
Event-Driven

Temporal Logic for

Control Software Requirements

Vladimir Zyubin, Igor Anureev, Natalia Garanina, Sergey Staroletov,

Anastasia Getmanova, Anna Gnezdilova, Alexandra Grivtsova

Institute of Automation and Electrometry

Institute of Informatics Systems

Novosibirsk State University

Altay State University

Novosibirsk

Russia

Motivation: Client-Contractor Problem

Safety-critical Control Software and Formal Methods

 Problems

◦ the size of systems implies a high price of using formal methods

◦ the conceptual divergence in requirements understanding

 Control software development: client-contractor paradigm

◦ the clients think in terms of events, timeouts, processes and states

 the contractors: the programming languages they use

◦ the clients: do not care about the internal structure of control software

 the contractors: do not care about the internal structure of the plant

◦ the clients already implicitly assume a control algorithm by design

 the contractors must reveal and implement this hidden algorithm

 How to easy formulate a complete and correct set of requirements

1/34

Motivation: General Principles of Specification

A requirements specification should be:

1. user-friendly

◦ concepts of events and reactions

2. independent of control software design and implementation

◦ the black box principle

 use just terms of inputs and outputs

 no inner structure of software/hardware

3. strict

◦ formal semantics

4. universal

◦ not orientated towards any particular verification technique

2/34

Motivation: Known Solutions

 A pattern-restricted natural language (e. g. ISO/IEC/IEEE 29148)

 Domain-oriented (FSM-based) languages

 Graphic notations (UML, Statecharts)

 Formal requirement pattern languages (RSL, RSML)

 Do not meet all the requirements for requirements

1. user-friendly

2. independent (black box)

3. strict

4. universal

3/34

EDTL Requirements: Definition

 EDTL requirement is a tuple:

ℛ = (trigger, invariant, final, delay, reaction, release)

4/34

Attribute Description

trigger the starting trigger event of the requirement

invariant a condition;

holds until the reaction or release

final the trigger for ending event of the requirement;

wait for the reaction

delay the possible delay for the reaction since the final

reaction the ending event of the requirement

release cancels the requirement statements

EDTL Requirements: Time Ordering of Events

 EDTL requirement is a tuple:

ℛ = (trigger, invariant, final, delay, reaction, release)

5/34

Following each trigger event, the invariant must hold true until either a release event

or a final event. The invariant must also hold true after final event till either the release

event or a reaction, and besides the reaction must take place within the specified

allowable delay from the final event.

EDTL Requirements Syntax: Types and Terms

Types

 integers

 floating points

 Boolean

 time: 1h, 1s, etc.

EDTL-terms

 c – a constant of type T

 v – a variable of type T

 f(u1, …, un) – a function

◦ ui – a term

◦ f can be a standard arithmetic operation or relation, Boolean or C-like

bitwise operation

6/34

EDTL Requirements Syntax: Formulas

EDTL formulas

 Let φ and ψ be EDTL formulas. Then:

◦ ETDL term of type bool is an atomic EDTL formula

◦ ¬φ is the negation

◦ φ ∧ ψ is the conjunction

◦ φ ∨ ψ is the disjunction

◦ \φ is the falling edge: the value of φ changes from false to true

◦ /φ is the rising edge: the value of φ changes from true to false

◦ _φ is low steady-state: the value of φ remains equal to false

◦ ~φ is high steady-state: the value of φ remains equal to true

7/34

EDTL Requirements: the Hand Dryer Example

1. If the dryer is on (D, trigger), then it turns off (¬D, reaction) after no

hands (\H, trigger) are present for 1 second

2. If the dryer was not turned on and hands appeared (/H ∧ ¬D , trigger), it

will turn on (D, reaction) ASAP (true, final)

8/34

trigger release final delay invariant reaction
\H ∧ D H passed 1s true D ¬D

trigger release final delay invariant reaction
/H ∧ ¬D false true true true D

EDTL Requirements: Progress

1. Automata semantics

2. FOL semantics

3. LTL semantics

4. Bounded checking algorithm

5. Consistency checking

6. Automatic translation to LTL

7. Semantic classification

8. NL representation

9. Automatic generation of dynamic verifier

10. The corpus of EDTL requirements

11. Model checking (the idea)

9/34

Semantics of EDTL Requirements

EDTL Requirements: Automata Semantics

EDTL requirement ℛ is

satisfied in a control system C iff

Buchi automata Aℛ accepts

serial evaluations of EDTL attributes

in all behaviors of C.

Aℛ = (Q, Σ, δ, q0, F)

Q – {START, FAIL1, FAIL2, trigger,

invariant1, invariant2, final, delay,

reaction, release1, release2}

Σ – {true, false}

δ – trigger⨯true → release1, etc.

q0 – START

F – Q\{FAIL1, FAIL2}

10/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

EDTL Requirements: Automata Semantics

11/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

EDTL Requirements: Automata Semantics

At “read” marks the oracle

 takes new input values and

 evaluates Aℛ states (true/false)

12/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

read

read

read

read

read

read

EDTL Requirements: FOL semantics

 EDTL requirement ℛ is satisfied in a control system C iff

the following FOL formula Fℛ is true for every initial path π0:

Fℛ = ∀ π0 ∊ CS ∀ t ∊ [1, +) (

value(trigger, π0, T, 0) ⇒ (

∃ F ∊ [T, +)∃ R ∊ (F, +)

value(final, π0, F, T) ∧ value(invariant, π0, F, T) ∧ value(reaction, π0, R, F) ∧

∀ i ∊ [T, F) (¬value(release, π0, i, T) ∧ value(invariant, π0, i, T) ∧ ¬value(final, π0, i, T)) ∧

∀ i ∊ [F, R) (¬value(release, π0, i, T) ∧ value(invariant, π0, i, T) ∧

¬delay(reaction, π0, i, F) ∧ ¬value(reaction, π0, i, F)) ∨

∃ F ∊ [T, +)

value(final, π0, F, T) ∧ value(invariant, π0, F, T) ∧

∀ i ∊ [T, F) (¬value(release, π0, i, T) ∧ value(invariant, π0, i, T) ∧ ¬value(final, π0, i, T)) ∧

∀ i ∊ [F, +) (∀ j ∊ [F, i] (¬value(release, π0, j, F)) ⇒

∀ j ∊ [F, i](value(invariant, π0, j, T) ∧ ¬delay(reaction, π0, i, F) ∧ ¬value(reaction, π0, j+1, F))) ∨

∀ i ∊ [T, +) (∀ j ∊ [T, i] (¬value(release, π0, j, F)) ⇒

∀ j ∊ [T, i] (value(invariant, π0, j, T) ∧ ¬value(final, π0, j, T))))) 13/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

The Bounded Checking Algorithm

 Follows FOL formula Fℛ (old vers.)

 Uses selected bounded paths

 https://doi.org/10.5281/zenodo.4445663

14/34

bool take (struct req, array pp) {

for (i = 0, i < n, i++)

if !check (req, pp[i]) return false;

return true;

}

bool check (struct req, array p) {

trig = 1;

while (trig < len) {

if (value(req.trigger, p, trig, 0) {

if (value(req.release, p, trig, trig)) goto checked;

fin = trig

while (!value(req.final, p, fin, trig)) {

if (value(req.release, p, fin, trig)) goto checked;

if (!value(req.invariant, p, fin, trig)) return false;

fin++;

if (fin == len) goto checked;

}

del = fin;

while (!value(req.delay, p, del, fin) &&

!value(req.reaction, p, del + 1, fin)) {

if (value(req.release, p, del, trig)) goto checked;

if (!value(req.invariant, p, del, fin)) return false;

del++;

if (del == len) goto checked;

}

if (!value(req.release, p, del, trig) &&

value(req.delay, p, del, fin) &&

!value(req.invariant, p, del, fin)) return false;

}

checked: trig++;

}

return true;

}

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

https://doi.org/10.5281/zenodo.4445663

EDTL Requirements: LTL semantics

EDTL requirement ℛ is satisfied in a control system C iff

LTL formula Φℛ is satisfied in MC for every initial path:

Φℛ =

G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

 MC is a Kripke structure for control system C

 Its initial path starts from an initial state

15/34

EDTL Requirements: LTL semantics

Φℛ =

G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

16/34

EDTL Requirements: LTL semantics

G(trigger ∧ ¬release → invariant ∧

(G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨

(final ∧ (invariant ∧ ¬delay U (release ∨

(invariant ∧ reaction))))))).

17/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

Consistency of EDTL Requirements

Consistency: Definitions

Φℛ = G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

Satisfiability of EDTL-requirements

 Requirement ℛ is satisfiable iff there exists a Kripke structure Mℛ that for

every initial path π:

Mℛ, π ⊨ Φℛ.

 This Mℛ is a model for ℛ: Mℛ ⊨ Φℛ

The checking inconsistency problem for EDTL requirements

 Requirement ℛ’ is inconsistent with satisfiable requirement ℛ iff in every

model Mℛ there exists an initial path π of Mℛ :

Mℛ, π ⊭ Φℛ ∧ Φℛ’

 The checking inconsistency problem for EDTL requirements is to check if

two EDTL requirements are inconsistent.

18/34

Consistency: Method

Φℛ = G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨

(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction)))))))

Φℛ = G(tr → Ψ) and Φℛ’ = G(tr’ → Ψ’).

To check Mℛ, π ⊭ Φℛ ∧ Φℛ’

¬(Φℛ ∧ Φℛ’) ∧ (tr → tr’) ⇒ ¬G(tr → (Ψ ∧ Ψ’))

Assumptions

 tr → tr’

 Mℛ ⊨ Φℛ

Method

 Find predicates on EDTL attributes of ℛ and ℛ’ which is true iff ℛ and ℛ’

are inconsistent.

 Function Compare : Req⨯Req → {consistent, inconsistent, unknown}

19/34

Consistency: Algorithm

The main algorithm Consistency_Checker

 Input: a set of EDTL requirements Reqs

 Output: the lists of inconsistent, consistent and undefined requirements

 Complexity: quadratic w.r.t. the size of Reqs

 Call: function Decide

The function Decide

 Input: EDTL requirements ℛ and ℛ’

 Output: {consistent, inconsistent, unknown}

 Complexity: constant

 Call: function imply, function Compute_semantics, function Compare

20/34

Consistency: Algorithm

The function imply

 Input: EDTL formulas f and f ’

 Output: {true, false}

 Complexity: exponential w.r.t. the size of f and f ’

The function Compute_semantics

 Input: EDTL requirements ℛ and ℛ’

 Output: {true, false, other}

 Complexity: linear w.r.t. the size of ℛ and ℛ’

The function Compare

 Input: EDTL requirements ℛ and ℛ’

 Output: {consistent, inconsistent, unknown}

 Complexity: exponential w.r.t. the size of attributes of ℛ and ℛ’

21/34

Consistency: Algorithm

Theorem

 There exists the algorithm partially solving the checking inconsistency
problem for EDTL requirements which takes quadratic time w.r.t. the size
of the set of requirements and exponential time w.r.t. the size of the
requirements' attributes.

Let the size of every EDTL attribute of each EDTL requirement be a

Standard automata-based satisfiability checking algorithms for LTL formula φ

 exponential time Ts(φ) w.r.t. the size of φ

 Ts(Φℛ ∧ Φℛ’) ≥ 220a

The most expensive function Decide

 the time complexity Td(ℛ, ℛ’) = Timply + Tcompare

 Td(ℛ, ℛ’) ≤ 28a

22/34

Simplification and Classification of

EDTL Requirements

Simplification and Classification: the Idea

 Simultaneous supply of signals "Up" and "Down" to the elevator motor is

prohibited.

 LTL semantics:

◦ G(true ∧ ¬false→ ¬(Up ∧ Down) ∧ (G(¬(Up ∧ Down) ∧ ¬true) ∨
(¬(Up ∧ Down) ∧ ¬true) U (false ∨ (true ∧ (¬(Up ∧ Down) ∧ ¬true)

U (false ∨ true ∧ ¬(Up ∧ Down))))))

 Reduced LTL semantics:

◦ G(¬(Up ∧ Down))

23/34

trigger release final delay invariant reaction
true false true true ¬(Up ∧ Down) true

Simplification: the Rules

24/34

Standard Special

φ → ψ ≡ ¬φ ∨ ψ

…

φ ∧ G(φ ∧ ψ) ≡ G(φ ∧ ψ)

φ ∨ F(φ) ≡ F(φ)

φ ∨ F(φ ∨ ψ) ≡ F(φ ∨ ψ)

G(¬φ) ∨ F(φ) ≡ true

φ ∧ (ψU φ) ≡ φ

φ ∧ (φU ψ) ≡ φU ψ

φ ∨ (ψU φ) ≡ ψU φ

Simplification: the Algorithm

25/34

EDTL2LTL(trig, rel, fin, del, inv, rea) = (

let f0 = con(inv, rea);

let f1 = dis(rel, f0);

let f2 = con(inv, no(del));

let f3 = Until(f2, f1);

let f4 = con(fin, f3);

let f5 = dis(rel, f4);

let f6 = con(inv, no(fin));

let f7 = Until(f6, f5);

let f8 = Globally(inv, no(fin));

let f9 = dis(f8, f7);

let f10 = con(inv, f9);

let f11 = con(trig, no(rel));

let f12 = impl(f11, f10);

Globally(f12)

)

Until(a, b) = match(a, b) with

_, False => False |

False, f => f |

True, f:NonConst => Future(f) |

f, True => True

f, f => f |

not(f), f => F(f) |

and(f, g), or(f, h) => or(f, h) |

_, _ => U(a, b);

φ U false = false

false U φ = φ

true U φ = F φ

φ U true = true

φ U φ = φ

¬φ U φ = F φ

(φ∧χ) U (φ∨ψ) = φ ∨ ψ

Classification by Simplification: Classes

26/34

Classification by Simplification: Classes

27/34

№ Class formula capacity

1 G(rel) 28

2 G(inv) 13

3 G(¬fin) 3

4 G(¬trig) 33

5 G(inv ∧ ¬fin) 3

6 G(trig → rel) 28

7 G(trig → inv) 4

8 G(trig → G(inv)) 9

9 G(trig → G(¬fin)) 3

10 G(trig → G(inv ∧ ¬fin)) 3

11 G(¬rel → (inv ∧ (G(inv) ∨ (inv U rel)))) 9

12 G(¬rel → (G(¬fin) ∨ (¬fin U (rel ∨ fin)))) 3

13 G((trig ∧ ¬rel) → (inv ∧ (G(inv) ∨ (inv U rel)))) 9

14 G((trig ∧ ¬rel) → (G(¬fin) ∨ (¬fin U (rel ∨ fin)))) 3

19 G(inv ∧ (G(inv ∧ ¬fin) ∨ ((inv ∧ ¬fin) U (fin ∧ inv)))) 2

16 G(trig → (inv ∧ (G(inv ∧ ¬fin) ∨ ((inv ∧ ¬fin) U (fin ∧ inv))))) 2

19 false 33

18 true 459

Simplification and Classification: Applications

Converting EDTL requirements into LTL formulas

 model checkers

 generating test scenarios

 the classification of EDTL requirements

The classification of EDTL requirements

 diagnosing errors when specifying requirements

 developing a canonical form of requirements,

 defining attribute default values

 developing methods for explaining EDTL requirements in natural language

28/34

NL-translation of

EDTL Requirements

NL-translation: Motivation

 If the dryer (D) was not turned on and hands (H) appeared, it will turn on ASAP

 G(trig → rea)

 G(/H ∧ ¬D→ D’)

29/34

trigger release final delay invariant reaction
/H ∧ ¬D false true true true D’

NL-translation: the Algorithm

30/34

NL sentence

EDTL requirement
table

Classification table
NL pattern

Finder
ReplacerNL pattern

EDTL attribute
decoding

NL patterns for
EDTL requirements

NL-translation: ToDo

 NL patterns for EDTL requirements

◦ EDTL representation

 The reaction <rea> to the <trig> event

must appear no later than the event

◦ LTL representation

 G (inv)

 Always <inv>

◦ Corpus of requirements

 If there are no further requests, the elevator must stop and become idle.

 The doors must always be closed when the elevator is moving.

 When <trig> then <inv>.

31/34

trigger release final delay invariant reaction
trig false true del true rea

NL sentence

EDTL requirement
table

Classification table
NL pattern

Finder
ReplacerNL pattern

EDTL attribute
decoding

NL patterns for
EDTL requirements

NL-translation: ToDo

 EDTL attribute decoding

◦ The reaction <rea> to the event <trig> must appear no later than the
event

 trig = /RcvdX – signal X is received

 del = passed(2s) – 2s passed

 rea = X_rcvdBit – set bit X_received

 The reaction “set bit X_received” to the event “signal X is received” must
appear no later than the “2s passed” event

 When signal X is received, the system shall set the signal X received bit
within 2 seconds

 trig = /open – just opened

 del = passed(10s) – 10s passed

 rea = ¬open – closed

 The reaction “closed” to the event “just opened” must appear no later than
the “10s passed” event

 The open signal must be true for no more than 10 seconds.

32/34

NL sentence

EDTL requirement
table

Classification table
NL pattern

Finder
ReplacerNL pattern

EDTL attribute
decoding

NL patterns for
EDTL requirements

Model-Checking EDTL Requirements

Model-Checking EDTL: the Idea

 Reduce CS state space w.r.t. input and output points

 Construct Buchi automaton in advance

33/34

false

START

trigger

release

final

delay FAIL2

FAIL1

invariant

invariant

reaction

release

false

false

false

false

false

true

true

true

true

truefalse

false

true

true

true

Aℛ

1

2

1

2

Φℛ =

G(trigger ∧ ¬release → invariant ∧ (G(invariant ∧ ¬final) ∨
(invariant ∧ ¬final U release ∨ (final ∧

(invariant ∧ ¬delay U (release ∨ (invariant ∧ reaction))))))).

EDTL Requirements: ToDo

1. Automata semantics – prove equivalence with FOL, LTL

2. FOL semantics – prove equivalence with Aut, LTL

3. LTL semantics – prove equivalence with FOL, Aut

4. Bounded checking algorithm

5. Consistency checking – implement

6. Automatic translation to LTL – add Boolean translations

7. Semantic classification – refinement rules

8. NL representation – improve

9. Automatic generation of dynamic verifier

10. The corpus of EDTL requirements – extend

11. Model checking (the idea) – refine and develop

34/34

Plans

 Develop consistency-checking methods for EDTL requirements

 Formally prove

◦ the equivalence of LTL and FOL semantics

◦ soundness of the bounded-checking algorithm

 Develop and implement EDTL-specialized verification

◦ dynamic verification

◦ model checking

◦ deductive verification

 Add support for pattern composition to the notation



