
Event-Driven

Temporal Logic for

Control Software Requirements

Vladimir Zyubin, Igor Anureev, Natalia Garanina, Sergey Staroletov,

Anastasia Getmanova, Anna Gnezdilova, Alexandra Grivtsova

Institute of Automation and Electrometry

Institute of Informatics Systems

Novosibirsk State University

Altay State University

Novosibirsk

Russia

Motivation: Client-Contractor Problem

Safety-critical Control Software and Formal Methods

 Problems

◦ the size of systems implies a high price of using formal methods

◦ the conceptual divergence in requirements understanding

 Control software development: client-contractor paradigm

◦ the clients think in terms of events, timeouts, processes and states

 the contractors: the programming languages they use

◦ the clients: do not care about the internal structure of control software

 the contractors: do not care about the internal structure of the plant

◦ the clients already implicitly assume a control algorithm by design

 the contractors must reveal and implement this hidden algorithm

 How to easy formulate a complete and correct set of requirements

1/34

Motivation: General Principles of Specification

A requirements specification should be:

1. user-friendly

◦ concepts of events and reactions

2. independent of control software design and implementation

◦ the black box principle

 use just terms of inputs and outputs

 no inner structure of software/hardware

3. strict

◦ formal semantics

4. universal

◦ not orientated towards any particular verification technique

2/34

Motivation: Known Solutions

 A pattern-restricted natural language (e. g. ISO/IEC/IEEE 29148)

 Domain-oriented (FSM-based) languages

 Graphic notations (UML, Statecharts)

 Formal requirement pattern languages (RSL, RSML)

 Do not meet all the requirements for requirements

1. user-friendly

2. independent (black box)

3. strict

4. universal

3/34

EDTL Requirements: Definition

 EDTL requirement is a tuple:

ℛ = (trigger, invariant, final, delay, reaction, release)

4/34

Attribute Description

trigger the starting trigger event of the requirement

invariant a condition;

holds until the reaction or release

final the trigger for ending event of the requirement;

wait for the reaction

delay the possible delay for the reaction since the final

reaction the ending event of the requirement

release cancels the requirement statements

EDTL Requirements: Time Ordering of Events

 EDTL requirement is a tuple:

ℛ = (trigger, invariant, final, delay, reaction, release)

5/34

Following each trigger event, the invariant must hold true until either a release event

or a final event. The invariant must also hold true after final event till either the release

event or a reaction, and besides the reaction must take place within the specified

allowable delay from the final event.

EDTL Requirements Syntax: Types and Terms

Types

 integers

 floating points

 Boolean

 time: 1h, 1s, etc.

EDTL-terms

 c – a constant of type T

 v – a variable of type T

 f(u1, …, un) – a function

◦ ui – a term

◦ f can be a standard arithmetic operation or relation, Boolean or C-like

bitwise operation

6/34

EDTL Requirements Syntax: Formulas

EDTL formulas

 Let φ and ψ be EDTL formulas. Then:

◦ ETDL term of type bool is an atomic EDTL formula

◦ ¬φ is the negation

◦ φ ∧ ψ is the conjunction

◦ φ ∨ ψ is the disjunction

◦ \φ is the falling edge: the value of φ changes from false to true

◦ /φ is the rising edge: the value of φ changes from true to false

◦ _φ is low steady-state: the value of φ remains equal to false

◦ ~φ is high steady-state: the value of φ remains equal to true

7/34

EDTL Requirements: the Hand Dryer Example

1. If the dryer is on (D, trigger), then it turns off (¬D, reaction) after no

hands (\H, trigger) are present for 1 second

2. If the dryer was not turned on and hands appeared (/H ∧ ¬D , trigger), it

will turn on (D, reaction) ASAP (true, final)

8/34

trigger release final delay invariant reaction
\H ∧ D H passed 1s true D ¬D

trigger release final delay invariant reaction
/H ∧ ¬D false true true true D

EDTL Requirements: Progress

1. Automata semantics

2. FOL semantics

3. LTL semantics

4. Bounded checking algorithm

5. Consistency checking

6. Automatic translation to LTL

7. Semantic classification

8. NL representation

9. Automatic generation of dynamic verifier

10. The corpus of EDTL requirements

11. Model checking (the idea)

9/34

Semantics of EDTL Requirements

EDTL Requirements: Automata Semantics

EDTL requirement ℛ is

satisfied in a control system C iff

Buchi automata Aℛ accepts

serial evaluations of EDTL attributes

in all behaviors of C.

Aℛ = (Q, Σ, δ, q0, F)

Q – {START, FAIL1, FAIL2, trigger,

invariant1, invariant2, final, delay,

reaction, release1, release2}

Σ – {true, false}

δ – trigger⨯true → release1, etc.

q0 – START

F – Q\{FAIL1, FAIL2}

10/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

EDTL Requirements: Automata Semantics

11/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

EDTL Requirements: Automata Semantics

At “read” marks the oracle

 takes new input values and

 evaluates Aℛ states (true/false)

12/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

read

read

read

read

read

read

EDTL Requirements: FOL semantics

 EDTL requirement ℛ is satisfied in a control system C iff

the following FOL formula Fℛ is true for every initial path π0:

Fℛ = ∀ π0 ∊ CS ∀ t ∊ [1, +) (

value(trigger, π0, T, 0) ⇒ (

∃ F ∊ [T, +)∃ R ∊ (F, +)

value(final, π0, F, T) ∧ value(invariant, π0, F, T) ∧ value(reaction, π0, R, F) ∧

∀ i ∊ [T, F) (¬value(release, π0, i, T) ∧ value(invariant, π0, i, T) ∧ ¬value(final, π0, i, T)) ∧

∀ i ∊ [F, R) (¬value(release, π0, i, T) ∧ value(invariant, π0, i, T) ∧

¬delay(reaction, π0, i, F) ∧ ¬value(reaction, π0, i, F)) ∨

∃ F ∊ [T, +)

value(final, π0, F, T) ∧ value(invariant, π0, F, T) ∧

∀ i ∊ [T, F) (¬value(release, π0, i, T) ∧ value(invariant, π0, i, T) ∧ ¬value(final, π0, i, T)) ∧

∀ i ∊ [F, +) (∀ j ∊ [F, i] (¬value(release, π0, j, F)) ⇒

∀ j ∊ [F, i](value(invariant, π0, j, T) ∧ ¬delay(reaction, π0, i, F) ∧ ¬value(reaction, π0, j+1, F))) ∨

∀ i ∊ [T, +) (∀ j ∊ [T, i] (¬value(release, π0, j, F)) ⇒

∀ j ∊ [T, i] (value(invariant, π0, j, T) ∧ ¬value(final, π0, j, T))))) 13/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

The Bounded Checking Algorithm

 Follows FOL formula Fℛ (old vers.)

 Uses selected bounded paths

 https://doi.org/10.5281/zenodo.4445663

14/34

bool take (struct req, array pp) {

for (i = 0, i < n, i++)

if !check (req, pp[i]) return false;

return true;

}

bool check (struct req, array p) {

trig = 1;

while (trig < len) {

if (value(req.trigger, p, trig, 0) {

if (value(req.release, p, trig, trig)) goto checked;

fin = trig

while (!value(req.final, p, fin, trig)) {

if (value(req.release, p, fin, trig)) goto checked;

if (!value(req.invariant, p, fin, trig)) return false;

fin++;

if (fin == len) goto checked;

}

del = fin;

while (!value(req.delay, p, del, fin) &&

!value(req.reaction, p, del + 1, fin)) {

if (value(req.release, p, del, trig)) goto checked;

if (!value(req.invariant, p, del, fin)) return false;

del++;

if (del == len) goto checked;

}

if (!value(req.release, p, del, trig) &&

value(req.delay, p, del, fin) &&

!value(req.invariant, p, del, fin)) return false;

}

checked: trig++;

}

return true;

}

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

https://doi.org/10.5281/zenodo.4445663

EDTL Requirements: LTL semantics

EDTL requirement ℛ is satisfied in a control system C iff

LTL formula Φℛ is satisfied in MC for every initial path:

Φℛ =

G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

 MC is a Kripke structure for control system C

 Its initial path starts from an initial state

15/34

EDTL Requirements: LTL semantics

Φℛ =

G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

16/34

EDTL Requirements: LTL semantics

G(trigger ∧ ¬release → invariant ∧

(G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨

(final ∧ (invariant ∧ ¬delay U (release ∨

(invariant ∧ reaction))))))).

17/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

Consistency of EDTL Requirements

Consistency: Definitions

Φℛ = G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

Satisfiability of EDTL-requirements

 Requirement ℛ is satisfiable iff there exists a Kripke structure Mℛ that for

every initial path π:

Mℛ, π ⊨ Φℛ.

 This Mℛ is a model for ℛ: Mℛ ⊨ Φℛ

The checking inconsistency problem for EDTL requirements

 Requirement ℛ’ is inconsistent with satisfiable requirement ℛ iff in every

model Mℛ there exists an initial path π of Mℛ :

Mℛ, π ⊭ Φℛ ∧ Φℛ’

 The checking inconsistency problem for EDTL requirements is to check if

two EDTL requirements are inconsistent.

18/34

Consistency: Method

Φℛ = G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction)))))))

Φℛ = G(tr → Ψ) and Φℛ’ = G(tr’ → Ψ’).

To check Mℛ, π ⊭ Φℛ ∧ Φℛ’

¬(Φℛ ∧ Φℛ’) ∧ (tr → tr’) ⇒ ¬G(tr → (Ψ ∧ Ψ’))

Assumptions

 tr → tr’

 Mℛ ⊨ Φℛ

Method

 Find predicates on EDTL attributes of ℛ and ℛ’ which is true iff ℛ and ℛ’

are inconsistent.

 Function Compare : Req⨯Req → {consistent, inconsistent, unknown}

19/34

Consistency: Algorithm

The main algorithm Consistency_Checker

 Input: a set of EDTL requirements Reqs

 Output: the lists of inconsistent, consistent and undefined requirements

 Complexity: quadratic w.r.t. the size of Reqs

 Call: function Decide

The function Decide

 Input: EDTL requirements ℛ and ℛ’

 Output: {consistent, inconsistent, unknown}

 Complexity: constant

 Call: function imply, function Compute_semantics, function Compare

20/34

Consistency: Algorithm

The function imply

 Input: EDTL formulas f and f ’

 Output: {true, false}

 Complexity: exponential w.r.t. the size of f and f ’

The function Compute_semantics

 Input: EDTL requirements ℛ and ℛ’

 Output: {true, false, other}

 Complexity: linear w.r.t. the size of ℛ and ℛ’

The function Compare

 Input: EDTL requirements ℛ and ℛ’

 Output: {consistent, inconsistent, unknown}

 Complexity: exponential w.r.t. the size of attributes of ℛ and ℛ’

21/34

Consistency: Algorithm

Theorem

 There exists the algorithm partially solving the checking inconsistency
problem for EDTL requirements which takes quadratic time w.r.t. the size
of the set of requirements and exponential time w.r.t. the size of the
requirements' attributes.

Let the size of every EDTL attribute of each EDTL requirement be a

Standard automata-based satisfiability checking algorithms for LTL formula φ

 exponential time Ts(φ) w.r.t. the size of φ

 Ts(Φℛ ∧ Φℛ’) ≥ 220a

The most expensive function Decide

 the time complexity Td(ℛ, ℛ’) = Timply + Tcompare

 Td(ℛ, ℛ’) ≤ 28a

22/34

Simplification and Classification of

EDTL Requirements

Simplification and Classification: the Idea

 Simultaneous supply of signals "Up" and "Down" to the elevator motor is

prohibited.

 LTL semantics:

◦ G(true ∧ ¬false→ ¬(Up ∧ Down) ∧ (G(¬(Up ∧ Down) ∧ ¬true) ∨
(¬(Up ∧ Down) ∧ ¬true) U (false ∨ (true ∧ (¬(Up ∧ Down) ∧ ¬true)

U (false ∨ true ∧ ¬(Up ∧ Down))))))

 Reduced LTL semantics:

◦ G(¬(Up ∧ Down))

23/34

trigger release final delay invariant reaction
true false true true ¬(Up ∧ Down) true

Simplification: the Rules

24/34

Standard Special

φ → ψ ≡ ¬φ ∨ ψ

…

φ ∧ G(φ ∧ ψ) ≡ G(φ ∧ ψ)

φ ∨ F(φ) ≡ F(φ)

φ ∨ F(φ ∨ ψ) ≡ F(φ ∨ ψ)

G(¬φ) ∨ F(φ) ≡ true

φ ∧ (ψU φ) ≡ φ

φ ∧ (φU ψ) ≡ φU ψ

φ ∨ (ψU φ) ≡ ψU φ

Simplification: the Algorithm

25/34

EDTL2LTL(trig, rel, fin, del, inv, rea) = (

let f0 = con(inv, rea);

let f1 = dis(rel, f0);

let f2 = con(inv, no(del));

let f3 = Until(f2, f1);

let f4 = con(fin, f3);

let f5 = dis(rel, f4);

let f6 = con(inv, no(fin));

let f7 = Until(f6, f5);

let f8 = Globally(inv, no(fin));

let f9 = dis(f8, f7);

let f10 = con(inv, f9);

let f11 = con(trig, no(rel));

let f12 = impl(f11, f10);

Globally(f12)

)

Until(a, b) = match(a, b) with

_, False => False |

False, f => f |

True, f:NonConst => Future(f) |

f, True => True

f, f => f |

not(f), f => F(f) |

and(f, g), or(f, h) => or(f, h) |

_, _ => U(a, b);

φ U false = false

false U φ = φ

true U φ = F φ

φ U true = true

φ U φ = φ

¬φ U φ = F φ

(φ∧χ) U (φ∨ψ) = φ ∨ ψ

Classification by Simplification: Classes

26/34

Classification by Simplification: Classes

27/34

№ Class formula capacity

1 G(rel) 28

2 G(inv) 13

3 G(¬fin) 3

4 G(¬trig) 33

5 G(inv ∧ ¬fin) 3

6 G(trig → rel) 28

7 G(trig → inv) 4

8 G(trig → G(inv)) 9

9 G(trig → G(¬fin)) 3

10 G(trig → G(inv ∧ ¬fin)) 3

11 G(¬rel → (inv ∧ (G(inv) ∨ (inv U rel)))) 9

12 G(¬rel → (G(¬fin) ∨ (¬fin U (rel ∨ fin)))) 3

13 G((trig ∧ ¬rel) → (inv ∧ (G(inv) ∨ (inv U rel)))) 9

14 G((trig ∧ ¬rel) → (G(¬fin) ∨ (¬fin U (rel ∨ fin)))) 3

19 G(inv ∧ (G(inv ∧ ¬fin) ∨ ((inv ∧ ¬fin) U (fin ∧ inv)))) 2

16 G(trig → (inv ∧ (G(inv ∧ ¬fin) ∨ ((inv ∧ ¬fin) U (fin ∧ inv))))) 2

19 false 33

18 true 459

Simplification and Classification: Applications

Converting EDTL requirements into LTL formulas

 model checkers

 generating test scenarios

 the classification of EDTL requirements

The classification of EDTL requirements

 diagnosing errors when specifying requirements

 developing a canonical form of requirements,

 defining attribute default values

 developing methods for explaining EDTL requirements in natural language

28/34

NL-translation of

EDTL Requirements

NL-translation: Motivation

 If the dryer (D) was not turned on and hands (H) appeared, it will turn on ASAP

 G(trig → rea)

 G(/H ∧ ¬D→ D’)

29/34

trigger release final delay invariant reaction
/H ∧ ¬D false true true true D’

NL-translation: the Algorithm

30/34

NL sentence

EDTL requirement
table

Classification table
NL pattern

Finder
ReplacerNL pattern

EDTL attribute
decoding

NL patterns for
EDTL requirements

NL-translation: ToDo

 NL patterns for EDTL requirements

◦ EDTL representation

 The reaction <rea> to the <trig> event

must appear no later than the event

◦ LTL representation

 G (inv)

 Always <inv>

◦ Corpus of requirements

 If there are no further requests, the elevator must stop and become idle.

 The doors must always be closed when the elevator is moving.

 When <trig> then <inv>.

31/34

trigger release final delay invariant reaction
trig false true del true rea

NL sentence

EDTL requirement
table

Classification table
NL pattern

Finder
ReplacerNL pattern

EDTL attribute
decoding

NL patterns for
EDTL requirements

NL-translation: ToDo

 EDTL attribute decoding

◦ The reaction <rea> to the event <trig> must appear no later than the
event

 trig = /RcvdX – signal X is received

 del = passed(2s) – 2s passed

 rea = X_rcvdBit – set bit X_received

 The reaction “set bit X_received” to the event “signal X is received” must
appear no later than the “2s passed” event

 When signal X is received, the system shall set the signal X received bit
within 2 seconds

 trig = /open – just opened

 del = passed(10s) – 10s passed

 rea = ¬open – closed

 The reaction “closed” to the event “just opened” must appear no later than
the “10s passed” event

 The open signal must be true for no more than 10 seconds.

32/34

NL sentence

EDTL requirement
table

Classification table
NL pattern

Finder
ReplacerNL pattern

EDTL attribute
decoding

NL patterns for
EDTL requirements

Model-Checking EDTL Requirements

Model-Checking EDTL: the Idea

 Reduce CS state space w.r.t. input and output points

 Construct Buchi automaton in advance

33/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

Φℛ =

G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨
(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

EDTL Requirements: ToDo

1. Automata semantics – prove equivalence with FOL, LTL

2. FOL semantics – prove equivalence with Aut, LTL

3. LTL semantics – prove equivalence with FOL, Aut

4. Bounded checking algorithm

5. Consistency checking – implement

6. Automatic translation to LTL – add Boolean translations

7. Semantic classification – refinement rules

8. NL representation – improve

9. Automatic generation of dynamic verifier

10. The corpus of EDTL requirements – extend

11. Model checking (the idea) – refine and develop

34/34

Plans

 Develop consistency-checking methods for EDTL requirements

 Formally prove

◦ the equivalence of LTL and FOL semantics

◦ soundness of the bounded-checking algorithm

 Develop and implement EDTL-specialized verification

◦ dynamic verification

◦ model checking

◦ deductive verification

 Add support for pattern composition to the notation

