Event-Driven Temporal Logic for Control Software Requirements

Vladimir Zyubin, Igor Anureev, <u>Natalia Garanina</u>, Sergey Staroletov, Anastasia Getmanova, Anna Gnezdilova, Alexandra Grivtsova Institute of Automation and Electrometry Institute of Informatics Systems Novosibirsk State University Altay State University Novosibirsk Russia

Motivation: Client-Contractor Problem

Safety-critical Control Software and Formal Methods

- Problems
 - the size of systems implies a high price of using formal methods
 - the conceptual divergence in requirements understanding
- Control software development: client-contractor paradigm
 - the clients think in terms of events, timeouts, processes and states
 - the contractors: the programming languages they use
 - the clients: do not care about the internal structure of control software
 - the contractors: do not care about the internal structure of the plant
 - the clients already implicitly assume a control algorithm by design
 - the contractors must reveal and implement this hidden algorithm
- How to easy formulate a complete and correct set of requirements

A requirements specification should be:

- I. user-friendly
 - concepts of events and reactions
- 2. independent of control software design and implementation
 - the black box principle
 - use just terms of inputs and outputs
 - no inner structure of software/hardware
- 3. strict
 - formal semantics
- 4. universal
 - not orientated towards any particular verification technique

Motivation: Known Solutions

- A pattern-restricted natural language (e.g. ISO/IEC/IEEE 29148)
- Domain-oriented (FSM-based) languages
- Graphic notations (UML, Statecharts)
- Formal requirement pattern languages (RSL, RSML)
- Do not meet all the requirements for requirements
 - I. user-friendly
 - 2. independent (black box)
 - 3. strict
 - 4. universal

EDTL Requirements: Definition

- EDTL requirement is a tuple:
 - $\mathcal{R} = (trigger, invariant, final, delay, reaction, release)$

Attribute	Description
trigger	the starting trigger event of the requirement
invariant	a condition; holds until the reaction or release
final	the trigger for ending event of the requirement; wait for the reaction
delay	the possible delay for the reaction since the final
reaction	the ending event of the requirement
release	cancels the requirement statements

EDTL Requirements: Time Ordering of Events

• EDTL requirement is a tuple:

 $\mathcal{R} = (trigger, invariant, final, delay, reaction, release)$

Following each trigger event, the invariant must hold true until either a release event or a final event. The invariant must also hold true after final event till either the release event or a reaction, and besides the reaction must take place within the specified allowable delay from the final event.

EDTL Requirements Syntax: Types and Terms

Types

- integers
- floating points
- Boolean
- time: I h, I s, etc.

EDTL-terms

- c a constant of type T
- v a variable of type T
- $f(u_1, ..., u_n) a$ function
 - u_i a term
 - f can be a standard arithmetic operation or relation, Boolean or C-like bitwise operation

EDTL Requirements Syntax: Formulas

EDTL formulas

- Let φ and ψ be EDTL formulas. Then:
 - ETDL term of type bool is an atomic EDTL formula
 - $\neg \phi$ is the negation
 - $\phi \land \psi$ is the conjunction
 - $\varphi \lor \psi$ is the disjunction
 - ϕ is the falling edge: the value of ϕ changes from *false* to *true*
 - $/\varphi$ is the rising edge: the value of φ changes from *true* to *false*
 - $_{\varphi}$ is low steady-state: the value of φ remains equal to *false*
 - $\sim \varphi$ is high steady-state: the value of φ remains equal to true

EDTL Requirements: the Hand Dryer Example

I. If the dryer is on (*D*, trigger), then it turns off ($\neg D$, reaction) after no hands (*H*, trigger) are present for 1 second

trigger	release	final	delay	invariant	reaction
\H∧D	Н	passed 1s	true	D	¬D

2. If the dryer was not turned on and hands appeared ($/H \land \neg D$, trigger), it will turn on (*D*, reaction) ASAP (*true*, final)

trigger	release	final	delay	invariant	reaction
/H ∧ ¬D	false	true	true	true	D

EDTL Requirements: Progress

- I. Automata semantics
- 2. FOL semantics
- 3. LTL semantics
- 4. Bounded checking algorithm
- 5. Consistency checking
- 6. Automatic translation to LTL
- 7. Semantic classification
- 8. NL representation
- 9. Automatic generation of dynamic verifier
- 10. The corpus of EDTL requirements
- 11. Model checking (the idea)

Semantics of EDTL Requirements

0

EDTL Requirements: Automata Semantics

EDTL requirement \mathcal{R} is satisfied in a control system C iff Buchi automata $A_{\mathcal{R}}$ accepts serial evaluations of EDTL attributes in all behaviors of C.

 $\mathsf{A}_{\mathcal{R}} = (Q, \Sigma, \delta, q_0, \mathsf{F})$

 $Q = \{\text{START, FAIL}_1, \text{FAIL}_2, \text{trigger,} \\ \text{invariant}_1, \text{invariant}_2, \text{final, delay,} \\ \text{reaction, release}_1, \text{release}_2\}$

 $\Sigma - \{true, false\}$

 δ – trigger × *true* → release₁, etc.

 $q_0 - START$

$$\mathsf{F} - Q \backslash \{\mathsf{FAIL}_1, \mathsf{FAIL}_2\}$$

EDTL Requirements: Automata Semantics

EDTL Requirements: Automata Semantics

At "read" marks the oracle

- takes new input values and
- evaluates $A_{\mathcal{R}}$ states (true/false)

EDTL Requirements: FOL semantics

EDTL requirement \mathcal{R} is satisfied in a control system C iff the following FOL formula $F_{\mathcal{R}}$ is true for every initial path π^0 : $F_{\mathcal{P}} = \forall \pi^0 \in CS \ \forall t \in [1, +\infty) \ ($

value(trigger, $\pi^0, T, 0$) \Rightarrow (

 $\exists F \in [T, +\infty) \exists R \in (F, +\infty)$

true invariant **FAIL**₁ invariant release reaction true delay **FAIL**₂

value(final, π^0 , F,T) \land value(invariant, π^0 , F,T) \land value(reaction, π^0 , R, F) \land $\forall i \in [T, F) (\neg value(release, \pi^0, i, T) \land value(invariant, \pi^0, i, T) \land \neg value(final, \pi^0, i, T)) \land$ $\forall i \in [F, R) (\neg value(release, \pi^0, i, T) \land value(invariant, \pi^0, i, T) \land$ \neg delay(reaction, π^0 , i, F) $\land \neg$ value(reaction, π^0 , i, F)) \lor

 $\exists F \in [T, +\infty)$

value(final, π^0 , F,T) \land value(invariant, π^0 , F,T) \land

 $\forall i \in [T, F) (\neg value(release, \pi^0, i, T) \land value(invariant, \pi^0, i, T) \land \neg value(final, \pi^0, i, T)) \land$ $\forall i \in [F, +\infty) \ (\forall j \in [F, i] \ (\neg value(release, \pi^0, j, F)) \Rightarrow$

 $\forall j \in [F, i]$ (value(invariant, $\pi^0, j, T) \land \neg$ delay(reaction, $\pi^0, i, F) \land \neg$ value(reaction, $\pi^0, j+1, F$))) \lor $\forall i \in [T, +\infty) \ (\forall j \in [T, i] \ (\neg value(release, \pi^0, j, F)) \Rightarrow$ $\forall j \in [T, i] \text{ (value(invariant, } \pi^0, j, T) \land \neg \text{value(final, } \pi^0, j, T)))))$ 13/34

The Bounded Checking Algorithm

```
bool take (struct req, array pp) {
    for (i = 0, i < n, i++)</pre>
        if !check (req, pp[i]) return false;
    return true;
bool check (struct req, array p) {
 trig = 1;
 while (trig < len) {</pre>
  if (value(reg.trigger, p, trig, 0) {
   if (value(req.release, p, triq, triq)) goto checked;
   fin = trig
   while (!value(reg.final, p, fin, trig)) {
    if (value(req.release, p, fin, trig)) goto checked;
    if (!value(req.invariant, p, fin, triq)) return false;
    fin++;
    if (fin == len) goto checked;
   del = fin;
   while (!value(req.delay, p, del, fin) &&
          !value(req.reaction, p, del + 1, fin)) {
    if (value(req.release, p, del, trig)) goto checked;
    if (!value(req.invariant, p, del, fin)) return false;
    del++;
    if (del == len) goto checked;
   if (!value(req.release, p, del, trig) &&
       value(req.delay, p, del, fin) &&
       !value(req.invariant, p, del, fin)) return false;
  checked: trig++;
```

- Follows FOL formula $F_{\mathcal{R}}$ (old vers.)
 - Uses selected bounded paths

https://doi.org/10.5281/zenodo.4445663

EDTL Requirements: LTL semantics

EDTL requirement \mathcal{R} is satisfied in a control system C iff LTL formula $\Phi_{\mathcal{R}}$ is satisfied in M_C for every initial path: $\Phi_{\mathcal{R}}$ =

 $\mathbf{G}(\text{trigger } \land \neg \text{release} \rightarrow \text{invariant } \land (\mathbf{G}(\text{invariant } \land \neg \text{final}) \lor (\text{invariant } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \mathbf{U} \text{ release } \lor (\text{final } \land \neg \text{final } \square (\land \neg \text{final } \land \neg \text{final } \square (\land \neg \text{final } \land \neg \text{final })))$

(invariant $\land \neg delay \mathbf{U}$ (release \lor (invariant \land reaction))))))).

- M_C is a Kripke structure for control system C
- Its initial path starts from an initial state

EDTL Requirements: LTL semantics

 $\phi_{\mathcal{R}}$ =

G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨ (invariant ∧ ¬final U release ∨ (final ∧ (invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

$$\begin{split} \mathbf{G}(\text{trigger } \wedge \neg \text{release} & \rightarrow \text{invariant } \wedge \\ (\mathbf{G}(\text{invariant } \wedge \neg \text{final}) \lor \\ (\text{invariant } \wedge \neg \text{final } \mathbf{U} \text{ release } \lor \\ (\text{final } \wedge (\text{invariant } \wedge \neg \text{delay } \mathbf{U} \text{ (release } \lor \\ (\text{invariant } \wedge \text{ reaction})))))))). \end{split}$$

Consistency of EDTL Requirements

0

Consistency: Definitions

(invariant $\land \neg$ final **U** release \lor (final \land

(invariant $\land \neg delay \mathbf{U}$ (release \lor (invariant \land reaction))))))).

Satisfiability of EDTL-requirements

• Requirement \mathcal{R} is *satisfiable* iff there exists a Kripke structure $M_{\mathcal{R}}$ that for every initial path π :

$$M_{\mathcal{R}}, \pi \models \mathcal{O}_{\mathcal{R}}$$

• This $M_{\mathcal{R}}$ is a model for $\mathcal{R}: M_{\mathcal{R}} \vDash \Phi_{\mathcal{R}}$

The checking inconsistency problem for EDTL requirements

• Requirement \mathcal{R} ' is *inconsistent* with satisfiable requirement \mathcal{R} iff in every model $M_{\mathcal{R}}$ there exists an initial path π of $M_{\mathcal{R}}$:

 $M_{\mathcal{R}}, \pi \nvDash \Phi_{\mathcal{R}} \land \Phi_{\mathcal{R}'}$

• The checking inconsistency problem for EDTL requirements is to check if two EDTL requirements are inconsistent.

Consistency: Method

$$\begin{split} \phi_{\mathcal{R}} &= \mathbf{G}(\operatorname{trigger} \wedge \neg \operatorname{release} \rightarrow \operatorname{invariant} \wedge (\mathbf{G}(\operatorname{invariant} \wedge \neg \operatorname{final}) \vee \\ &\quad (\operatorname{invariant} \wedge \neg \operatorname{final} \mathbf{U} \operatorname{release} \vee (\operatorname{final} \wedge \\ &\quad (\operatorname{invariant} \wedge \neg \operatorname{delay} \mathbf{U} (\operatorname{release} \vee (\operatorname{invariant} \wedge \operatorname{reaction})))))))) \\ \phi_{\mathcal{R}} &= \mathbf{G}(\operatorname{tr} \rightarrow \Psi) \text{ and } \phi_{\mathcal{R}'} = \mathbf{G}(\operatorname{tr}' \rightarrow \Psi'). \\ &\text{To check } M_{\mathcal{R}}, \pi \neq \phi_{\mathcal{R}} \wedge \phi_{\mathcal{R}'} \\ \neg (\phi_{\mathcal{R}} \wedge \phi_{\mathcal{R}'}) \wedge (\operatorname{tr} \rightarrow \operatorname{tr}') \Rightarrow \neg \mathbf{G}(\operatorname{tr} \rightarrow (\Psi \wedge \Psi')) \\ &\underline{\operatorname{Assumptions}} \\ &= \operatorname{det} \mathcal{A} \end{split}$$

- $tr \rightarrow tr'$
- $M_{\mathcal{R}} \vDash \Phi_{\mathcal{R}}$

<u>Method</u>

- Find predicates on EDTL attributes of \mathcal{R} and \mathcal{R}' which is true iff \mathcal{R} and \mathcal{R}' are *inconsistent*.
- Function Compare : $Req \times Req \rightarrow \{consistent, inconsistent, unknown\}$

Consistency: Algorithm

The main algorithm Consistency_Checker

- Input: a set of EDTL requirements Reqs
- Output: the lists of inconsistent, consistent and undefined requirements
- Complexity: quadratic w.r.t. the size of Reqs
- Call: function Decide

The function Decide

- Input: EDTL requirements ${\mathcal R}$ and ${\mathcal R}'$
- Output: {consistent, inconsistent, unknown}
- Complexity: constant
- Call: function *imply*, function *Compute_semantics*, function *Compare*

Consistency: Algorithm

The function imply

- Input: EDTL formulas f and f'
- Output: {true, false}
- Complexity: exponential w.r.t. the size of f and f'

The function Compute_semantics

- Input: EDTL requirements ${\mathcal R}$ and ${\mathcal R}'$
- Output: {true, false, other}
- Complexity: linear w.r.t. the size of ${\mathcal R}$ and ${\mathcal R}'$

The function Compare

- Input: EDTL requirements ${\mathcal R}$ and ${\mathcal R}'$
- Output: {consistent, inconsistent, unknown}
- Complexity: exponential w.r.t. the size of attributes of $\mathcal R$ and $\mathcal R'$

Consistency: Algorithm

Theorem

• There exists the algorithm partially solving the checking inconsistency problem for EDTL requirements which takes *quadratic time* w.r.t. the size of the set of requirements and *exponential time* w.r.t. the size of the requirements' attributes.

Let the size of every EDTL attribute of each EDTL requirement be *a*

Standard automata-based satisfiability checking algorithms for LTL formula ϕ

- exponential time $T_s(\phi)$ w.r.t. the size of ϕ
- $\mathsf{T}_{\mathsf{s}}(\phi_{\mathcal{R}} \wedge \phi_{\mathcal{R}'}) \geq 2^{20a}$

The most expensive function Decide

- the time complexity $T_d(\mathcal{R}, \mathcal{R}') = T_{imply} + T_{compare}$
- $\mathsf{T}_{\mathsf{d}}(\mathcal{R},\mathcal{R}') \leq 2^{8a}$

Simplification and Classification of EDTL Requirements

0

Simplification and Classification: the Idea

 Simultaneous supply of signals "Up" and "Down" to the elevator motor is prohibited.

trigger	release	final	delay	invariant	reaction
true	false	true	true	¬(Up ∧ Down)	true

- LTL semantics:
 - G(true ∧ ¬false→ ¬(Up ∧ Down) ∧ (G(¬(Up ∧ Down) ∧ ¬true) ∨ (¬(Up ∧ Down) ∧ ¬true) U (false ∨ (true ∧ (¬(Up ∧ Down) ∧ ¬true)
 U (false ∨ true ∧ ¬(Up ∧ Down))))))
- Reduced LTL semantics:
 - $G(\neg(Up \land Down))$

Simplification: the Rules

Standard	Special
	$\phi \lor \mathbf{F}(\phi) \equiv \mathbf{F}(\phi)$
$\phi \to \psi \equiv \neg \phi \lor \psi$	$\boldsymbol{\varphi} \vee \mathbf{F}(\boldsymbol{\varphi} \vee \boldsymbol{\psi}) \equiv \mathbf{F}(\boldsymbol{\varphi} \vee \boldsymbol{\psi})$
	$\mathbf{G}(\neg \phi) \lor \mathbf{F}(\phi) \equiv \text{true}$
$\boldsymbol{\varphi} \wedge \mathbf{G}(\boldsymbol{\varphi} \wedge \boldsymbol{\psi}) \equiv \mathbf{G}(\boldsymbol{\varphi} \wedge \boldsymbol{\psi})$	$\boldsymbol{\varphi} \wedge (\boldsymbol{\psi} \mathbf{U} \boldsymbol{\varphi}) \equiv \boldsymbol{\varphi}$
	$\phi \land (\phi ~\mathbf{U} ~\psi) \equiv \phi ~\mathbf{U} ~\psi$
	φ ∨ (ψ U φ) ≡ ψ U φ

Simplification: the Algorithm

<pre>EDTL2LTL(trig, rel, fin, del, inv, rea) = (let f0 = con(inv, rea); let f1 = dis(rel, f0); let f2 = con(inv, no(del)); let f2 = con(inv, no(del)); let f3 = Until(f2, f1); let f4 = con(fin, f3); let f5 = dis(rel, f4); let f5 = dis(rel, f4); let f6 = con(inv, no(fin)); let f7 = Until(f6, f5); let f8 = Globally(inv, no(fin)); let f9 = dis(f8, f7); let f10 = con(inv, f9); let f11 = con(trig, no(rel)); let f12 = impl(f11, f10); Globally(f12) }</pre>	Until(a, b) = match(a, b) with _, False => False False, f => f True, f:NonConst => Future(f) f, True => True f, f => f not(f), f => F(f) and(f, g), or(f, h) => or(f, h) _, _ => U(a, b);	φ U false = false false U $\varphi = \varphi$ true U $\varphi = \mathbf{F} \varphi$ φ U true = true φ U $\varphi = \varphi$ $\neg \varphi$ U $\varphi = \mathbf{F} \varphi$ $(\varphi \land \chi)$ U $(\varphi \lor \psi) = \varphi \lor \psi$
---	---	---

Classification by Simplification: Classes

Classification by Simplification: Classes

Nº	Class formula	capacity
1	G(rel)	28
2	G(inv)	13
3	G(¬fin)	3
4	G(¬trig)	33
5	G(inv ∧ ¬fin)	3
6	$G(trig \rightarrow rel)$	28
7	$G(trig \rightarrow inv)$	4
8	$G(trig \rightarrow G(inv))$	9
9	$G(trig \rightarrow G(\neg fin))$	3
10	$G(trig \rightarrow G(inv \land \neg fin))$	3
11	$G(\neg rel \rightarrow (inv \land (G(inv) \lor (inv \cup rel))))$	9
12	$G(\neg rel \rightarrow (G(\neg fin) \lor (\neg fin \cup (rel \lor fin))))$	3
13	$G((trig \land \neg rel) \rightarrow (inv \land (G(inv) \lor (inv \cup rel))))$	9
14	$G((trig \land \neg rel) \rightarrow (G(\neg fin) \lor (\neg fin \cup (rel \lor fin))))$	3
19	G(inv ∧ (G(inv ∧ ¬fin) ∨ ((inv ∧ ¬fin) ∪ (fin ∧ inv))))	2
16	G(trig → (inv \land (G(inv $\land \neg$ fin) \lor ((inv $\land \neg$ fin) U (fin \land inv)))))	2
19	false	33
18	true	459

Simplification and Classification: Applications

Converting EDTL requirements into LTL formulas

- model checkers
- generating test scenarios
- the classification of EDTL requirements

The classification of EDTL requirements

- diagnosing errors when specifying requirements
- developing a canonical form of requirements,
- defining attribute default values
- developing methods for explaining EDTL requirements in natural language

NL-translation of EDTL Requirements

0

NL-translation: Motivation

• If the dryer (D) was not turned on and hands (H) appeared, it will turn on ASAP

trigger	release	final	delay	invariant	reaction
/H ∧ ¬D	false	true	true	true	D'
		-	-		-

• $\mathbf{G}(\text{trig} \rightarrow \text{rea})$

•
$$G(H \land \neg D \rightarrow D')$$

NL-translation: the Algorithm

NL-translation: ToDo

- NL patterns for EDTL requirements
 - EDTL representation

trigger	release	final	delay	invariant	reaction
trig	false	true	del	true	rea

The reaction <rea> to the <trig> event

must appear no later than the event

- LTL representation
 - G (inv)
 - Always <inv>
- Corpus of requirements
 - If there are no further requests, the elevator must stop and become idle.
 - The doors must always be closed when the elevator is moving.
 - When <trig> then <inv>.

NL-translation: ToDo

- EDTL attribute decoding
 - The reaction <rea> to the event <trig> must appear no later than the event
 - trig = /RcvdX signal X is received
 - del = passed(2s) 2s passed
 - rea = X_rcvdBit set bit X_received
 - The reaction "set bit X_received" to the event "signal X is received" must appear no later than the "2s passed" event
 - When signal X is received, the system shall set the signal X received bit within 2 seconds
 - trig = /open just opened
 - del = passed(10s) 10s passed
 - rea = ¬open closed
 - The reaction "closed" to the event "just opened" must appear no later than the "10s passed" event
 - The open signal must be true for no more than 10 seconds.

Model-Checking EDTL Requirements

0

Model-Checking EDTL: the Idea

- Reduce CS state space w.r.t. input and output points
- Construct Buchi automaton in advance

$$\begin{split} \phi_{\mathcal{R}} &= \\ & \mathbf{G}(\text{trigger} \land \neg \text{release} \rightarrow \text{invariant} \land (\mathbf{G}(\text{invariant} \land \neg \text{final}) \lor \\ & (\text{invariant} \land \neg \text{final} \mathbf{U} \text{ release} \lor (\text{final} \land \\ & (\text{invariant} \land \neg \text{delay} \mathbf{U} (\text{release} \lor (\text{invariant} \land \text{reaction})))))))). \end{split}$$

EDTL Requirements: ToDo

- I. Automata semantics prove equivalence with FOL, LTL
- 2. FOL semantics prove equivalence with Aut, LTL
- 3. LTL semantics prove equivalence with FOL, Aut
- 4. Bounded checking algorithm
- 5. Consistency checking implement
- 6. Automatic translation to LTL add Boolean translations
- 7. Semantic classification refinement rules
- 8. NL representation improve
- 9. Automatic generation of dynamic verifier
- 10. The corpus of EDTL requirements extend
- 11. Model checking (the idea) refine and develop

Plans

- Develop consistency-checking methods for EDTL requirements
- Formally prove
 - the equivalence of LTL and FOL semantics
 - soundness of the bounded-checking algorithm
- Develop and implement EDTL-specialized verification
 - dynamic verification
 - model checking
 - deductive verification
- Add support for *pattern composition* to the notation

