial Evaluation
without Binding-Time Analysis and
with manual annotations and/or
appropriate programming style

Seminar ruSTEP 13.01.2022 7/ 16

1969-1973

1985-1993...

1988-1990s

1990
1993-1996

early 1990s

1991-...
1990s-...
2006—...

Selected Western work in metacomputation
which mostly influenced work in Russia

Yoshihiko Futamura: Partial Evaluation of Computation Process and 3 Futamura Projections
(we learned about them about 1980)

Neil Jones et al. invented Partial Evaluation with Binding-Time Analysis,
evaluated spec(spec, spec) in 1985 and a lot of work and results after

Yoshihiko Futamura: Generalized Partial Computation
(~supercompilation with additional information propagation using a theorem prover)

Philip Wadler: Deforestation (and later variations by other authors)

Morten Sgrensen, Robert Gluck, Neil Jones: Positive Supercompilation
Morten Sgrensen’s master thesis: “Turchin’s Supercompiler Revisited” with a linear limit

Valentin Turchin learned the idea of termination by Kruskal homeomorphic embedding
(from the partial deduction community?) and used it in supercompilation

Partial Deduction, Logic Program Specialization — a lot of people contributed
Robert Gliick et al.: a series of papers on various aspects of metacomputation

Geoff Hamilton et al.: Distillation (~higher-order supercompilation)

4 PhD theses on supercompilation

2001-2002
2007-2008

2007-2008

2010-2013

Andrei Klimov

Jens Peter Secher: “Driving in the Jungle” (a paper title, not the thesis)

Neil Mitchell (Colin Runciman adv.): “Transformation and Analysis of Functional Programs”
(a supercompiler for Haskell)

Peter Jonsson (John Nordlander adv.): “Positive Supercompilation for a Higher-Order
Call-By-Value Language”

Maximilian Bolingbroke (Simon Peyton Jones adv.): “Call-by-need supercompilation” (for Haskell)

«Why...not widely used in practice?» Seminar ruSTEP 13.01.2022

8/16

Mixed Computation in Novosibirsk, Russia

mid 1970s Andrei Ershov coined the concept of generative extension and realized the importance

of specialization in a variety of system programming tasks and initiated the development
of mixed computation

o for imperative languages from the very beginning, working with states

1977-1996 Development of theory of mixed computation and partial evaluation
an attempt to go into practice by implementing a specializer for Modula-2
o Andrei Ershov
o Michael Bulyonkov
o Vladimir Itkin
o Boris Ostrovsky

As | learned from private conversations, they stalled on the problem of side effects and mutable
objects.

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 9/16

Supercompilation and partial evaluation in Russia (1)

1974-1975 Valentin Turchin gave a series of seminars on supercompilation with core ideas (driving,
configuration analysis, neighborhood analysis, termination) to a group of students in Moscow

1977 Valentin Turchin publishes the three “metasystem transition schemes” equivalent to
Futamura Projections (metacomputation MST schemes would be later generalized)

1980-1996 A series of papers by Valentin Turchin on supercompilation of Refal
— CYNU Report 1980 contains a lot of ideas (underdeveloped till now)

1980s Valentin Turchin developed first supercompilers for his functional language Refal (CUNY, NY)
— Supercompilation looks difficult; core notions are not separated well enough

1987-1990 Contributions of Sergei Romanenko to results on Partial Evaluation in DIKU

— The invention of PE by Neil Jones at al. inspired to look for simpler metacomputation and
splitting supercompilation into pieces, besides great achievement of spec(spec, spec)

1990s Research into theory of supercompilation and simplification of supercompilers with DIKU

— S. Abramov, And. Klimov, Yu. Klimov with N. Jones, R. Gluck, M. Serensen, et al.
1995 Sergei Abramov: book and doctor thesis “Metacomputation and its applications”
1993-2000s Andrei Nemytykh continues developing Turchin’s series of supercompilers for Refal
2007 Andrei Nemytykh: book and PhD thesis “Supercompiler SCP4: General Structure”

— Alot of interesting experiments with supercompilation

— Proving reachability in Petry Nets (counter systems) by supercompilation

1998-2000s CynepkomnunaTtop JScp ans sa3blka Java (AHA.B. Knumos, Apk.B. Knumos, A.b. LLIBopuH)
Andrei 2022009 Partia{Véaluatoyid@ly REefon MECER2NET (Yuri KlimoswestiagnruSTEP 13.01.2022 10/ 16

Supercompilation and partial evaluation in Russia (1)

1974-1975 Valentin Turchin gave a series of seminars on supercompilation with core ideas (driving, configuration
analysis, neighborhood analysis, termination) to a group of students in Moscow

1977 Valentin Turchin publishes the three “metasystem transition schemes” equivalent to
Futamura Projections (metacomputation MST schemes would be later generalized)

1980-1996 A series of papers by Valentin Turchin on supercompilation of Refal
— CYNU Report 1980 contains a lot of ideas (underdeveloped till now)

1980s Valentin Turchin developed first supercompilers for his functional language Refal (CUNY, NY)
— Supercompilation looks difficult; core notions are not separated well enough

1987-1990 Contributions of Sergei Romanenko to results on Partial Evaluation in DIKU

— The invention of PE by Neil Jones at al. inspired to look for simpler metacomputation and
splitting supercompilation into pieces, besides great achievement of spec(spec, spec)

1990s Research into theory of supercompilation and simplification of supercompilers with DIKU
— S. Abramov, And. Klimov, Yu. Klimov with N. Jones, R. Glick, M. Sgrensen, et al.
1995 Sergei Abramov: book and doctor thesis “Metacomputation and its applications”
1993-2000s Andrei Nemytykh continues developing Turchin’s series of supercompilers for Refal
2007 Andrei Nemytykh: book and PhD thesis “Supercompiler SCP4: General Structure”
— Alot of interesting experiments with supercompilation
— Proving reachability in Petry Nets (counter systems) by supercompilation
2010 Andrei Klimov: proof that multi-result supercompilation solves a formally defined class of tasks

— the first formal characteristic of the power of supercompilation

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 11/ 16

Supercompilation and partial evaluation in Russia (2)

Theory and supercompiler prototypes
2008-2010 llya Klyuchnikov (PhD), Sergei Romanenko: Multilevel supercompiler for a higher-order language
— termination of a new version homeomorphic embedding for configurations with higher-order terms
2006-2012 Supercompilation relation and domain-specific multi-results supercompilers
— Andrei Klimoy, llya Klyuchnikov, Sergei Romanenko
2012-2017 Sergei Grechanik (PhD): “Proving properties of functional programs by means of equality saturation”
— multi-result supercompilation with equality saturation
— akind of higher-order supercompilation, but this is not studied yet
Going to practice
1998-2000s Andrei Klimov, Arkady Klimov, Artem Shvorin: Supercompiler JScp for Java (version 1.4)
— (discussion on the next slide)
2002-2009 Yuri Klimov (PhD): Specialization of programs in object-oriented languages
— polyvariant partial evaluator CILPE for MS CIL.NET
— further development after Ulrik Schultz (1999-2000)
2017-... Igor Adamovich: Partial evaluator JaSpe for Java (discussion on the next-next slide)
Future research directions
* Multi-lever and higher-order supercompilation (including distillation by J. Hamilton)
* Multi-result supercompilation
» Partial evaluation and supercompilation for object-oriented languages

* Synthesis of partial evaluation and supercompilation (~supercompilation in D-part)

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 12/ 16

Java Supercompiler JScp

« The first version of Java Supercompiler JScp was developed in 1999-2003 at a startup
Supercompilers, LLC, and then gradually improved, experimenting with applications
— Founders: Valentin Turchin, Yuri Mostovoy
— Main developers: Andrei Klimov, Arkady Klimov, Artem Shvorin
— Methods are mainly unpublished
— Several papers with demo problems

. Main observations:

— Alot of manual control through variety of options is needed to achieve good results

— Residual code is surprisingly understandable, but it is difficult to capture how it has been produced
and difficult to put into correspondence with source code without appropriate tools in IDE

— Itis clear what tools should to be implemented in an IDE to make life easier

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 13/ 16

Partial Evaluation is best suited for human-machine interaction
among specialization methods

* We expect that Partial Evaluation with Binding-Time Analysis would come into wide practice earlier than
Supercompilation, since its behavior is more understandable for the user due to clear separation of statically
evaluated and revisualized code

— First business cases of PE listed above (Oracle GraalVM, Julia, AnyDSL) do not use BTA
* psychological reason: maybe, BTA requires some nother way of thinking
* objective reason: the lack of good tools

— It seems like just attention and investment from software giants (like Microsoft) are required,
but it's surprising that no company has done this for 3 decades

* For practice, polyvariant

. 1 public class MethodExample { 27 public class ErshovNumber extends Number{
Binding-Time Analysis is required, 2 @Specialize 26 ErshovNumber (double x) { super(x); }
. . . . 3 Number exa le(doubld [dArd) {
which is not so easy to visualize 3 e] 30 @SpecIntine _
5 Number obj, res; 31 Number pow (int n) {
: Iy * o=
. / if (5) { 33 while(n !=
. Po|y\/ar|ant BTA has much more 8 . elg:j{: new ErshovNumber(1.0); ‘L; if (g’sé @:H(-Jé.{n o
degrees of freedom, which require - obj = new DummyNumber (GArd) ; e A R e
user control, than monovariant BTA e H opi-pou(3) pod(2); | rstum e Ershoer @)
1A } 40
15 } 41 } X
. 16 i 42 public class DummyNumber extends Number{
« Therefore, a good human-machine e 5 unmyNumber (doubld) { super(R):)
. . . . 44
interface is needed to use PE in practice 19 publi@ Némber(gﬂﬂg x) {
20 X3
aSpecInline
« Screenshot of an example 23 Number pow (inth) {

return new Number (Math.pow(yal, n));

Java program in Eclipse IDE with } }
Java specializer JaSpe plugin
from a recent paper by Igor Adamovich

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 14/ 16

“Killer” applications and problems to solve

« Compilers from interpreters by Futamura-Turchin Projections

— this task does not become a “killer app” as production of compilers is not expensive enough
— nevertheless: the modern wave of DSLs requires such technologies
— example: Oracle GraalVM — polyglot VM with Truffle compiler with partial evaluator inside

* Fusion of components of applications assembled by component programming of various kinds

— raising demand, especially after Moore's law has slowed down
— however: modern component programming is parallel and concurrent
— metacomputation of parallel programs is required (but almost no research!)

« Compression of hierarchies of simulation models as a way towards scalable simulation

— to overcome the main obstacle of simulation: diverse granularity of levels of hierarchy
— simulation resembles interpretation: specialization of a simulator w.r.t. to a model

« Program verification is a meta-activity on programs without genuine metacomputation now

— equivalent transformation to better verifiable form
— verification by program transformation (to a form with evident answer)
— example: using supercompilation as normalization in modern proof assistants

« Atrtificial Intelligence really requires a lot of metacomputation tools to go beyond Neural Networks

— manipulating models of the world (the main omission of the modern Al on Neural Networks)
— managed, controlled, artificial evolution (considered too slow now, but this is to be changed)

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 15/ 16

As Conclusion: Return to the three levels

1. Easy analysis and transformations with low computational complexity (~linear)
— Optimizing compilers
— Working in “black-box” mode without human intervention
— Obstacle: low complexity, preferably not greater than linear (in practice)
— Conclusion: Metacomputation lies beyond this level

2. Complex algorithms, almost automatic

— Model Checking, SAT-solvers — unexpected success
— CAD/CAM system for hardware engineering (engines, planes, cars, etc.) with supercomputing

— Observation: at certain level of hardware/software evolution there is an explosion of applications and
rapid development of methods

— Obstacle: exponential growth of required resources and computer time
— Conclusion: Metacomputation tools should use full power of modern supercomputers

3. Human-machine systems

— Ahuman makes decisions where a machine cannot
» while a computer guarantees correctness
— Ahuman knows what is needed, while the machine does not know the goal
» specifying what is needed is practically impossible
— Obstacle: the lack of adequate human-machine interfaces, dialogue systems
— Conclusion: Metacomputation tools must be in modern IDEs with human-machine interface

The large-scale MST is already happening and accelerating in the last decade!

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 16/ 16

Extra slide: Conclusion in Russian
(konuga aHHOTaLMN)

. OcHoBHas nges oTeeTa Ha NOCTaBfEHHbIN BOMPOC B TOM, YTO AeN0 OKa3anochb TpygHee, YeM MeyvTanocb OTUuaM-OCHOBaTeNsM
3TOro Hay4Horo HanpasneHus — BaneHTuHy TypunHy, AHapeto EpLuoBy n, HaBepHo, Ecuxuko ®dytamype n Huny [>KoyHcy Toxe.

. «Benukoro ontummnsartopa nporpammy», paboTatoLero HaxxaTmem KHOMKK, He nonyyunnocs. MNepebiv (06LEN3BECTHLIM)
NpenaTCTBMEM CTana Aareko He NIMHENHas CNOXHOCTb anropuTMOB, HE YKNaabiBaLWMXCA B Napagurmy MCrnosb3oBaHus
ONTUMU3VPYHOLLMX KOMMUNATOPOB. BTOpbIM (HE CTOMb O4EBMAHBIM) — MPUHLMNNANbHAA HEBO3MOXHOCTb «MepeKknagblBaHNsS»
3TON OEATENbHOCTM Ha MaLUKnHY. /13 NpyyYnH 3TOro oTMETUM:

— OTCYTCTBME MOHATUA «Hanbonee oNTUMMU3MPOBAHHAs NporpamMmmMa, K KOTopomMy Mornm 6bl NpMbnmkaTbCa anropuTMbl,

— MaBHOE: OTCYTCTBME Y MaALLUUHbI Hpe,D,CTaBﬂeHMVI O uenax npe06pasoBaHM|71, KOTOpPbIE BapATCA B royioBe y nosib3oBartersid,
a CI'IeLl,I/I(bI/IU,I/IpOBaTb HENOHATHO KakK.

* Tem He MeHee, noaxonbl K NOCTPOEHNIO CUCTEM MEeTaBbl4YMCIIEHUIN, MNOME3HbIX Ha npaKkTukKe, CyLeCTBYIOT, TOJIbKO A0 CUX NOop UM
He yaendanocb A4OCTaTOYHOIo BHUMaHUA. OT6pOCVIB HageXxabl Ha NerkoCTb 3agavu, O6CWJ,VIM, Kak ObITb AanbLue:
— He 60SATbCS MCNONb30BaTb BCHO MOLLIHOCTb COBpeMEHHbIX NMapanriesibHbIX KOMMNbITEPOB U CYNEePKOMIMbIOTEPOB;
— He bosTbcA anropnTmMoB, KOTopble Tpe6yr0T Takon MOLLHOCTW;

— MaBHOE: CTPOUTb 4YerioBeKO-MallHHbIE CUCTEMbI, OManoroBbie MeTaBbIMNCITIUTENbHbIE MHCTPYMEHTHI, KOMCpOpTHbIe and
nosib3oBaTenemn npu pelweHnn Tekylmnx nporpaMMmnMCTCKNX 3aav,

— a ang aToro: peann3oBbiBaTb MHCTPYMEHTbI ANs PacnpoCTPaHEHHbIX A3bIKOB U NOrpy>KaTb B NPUBbLIYHbLIE
nHTerpupoBaHHble cpeabl (IDE) n gemoHcTpmnpoBaTth 06pasLbl peleHns 3agaud.

. B kauecTBe maTepmana ang BbIBOAOB MCMOMb3yeM POCCUNCKUI OMNbIT paboT N0 METaBbIYUCNEHNAM (4TO OTPaXXEHO B 3arosfioBKe)
N N CKOPOroBOpKOM 0603HaYMM 3anagHble paboTbl, Hanbonee 3HaunMble NS HAC. Y 9TOro ABE NPUYMHbI:

- Cy6'|:>eKTI/IBHaFIZ Xo4yeTcA Ha3BaTb Marion3BeECTHbIE pa6OTbI Gnun3Kux Konner;

— obbekTuBHasi: N3 onybrnmMkoBaHHbIX 3anafHbIX paboT TpyAHO M3BMNeYb OTpULATESNbHbIN OMbIT, TaK Kak 0ObIYHO Takme
pe3ynesTaTtbl He NyonukyeTcsi, a Npo cBou paboTbl Mbl 3HaeM, Kyaa CTPEMMUITUCH, YTO NOSYYUIOCh U IAe CMOTKHYIMCh.

Andrei Klimov «Why...not widely used in practice?» Seminar ruSTEP 13.01.2022 17/ 16

