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Talk Outline

• Recap of concurrent systems and their problems

• Race Condition – a canonical problem of concurrent systems

• Blocking and Non-Blocking concurrent algorithms

• Consensus Problem – a theoretical toy for studying concurrent systems

• Consensus Protocol – the solution of a consensus problem

• Consensus Numbers as the measure of synchronization ”strength” for data 
structures and CPU instructions
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…

Registers

CPU ALU (Arithmetic-Logic Unit):
performs arithmetic and logic operations

CU (Control Unit):
chooses the next instruction to execute, etc.

Registers:
Store data required by an executed instruction
(e.g. input arguments)

Key Components of a CPU



4

…

Registers

System Memory

CPU

Communication Bus and System Memory
ALU (Arithmetic-Logic Unit):
performs arithmetic and logic operations

CU (Control Unit):
chooses the next instruction to execute, etc.

Registers:
Store data required by an executed instruction
(e.g. input arguments)

Communication
Bus
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…

Registers

System Memory

CPU

Von Neumann Architecture
ALU (Arithmetic-Logic Unit):
performs arithmetic and logic operations

CU (Control Unit):
chooses the next instruction to execute, etc.

Registers:
Store data required by an executed instruction
(e.g. input arguments)

Communication
Bus

CPU instructions and data
(Von Neumann architecture)
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…

Registers

System Memory

CPU ALU (Arithmetic-Logic Unit):
performs arithmetic and logic operations

CU (Control Unit):
chooses the next instruction to execute, etc.

Registers:
Store data required by an executed instruction
(e.g. input arguments)

Communication
Bus Significant 

performance 
overheads due 
to memory 
access speed

Performance Overheads Related to Memory Access
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…

Registers

System Memory

CPU ALU (Arithmetic-Logic Unit):
performs arithmetic and logic operations

CU (Control Unit):
chooses the next instruction to execute, etc.

Registers:
Store data required by an executed instruction
(e.g. input arguments)

Communication
Bus Significant 

performance 
overheads due 
to memory 
access speed

A “memory wall problem”
- the gap between the CPU and memory access speed

Performance Overheads Related to Memory Access
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…

Registers

System Memory

Cache L1

Cache L(i)

…

CPU

Cache Hierarchy

Cache hierarchy aims at minimizing the gap 
between a CPU speed and a system memory 
access speed 
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…

Registers

System Memory

Cache L1

Cache L(i)

…

CPU

(faster, smaller)

(slower, larger)

Cache hierarchy aims at minimizing the gap 
between a CPU speed and a system memory 
access speed 

Cache Hierarchy



Image is taken from https://www.quora.com/Why-is-Moores-law-no-longer-valid

CPU speed and single-thread 
performance seem not to 
increase since ~2008

Motivation for Multiprocessor Systems:
Moore’s Law Stagnation

4



11Image is taken from https://www.quora.com/Why-is-Moores-law-no-longer-valid

CPU speed and single-thread 
performance seem not to 
increase since ~2008

The number of cores increases instead

Motivation for Multiprocessor Systems:
Moore’s Law Stagnation



12Image is taken from https://www.quora.com/Why-is-Moores-law-no-longer-valid

CPU speed and single-thread 
performance seem not to 
increase since ~2008

The number of cores increases instead

Nowadays, the increase of performance is achieved 
through the number of CPUs (or CPU cores), rather 
than a further increase of CPU speed

Motivation for Multiprocessor Systems:
Moore’s Law Stagnation



13Image is taken from https://www.quora.com/Why-is-Moores-law-no-longer-valid

CPU speed and single-thread 
performance seem not to 
increase since ~2008

The number of cores increases instead

Nowadays, the increase of performance is achieved 
through the number of CPUs (or CPU cores), rather 
than a further increase of CPU speed

Motivation for Multiprocessor Systems:
Moore’s Law Stagnation

Concurrent programming gets important 
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…

Registers

Cache L1

Cache L(i)

…

System Memory

CPU 1
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Cache L2

Cache L3

Cache L2

CPU 2
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Multicore (Multiprocessor) Platform
CPU

System Memory

Single Core vs. Multicore Platform
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System Memory

CPU 1
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Cache L2

Cache L3

Cache L2

CPU 2
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Multicore Platform: Advantages and Disadvantages

Higher execution throughput:
supports multiple threads of execution

Higher performance overheads:

• Expensive context switches and migrations 
between CPUs;

• Preemption overheads (depend on OS, 
significant)
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System Memory

CPU 1
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Cache L2

Cache L3

Cache L2

CPU 2
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Higher execution throughput:
supports multiple threads of execution

Higher performance overheads:

• Expensive context switches and migrations 
between CPUs;

• Preemption overheads (depend on OS, 
significant)

There are multiple other problems as well

Multicore Platform: Advantages and Disadvantages



Execution of a Sample Single-Threaded Program
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unsigned single_thread()

{

unsigned a = 0;

for (unsigned i = 0; i < 1’000’000; i++)

a++;

return a;

}

Function always returns a = 1’000’000



Execution of a Sample Single-Threaded Program
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…

Registers

CPU

Memory Unit

lw $s0, <address>

sw $s1, <address>

1’000’000
loop iterations

addi $s1, $s0,  1

Assumption: No cache considered (for simplicity)

unsigned single_thread()

{

unsigned a = 0;

for (unsigned i = 0; i < 1’000’000; i++)

a++;

return a;

}

Function always returns a = 1’000’000



Execution of a Sample Two-Threaded Program
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void thread1(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

int main() {

unsigned a = 0;

thread first(thread1, &a);

thread second(thread2, &a);
first.join();

second.join();

return 1;
}

What do we expect to happen?



Execution of a Sample Two-Threaded Program
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What do we expect to happen?

• “a” to be equal to 1’000’000 ?

• ~2 times faster computation time ?

void thread1(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

int main() {

unsigned a = 0;

thread first(thread1, &a);

thread second(thread2, &a);
first.join();

second.join();

return 1;
}



Race Condition – a Canonical Problem of Concurrent Systems
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void thread1(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

int main() {

unsigned a = 0;

thread first(thread1, &a);

thread second(thread2, &a);
first.join();

second.join();

return 1;
}

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

Assumption: No cache for simplicity



Race Condition – a Canonical Problem of Concurrent Systems

22

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2void thread1(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

Thread 2
Thread 1

“a” values:
Proc. 1 input reg.

Memory

Proc. 1 output reg.
Proc. 2 input reg.

Proc. 2 output reg.
0

Time

lw $s0, <address>

lw
lw

lw $s0, <address>



Race Condition – a Canonical Problem of Concurrent Systems
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…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2void thread1(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

Thread 2
Thread 1

“a” values:
Proc. 1 input reg.

Memory

Proc. 1 output reg.
Proc. 2 input reg.

Proc. 2 output reg.
0

Time

lw $s0, <address>

lw

0

addi

0
1

lw

0

addi $s1, $s0,  1

lw $s0, <address>



Race Condition – a Canonical Problem of Concurrent Systems
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Time

lw addi sw lw swaddi lw
lw addi sw lw addi sw

“a” values:
lw

Proc. 1 input reg.

Memory 0 1 2

Proc. 1 output reg.
Proc. 2 input reg.

Proc. 2 output reg.

0 1 2
1 2

0 1
1 2

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

1

void thread1(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

Thread 2 writes “1” into memory, instead of expected “2”

Thread 2
Thread 1



Race Condition – a Canonical Problem of Concurrent Systems
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The resulted “a” will be less than 1’000’000

void thread1(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 500’000; i++)

(*a)++;

return a;
}

int main() {

unsigned a = 0;

thread first(thread1, &a);

thread second(thread2, &a);
first.join();

second.join();

return 1;
}

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>



Value “Actuality” for a Program Variable
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There are several values associated to the 
same variable, stored at different locations, 
with a different “actuality”:

• Processor register;

• Different caches;

• Main memory

System Memory

CPU 1
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Cache L2

Cache L3

Cache L2

CPU 2
Core 1

…

Registers

Cache L1

Core 2

…

Registers

Cache L1

Note: the pointer is dedicated to point to a memory cell only 
(not to a processor register, or location in cache)

Values of variable “a” 
of a different actuality



The Notion of Critical Sections

void thread1(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;

}

int main() {

unsigned a = 0;

thread first(thread1, &a);

thread second(thread2, &a);

first.join();

second.join();

return 1;
}

To put critical sections – blocks of code, providing mutual 
exclusion for access to a shared variable

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

27



Race Condition: Explicit Synchronization of Critical Sections

Time

“a” values:
Proc. 1 load reg.

Memory 0

Proc. 1 store reg.
Proc. 2 load reg.

Proc. 2 store reg.

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Thread 2
Thread 1

void thread1(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;

}

28



Race Condition: Explicit Synchronization of Critical Sections

Time

“a” values:

Memory 0

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Thread 2
Thread 1

void thread1(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;

}

lw

Thread 1 entered critical section first

Thread 2 attempts to enter critical section as 
well, but must wait the completion of critical 
section by Thread 1

29

Proc. 1 load reg.

Proc. 1 store reg.
Proc. 2 load reg.

Proc. 2 store reg.



Time

lw addi sw

“a” values:

Memory 0 1

0
1

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Thread 2
Thread 1

void thread1(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;

}

Thread 2 waiting

Critical section of Thread 1
(uninterruptable by Thread 2)

Race Condition: Explicit Synchronization of Critical Sections

30

Proc. 1 load reg.

Proc. 1 store reg.
Proc. 2 load reg.

Proc. 2 store reg.



Time

lw addi sw

“a” values:

Memory 0 1

0
1

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Thread 2
Thread 1

void thread1(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;

}
Critical section of Thread 1

Thread 2 waiting lw addi sw

1
2

2

Critical section of Thread 2

Race Condition: Explicit Synchronization of Critical Sections
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Proc. 1 load reg.

Proc. 1 store reg.
Proc. 2 load reg.

Proc. 2 store reg.



Time

lw addi sw

“a” values:

Memory 0 1

0
1

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Thread 2
Thread 1

void thread1(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;

}
Critical section of Thread 1

Thread 2 waiting lw addi sw

1
2

2

Critical section of Thread 2

Thread 1 waiting

Race Condition: Explicit Synchronization of Critical Sections

32

Proc. 1 load reg.

Proc. 1 store reg.
Proc. 2 load reg.

Proc. 2 store reg.



Time

lw addi sw

“a” values:

Memory 0 1

0
1

…

Registers

CPU1

A Shared
Memory
Unit

…

Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Thread 2
Thread 1

void thread1(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;
}

void thread2(unsigned *a) {

for (unsigned i = 0; i < 100’000; i++)

(*a)++;

return a;

}
Critical section of Thread 1

Thread 2 waiting lw addi sw

1
2

2

Critical section of Thread 2

lw addi

2

Thread 1 waiting

Critical section of Thread 1

Race Condition: Explicit Synchronization of Critical Sections

33

Proc. 1 load reg.

Proc. 1 store reg.
Proc. 2 load reg.

Proc. 2 store reg.
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Blocking vs. Non-Blocking Implementation

The same problem can be solved by blocking or non-blocking approaches

For example, to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable;

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Thread 1 
executes

Thread 2 
executes Time

lw addi sw

“a” values:
Proc. 1 load reg.

Memory 0 1

Proc. 1 store reg.
Proc. 2 load reg.

Proc. 2 store reg.

0
1

Thread 2
Thread 1

Critical section of Thread 1

Thread 2 waits lw addi sw

1
2

2

Critical section of Thread 2

lw addi

2

Thread 1 waits

Critical section of Thread 1

Thread 2 waits
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Blocking vs. Non-Blocking Implementation

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

“a” values:
Proc. 1 load reg.

Memory 0

Proc. 1 store reg.

Thread 1

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

“a” values:
Proc. 1 load reg.

Memory 0

Proc. 1 store reg.

Thread 1

Extra memory for CAS

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used

CAS recap:
1) CAS operation stores a variable value before computation
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

“a” values:
Proc. 1 load reg.

Memory 0

Proc. 1 store reg.
0

1

Thread 1

Extra memory for CAS

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used

CAS recap:
1) CAS operation stores a variable value before computation;
2) Before writing back, CAS operation checks the value to be  

unchanged
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

“a” values:
Proc. 1 load reg.

Memory 0

Proc. 1 store reg.
0

1

1

Thread 1

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used

Extra memory for CAS

CAS recap:
1) CAS operation stores a variable value before computation;
2) Before writing back, CAS operation checks the value to be  

unchanged:
a) If unchanged, CAS overwrites a value
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

“a” values:
Proc. 1 load reg.

Memory 0 1

Proc. 1 store reg.
0

1

Thread 1
CAS recap:
1) CAS operation stores a variable value before computation;
2) Before writing back, CAS operation checks the value to be  

unchanged:
a) If unchanged, CAS overwrites a value;
b) If changed, CAS discards its computation, and repeats 

computation with a new value

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used

Extra memory for CAS
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

Memory 0 1

Proc. 1 store reg.
0

1

Thread 1

2

lw addi sw lw addi sw

1
2

2
3

“a” values:
Proc. 1 load reg.

CAS 
succeeds

CAS 
succeeds

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

Memory 0 1

Proc. 1 store reg.
0

1

Thread 1

2

lw addi sw lw addi sw

1
2

2
3

“a” values:
Proc. 1 load reg.

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

Memory 0 1 (Thread 1)

Proc. 1 store reg.
0

1

Thread 1 lw addi sw lw addi sw

1
2

2
3

“a” values:
Proc. 1 load reg.

Thread 2

Proc. 2 load reg.

Proc. 2 store reg.

lw addi sw lw addi sw

1
1

0

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used

2 (Thread 1)
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

Time

lw addi sw

Memory 0 1 (Thread 1)

Proc. 1 store reg.
0

1

Thread 1

2 (Thread 1)

lw addi sw lw addi sw

1
2

2
3

“a” values:
Proc. 1 load reg.

Thread 2

Proc. 2 load reg.

Proc. 2 store reg.

lw addi sw lw addi sw

10
1

CAS from Thread 2 fails:

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used

Before computation it was “0”, 
but now it is “1”
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

lw addi sw

Memory 0 1 (Thread 1)

Proc. 1 store reg.
0

1

Thread 1

2 (from Thread 1)

lw addi sw lw addi sw

1
2

2
3

“a” values:
Proc. 1 load reg.

Thread 2

Proc. 2 load reg.

Proc. 2 store reg.

lw addi sw lw addi sw

10
1

CAS from Thread 2 fails

Thread 2 takes a new value of a 
shared variable, and recomputes

2

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used
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Blocking vs. Non-Blocking Implementation

…
Registers

CPU1

Shared
Memory

…
Registers

CPU2

lw $s0, <address>

addi $s1, $s0,  1

sw $s1, <address>

addi $s1, $s0,  1

lw $s0, <address>

sw $s1, <address>

lw addi sw

Memory 0 1 (Thread 1)

Proc. 1 store reg.
0

1

Thread 1

2 (from Thread 1)

lw addi sw lw addi sw

1
2

2
3

“a” values:
Proc. 1 load reg.

Thread 2

Proc. 2 load reg.

Proc. 2 store reg.

lw addi sw lw addi sw

10
1

CAS from Thread 2 fails

Thread 2 takes a new value of a 
shared variable, and recomputes

2
CAS for 
Thread 2 
fails again

The same program can be implemented as blocking or non-blocking

For example, these are possible ways to resolve race condition:
1) Blocking: critical sections to provide mutually exclusive access to a 

shared variable; 
2) Non-blocking: for example, by using CAS-like (“compare-and-swap”) 

operations; no critical sections and mutual exclusion used



Concurrent
Algorithms

Blocking Non-blocking

Deadlock-free Starvation-free
(or lockout-free)

Wait-freeLock-free Obstruction-free
(introduced in 2003)

All algorithms that are
NOT proved to be non-blocking*

Failure or suspension of any thread
cannot cause failure or suspension
of another thread

1) If some thread(s) acquire(s)
a lock on a shared resource,
then some thread succeeds;

2) If a thread never succeeds to
acquire a lock, then other
threads acquire locks an infinite
number of times

(Coffman necessary conditions for
a deadlock are available)

Every thread that attempts
to acquire a lock on a shared
resource eventually succeeds

System-wide
progress guaranteed From any point, when a single

thread is executed in isolation
(i.e. with all obstructing threads
suspended), it will finish in a
bounded number of steps

Each thread is 
guaranteed
to finish in a finite 
number
of steps, without any 
waiting

Classification of Concurrent Algorithms

Bounded wait-free
Each thread is guaranteed
to finish in a finite and bounded
number of steps, without
any waiting

Wait-free Population Oblivious
An algorithm performance is not affected 
by the number of threads

* Presence of mutual exclusion is not a sufficient condition
for an algorithm to be blocking

Note: Livelock problem can occur for both, blocking and non-blocking algorithms 47



Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

48

Threads Synchronization by Using a FIFO queue



Threads Synchronization by Using a FIFO queue
Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

Thread 1
1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

A sample consensus protocol:

Thread 2
1 bool proposed = 1;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;
Assumption: for simplicity of explanation, code in line 3 is assumed to execute atomically

49



Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

Thread 1
1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

A sample consensus protocol:

Thread 2
1 bool proposed = 1;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;
Assumption: for simplicity of explanation, code in line 3 is assumed to execute atomically
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Threads Synchronization by Using a FIFO queue



One Feasible Relative Execution Scenario

Linearization
Points

Thread 1 Thread 2

1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

6 bool proposed = 1;

7 bool decision = proposed;

8 if (Q.is_empty()) Q.enqueue(proposed);

9 else decision = Q.dequeue();

10 return decision;

51

Observation:

Both threads always return the same “decision” value, despite being asynchronous and having different “proposed” values! 



Linearization
Points

Thread 1 Thread 2

1 bool proposed = 0;

2 bool decision = proposed;

3 bool proposed = 1;

4 bool decision = proposed;

5 if (Q.is_empty()) Q.enqueue(proposed);

6 if (Q.is_empty()) Q.enqueue(proposed);

7 else decision = Q.dequeue();

8 return decision;

9 else decision = Q.dequeue();

10 return decision;

52

Another Feasible Relative Execution Scenario

Observation:

Both threads always return the same “decision” value, despite being asynchronous and having different “proposed” values! 



Consensus Problem:
An Informal Introduction

• We have n asynchronous threads;

53
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Consensus Problem:
An Informal Introduction

Thread 2
proposes
value “M”

• We have n asynchronous threads;

• Every thread, at some point of its execution, proposes a value (e.g. a local clock time), 
for example, by placing it into a buffer shared among all threads;
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Consensus Problem:
An Informal Introduction

Thread 2
proposes
value “M”

• We have n asynchronous threads;

• Every thread, at some point of its execution, proposes a value (e.g. a local clock time), 
for example, by placing it into a buffer shared among all threads;

Some data structure(s) and 
synchronization primitive(s) used
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Consensus Problem:
An Informal Introduction

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

• We have n asynchronous threads;

• Every thread, at some point of its execution, proposes a value (e.g. a local clock time), 
for example, by placing it into a buffer shared among all threads;

• Propositions by threads are done at a completely random (unpredictable) order;

Some data structure(s) and 
synchronization primitive(s) used

For example, thread 2 makes its propostion before 
thread 1, or vice versa
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Consensus Problem:
An Informal Introduction

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread 2
continues execution

with value “M” Thread 1
continues

with value “M”

• We have n asynchronous threads;

• Every thread, at some point of its execution, proposes a value (e.g. a local clock time), 
for example, by placing it into a buffer shared among all threads;

• Propositions are done at a completely random (unpredictable) order;

• After that point, every thread continues execution with a value, that is the same for all 
other threads (both, which have already made propositions, or are going to do so)

Some data structure(s) and 
synchronization primitive(s) used
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Consensus Problem:
An Informal Introduction

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread 2
continues execution

with value “M” Thread 1
continues

with value “M”

• We have n asynchronous threads;

• Every thread, at some point of its execution, proposes a value (e.g. a local clock time), 
for example, by placing it into some shared buffer;

• Propositions are done at a completely random (unpredictable) order;

• After that point, every thread continues execution with a value, that is the same for all 
other threads (both, which have already made propositions, or are going to do so)

Threads 
prepare 
proposals

Threads execute 
with the same value

Thread does not necessarily 
proceed execution with a 
value it proposed!
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Consensus Problem:
An Informal Introduction

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

• We have n asynchronous threads;

• Every thread, at some point of its execution, proposes a value (e.g. a local clock time), 
for example, by placing it into some shared buffer;

• Propositions are done at a completely random (unpredictable) order;

• After that point, every thread continues execution with a value, that is the same for all 
other threads (both, which have already made propositions, or are going to do so)

Threads 
prepare 
proposals

Threads execute 
with the same value



Before 
consensus 
point

After 
consensus
point
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Consensus Problem:
An Informal Introduction

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

• We have n asynchronous threads;

• Every thread, at some point of its execution, proposes a value (e.g. a local clock time), 
for example, by placing it into some shared buffer;

• Propositions are done at a completely random (unpredictable) order;

• After that point, every thread continues execution with a value, that is the same for all 
other threads (both, which have already made propositions, or are going to do so)

A Consensus Point:
All threads after this point continue 
execution with the same consensus value



Before 
consensus 
point

After 
consensus 
point
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Synchronous and Asynchronous Consensus Problems

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

Two major types of consensus problems:

• Asynchronous: threads do not wait for each other (a wait-freedom requirement);

• Synchronous: When reaching a consensus point, threads wait for each-other, before 
making a consensus decision (threads blocking at a consensus point takes place)

A Consensus Point:
All threads after this point continue 
execution with the same consensus value



Before 
consensus 
point

After 
consensus 
point
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Synchronous and Asynchronous Consensus Problems

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

Two major types of consensus problems:

• Asynchronous: threads do not wait for each other (a wait-freedom requirement);

• Synchronous: When reaching a consensus point, threads wait for each-other, before 
making a consensus decision (threads blocking at a consensus point takes place)

A Consensus Point:
All threads after this point continue 
execution with the same consensus value

Unless stated otherwise, we assume an asynchronous consensus problem (threads are not synchronized)
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An Asynchronous Consensus Problem: An Informal Introduction
The key difficulty is that threads make propositions at an unpredictable order

1st

2d

3d

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

One feasible scenario:

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “P”Thread n
continues
with value “P”

Thread 1
continues

with value “P”

…

…

2d

3d

1st

Another feasible scenario:
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Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

The key difficulty is that threads make propositions at an unpredictable order

1st

2d

3d

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “P”Thread n
continues
with value “P”

Thread 1
continues

with value “P”

…

…

2d

3d

1st

One feasible scenario: Another feasible scenario:

The order of threads proposition typically affects a consensus value

An Asynchronous Consensus Problem: An Informal Introduction
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Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

The key difficulty is that threads make propositions at an unpredictable order

1st

2d

3d

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “P”Thread n
continues
with value “P”

Thread 1
continues

with value “P”

…

…

2d

3d

1st

One feasible scenario: Another feasible scenario:

The order of threads proposition typically affects a consensus value

An Asynchronous Consensus Problem: An Informal Introduction
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Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

The key difficulty is that threads make propositions at an unpredictable order

1st

2d

3d

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “P”Thread n
continues
with value “P”

Thread 1
continues

with value “P”

…

…

2d

3d

1st

One feasible scenario: Another feasible scenario:

The order of threads proposition typically affects a consensus value;
A consensus value is not necessarily the one proposed first

An Asynchronous Consensus Problem: An Informal Introduction
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Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

The key difficulty is that threads make propositions at an unpredictable order

1st

2d

3d

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “P”Thread n
continues
with value “P”

Thread 1
continues

with value “P”

…

…

2d

3d

1st

One feasible scenario: Another feasible scenario:

The order of threads proposition typically affects a consensus value;
A consensus value is not necessarily the one proposed first;
A consensus value must instead satisfy 3 major requirements: value consistency, correctness, and  completeness

An Asynchronous Consensus Problem: An Informal Introduction
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Consensus Value Properties: Correctness, Consistency, and Completeness 

Before 
consensus 
is reached

After 
consensus 
is reached

Thread 1
proposes
value “P”

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

Correctness:
After passing a consensus point, every thread proceeds with the same consensus value

”M” is a consensus value 
for all threads
(correctness property)



Before 
consensus 
is reached

After 
consensus 
is reached
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Consensus Value Properties: Correctness, Consistency, and Completeness 

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

Correctness:
After passing a consensus point, every thread proceeds with the same consensus value

”M” is a consensus value 
for all threads
(correctness property)

Consistency:
A consensus value is the one proposed by some thread

Consensus value ”M” is in 
a set of proposed values
(consistency property)

Thread 1
proposes
value “P”



Before 
consensus 
is reached

After 
consensus 
is reached
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Consensus Value Properties: Correctness, Consistency, and Completeness 

Thread 2
proposes
value “M”

Thread n
proposes value “K”

Thread 2
continues execution

with value “M”Thread n
continues
with value “M”

Thread 1
continues

with value “M”

…

…

A Consensus Point

Correctness:
After passing a consensus point, every thread proceeds with the same consensus value

”M” is a consensus value 
for all threads
(correctness property)

Consistency:
A consensus value is the one proposed by some thread

Consensus value ”M” is in 
a set of proposed values
(consistency property)

Thread 1
proposes
value “P”

Completeness:
Every correct* thread will accept decision at some point

* Incorrect = malfunctioning
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Introduction to Consensus Problem

The consensus problem – an abstract theoretical problem, which has enormous consequences to:

• Concurrent algorithms and hardware architecture

• Distributed computing

• Multi-agent systems

• Many other areas
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Introduction to Consensus Problem

The consensus problem – an abstract theoretical problem, which has enormous consequences to:

• Concurrent algorithms and hardware architecture

• Distributed computing

• Multi-agent systems

• Many other areas

Key idea:

to make all processes (threads) agree on some single value, to proceed with computations further
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Introduction to Consensus Problem

The consensus problem – an abstract theoretical problem, which has enormous consequences to:

• Concurrent algorithms and hardware architecture

• Distributed computing

• Multi-agent systems

• Many other areas

Our key assumption of asynchronous threads:
Unless stated otherwise, we assume an asynchronous consensus problem, with asynchronous 
threads, meaning that
• Threads start execution at completely arbitrary (asynchronous) times;
• Threads propose values at unpredictable order

Key idea:

to make all processes (threads) agree on some single value, to proceed with computations further



Application Examples Description

Clock synchronization in a 
distributed system

The need to synchronize independent clocks (e.g. due to a clock drift)

A widely used Berkeley algorithm for clock synchronization:
1) A time server periodically fetches time from all clients;
2) Averages the result, and
3) Reposts back to all clients;

(An example of a synchronous consensus problem)

Application of Consensus Protocols
The fundamental problem of concurrent and distributed systems
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Application Examples Description

Clock synchronization in a 
distributed system

The need to synchronize independent clocks (e.g. due to a clock drift)

A widely used Berkeley algorithm for clock synchronization:
1) A time server periodically fetches time from all clients;
2) Averages the result, and
3) Reposts back to all clients;

(An example of a synchronous consensus problem)

Application of Consensus Protocols
The fundamental problem of concurrent and distributed systems
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Application Examples Description

Clock synchronization in a 
distributed system

The need to synchronize independent clocks (e.g. due to a clock drift)

A widely used Berkeley algorithm for clock synchronization:
1) A time server periodically fetches time from all clients;
2) Averages the result, and
3) Reposts back to all clients;

(An example of a synchronous consensus problem)

Blockchain Systems
Relies on a fault-tolerant Consensus Problem:
- All threads (peers) must agree on the order of transactions;
- Some threads (peers) can fail or behave maliciously

Application of Consensus Protocols
The fundamental problem of concurrent and distributed systems
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Application Examples Description

Clock synchronization in a 
distributed system

The need to synchronize independent clocks (e.g. due to a clock drift)

A widely used Berkeley algorithm for clock synchronization:
1) A time server periodically fetches time from all clients;
2) Averages the result, and
3) Reposts back to all clients;

(An example of a synchronous consensus problem)

Blockchain Systems
Relies on a fault-tolerant Consensus Problem:
- All threads (peers) must agree on the order of transactions;
- Some threads (peers) can fail or behave maliciously

Academic studies of
non-blocking algorithms

The Consensus Protocol is a toy algorithm, to study the properties of wait-free 
non-blocking algorithms

Application of Consensus Protocols
The fundamental problem of concurrent and distributed systems
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Application Examples Description

Clock synchronization in a 
distributed system

The need to synchronize independent clocks (e.g. due to a clock drift)

A widely used Berkeley algorithm for clock synchronization:
1) A time server periodically fetches time from all clients;
2) Averages the result, and
3) Reposts back to all clients;

(An example of a synchronous consensus problem)

Blockchain Systems
Relies on a fault-tolerant Consensus Problem:
- All threads (peers) must agree on the order of transactions;
- Some threads (peers) can fail or behave maliciously

Academic studies of
non-blocking algorithms

The Consensus Protocol is a toy algorithm, to study the properties of wait-free 
non-blocking algorithms

Application of Consensus Protocols
The fundamental problem of concurrent and distributed systems

Many other application areas as well
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Application Examples Description

Clock synchronization in a 
distributed system

The need to synchronize independent clocks (e.g. due to a clock drift)

A widely used Berkeley algorithm for clock synchronization:
1) A time server periodically fetches time from all clients;
2) Averages the result, and
3) Reposts back to all clients;

(An example of a synchronous consensus problem)

Blockchain Systems
Relies on a fault-tolerant Consensus Problem:
- All threads (peers) must agree on the order of transactions;
- Some threads (peers) can fail or behave maliciously

Academic studies of
non-blocking algorithms

The Consensus Protocol is a toy algorithm, to study the properties of wait-free 
non-blocking algorithms

Application of Consensus Protocols
The fundamental problem of concurrent and distributed systems

Many other application areas as well
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Consensus Protocol for 2 (Asynchronous) Threads by Using a FIFO queue
Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

Thread 1
1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

A sample consensus protocol:

Thread 2
1 bool proposed = 1;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;
Assumption: for simplicity of explanation, code in line 3 is assumed to execute atomically

80

Observation:

Both threads always return the same “decision” value, despite being asynchronous and having different “proposed” values! 

Q.: How to prove this observation? 



Consensus Protocol for 2 (Asynchronous) Threads by Using a FIFO queue
Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

Thread 1
1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

A sample consensus protocol:

Thread 2
1 bool proposed = 1;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;
Assumption: for simplicity of explanation, code in line 3 is assumed to execute atomically
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Observation:

Both threads always return the same “decision” value, despite being asynchronous and having different “proposed” values! 

Q.: How to prove this observation? A.: To enumerate all feasible relative execution scenarios for threads! 



Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree
Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();

82



Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree
Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
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Initial protocol state

Q is empty



Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree
Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();

84

Initial protocol state

Q is empty

Thread 1 move

Thread 2 move



Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree
Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
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Initial protocol state

Q is empty

Thread 1 move

Thread 2 move

Suppose that:
1) thread 1 completes Move 1 before thread 2;

Lin. Points Thread 1 Thread 2

1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);



Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
Thread 1 move

Thread 2 move
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Move 1

Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree

Q is empty

Thread 1 placed “0” into Q: Q = {0}

Initial protocol state

Suppose that:
1) thread 1 completes Move 1 before thread 2;

Lin. Points Thread 1 Thread 2

1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);



Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
Thread 1 move

Thread 2 move
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Initial protocol state

Move 1

Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree

Q is empty

Q = {0}

Q = {0};
Thread 1: decision = 0

Move 2

Suppose that:
1) thread 1 completes Move 1 before thread 2;
2) thread 1 completes Move 2 before thread 2 completes Move 1;

Lin. Points Thread 1 Thread 2

1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;



Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
Thread 1 move

Thread 2 move
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Initial protocol state

Move 1

Move 2

Move 1

Move 2

Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0}

Q = {0};
Thread 2: decision = 0

Q is empty
Suppose that:
1) thread 1 completes Move 1 before thread 2;
2) thread 1 completes Move 2 before thread 2 completes Move 1;
3) thread 2 finally completes Move 1, and then Move 2

Lin. Points Thread 1 Thread 2

1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

6 bool proposed = 1;

7 bool decision = proposed;

8 if (Q.is_empty()) Q.enqueue(proposed);

9 else decision = Q.dequeue();

10 return decision;



Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
Thread 1 move

Thread 2 move
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Initial protocol state

Suppose that:
1) thread 1 completes Move 1 before thread 2;
2) thread 1 completes Move 2 before thread 2 completes Move 1;
3) thread 2 finally completes Move 1, and then Move 2

Move 1

Move 2

Move 1

Move 2

Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0}

Q = {0};
Thread 1: decision = 0
Thread 2: decision = 0

Q = {0};
Thread 2: decision = 0

Q is empty

Lin. Points Thread 1 Thread 2

1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

6 bool proposed = 1;

7 bool decision = proposed;

8 if (Q.is_empty()) Q.enqueue(proposed);

9 else decision = Q.dequeue();

10 return decision;



Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
Thread 1 move

Thread 2 move
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Initial protocol state

Another feasible scenario

Move 1

Move 2

Move 1

Move 2

Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0}

Q = {0};
Thread 1: decision = 0
Thread 2: decision = 0

Q = {0};
Thread 2: decision = 0

Q is empty

Move 1

Move 2

Move 2

Q = {0};
Thread 2: decision = 0

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0};
Thread 1: decision = 0
Thread 2: decision = 0



Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
Thread 1 move

Thread 2 move
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Initial protocol state

Move 1

Move 2

Move 1

Move 2

Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0}

Q = {0};
Thread 1: decision = 0
Thread 2: decision = 0

Q = {0};
Thread 2: decision = 0

Q is empty

Move 1

Move 2

Move 2

Q = {0};
Thread 2: decision = 0

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0};
Thread 1: decision = 0
Thread 2: decision = 0

Question:
Will value of “decision” varible always equal to“0”? 



Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();
Thread 1 move

Thread 2 move
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Initial protocol state

Move 1

Move 2

Move 1

Move 2

Enumeration of Feasible Execution Orders for Threads by Using an Execution Tree

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0}

Q = {0};
Thread 1: decision = 0
Thread 2: decision = 0

Q = {0};
Thread 2: decision = 0

Q is empty

Move 1

Move 2

Move 2

Q = {0};
Thread 2: decision = 0

Q = {0}

Q = {0};
Thread 1: decision = 0

Q = {0};
Thread 1: decision = 0
Thread 2: decision = 0

Move 1

Move 2

Move 1

Move 2

Q = {1}

Q = {1};
Thread 2: decision = 1

Q = {1};

Q = {1};
Thread 1: decision = 1

Q = {1};
Thread 1: decision = 1
Thread 2: decision = 1



An Execution Tree for Consensus Protocol
Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Thread 1 move

Thread 2 move

Consensus (decision) values
93

Initial protocol state



An Execution Tree for Consensus Protocol
Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Thread 1 move

Thread 2 move
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This execution tree enumerates all feasible execution scenarios for 2 asynchronous threads

Initial protocol state



An Execution Tree for Consensus Protocol
Move 1: if (Q.is_empty()) Q.enqueue(proposed);

Move 2:      else decision = Q.dequeue();

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Thread 1 move

Thread 2 move

95
This execution tree enumerates all feasible execution scenarios for 2 asynchronous threads;
Note: if we relax the assumption of Move 1 to be atomic, a tree will be significantly larger

Initial protocol state



Recap: A Consensus Protocol for 2 (Asynchronous) Threads by Using a FIFO queue

96

Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

Thread 1
1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

A sample consensus protocol:

Thread 2
1 bool proposed = 1;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

Assumption: for simplicity of explanation, code in line 3 is assumed to execute atomically

The protocol above synchronizes 2 threads



Recap: A Consensus Protocol for 2 (Asynchronous) Threads by Using a FIFO queue

97

Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

Thread 1
1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

A sample consensus protocol:

Thread 2
1 bool proposed = 1;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

Assumption: for simplicity of explanation, code in line 3 is assumed to execute atomically

The protocol above synchronizes 2 threads

How to synchronize 3 threads by using the same queue?



Recap: A Consensus Protocol for 2 (Asynchronous) Threads by Using a FIFO queue

98

Given:
- 2 asynchronous threads, and
- a FIFO queue, denoted by Q, that provides the following methods:

enqueue( ),  dequeue( ),  is_empty()

Thread 1
1 bool proposed = 0;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

A sample consensus protocol:

Thread 2
1 bool proposed = 1;

2 bool decision = proposed;

3 if (Q.is_empty()) Q.enqueue(proposed);

4 else decision = Q.dequeue();

5 return decision;

Assumption: for simplicity of explanation, code in line 3 is assumed to execute atomically

The protocol above synchronizes 2 threads

How to synchronize 3 threads by using the same queue?

It is impossible to synchronize more than 2 threads by using such a FIFO queue!



Another Example: An Extended FIFO Queue

An extended FIFO queue Q provides 2 methods:
enqueue( ) – to enqueue an element into Q
peek() – to read the first (top) element without modifying Q

Can we solve the consensus problem for 2 threads?

And for 3 threads?
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An Extended FIFO Queue: A Consensus Object for Multiple Threads

An extended FIFO queue Q provides 2 methods:
enqueue( ) – to enqueue an element into Q
peek() – to read the first (top) element without modifying Q

Thread 1
1 int proposed = 1;

2 int decision;

3 Q.enqueue(proposed);

4 decision = Q.peek();

5 return decision;

Consensus protocol for N threads (again, threads are asynchronous):

Thread N
1 int proposed = N;

2 int decision;

3 Q.enqueue(proposed);

4 decision = Q.peek();

5 return decision;

…

An extended queue allows to synchronize an infinite number of threads
(unlike a standard FIFO queue, which applies to 2 threads at most)

100



Object Type Consensus Number

Queues of types: FIFO, double ended, or priority queue 2

An extended queue (supports peek()) Infinite

A register, that supports CAS operation Infinite

Set 2

Atomic register 1

Consensus Numbers for Sample Synchronization Objects

Consensus Number – the number of threads, for which consensus problem is solved
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Object Type Consensus Number

Queues of types: FIFO, double ended, or priority queue 2

An extended queue (supports peek()) Infinite

A register, that supports CAS operation Infinite

Set 2

Atomic register 1

Consensus Numbers for Sample Synchronization Objects

Consensus Theory allows to prove consensus numbers of certain objects

102

Consensus Number – the number of threads, for which consensus problem is solved
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A Binary Consensus Problem

A binary consensus problem is our toy example, to demonstrate a few math 
techniques for:

• proving several properties of a binary consensus protocols, and

• analysing consensus numbers for some concurrent objects

A particular case of a consensus problem, with the following restrictions:

• Only two threads

• Threads propose either 0 or 1 for a consensus value

• 0 and 1 are both reachable consensus values
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Recap: An Execution Tree for a Consensus Protocol
A protocol state characterises:

• the state of every concurrent thread (e.g. the index of an executing instruction, and local variable values);
• the state of (a) concurrent object(s) used for threads synchronisation (e.g. a concurrent queue);

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

A sample 
execution tree
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Recap: An Execution Tree for a Consensus Protocol
A protocol state characterises:

• the state of every concurrent thread (e.g. the index of an executing instruction, and local variable values);
• the state of (a) concurrent object(s) used for threads synchronisation (e.g. a concurrent queue);

An execution tree of a consensus protocol – a set of all feasible protocol states and transitions between them

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

A sample 
execution tree
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An Execution Tree for a Consensus Protocol
A protocol state characterises:

• the state of every concurrent thread (e.g. the index of an executing instruction, and local variable values);
• the state of (a) concurrent object(s) used for threads synchronisation (e.g. a concurrent queue);

An execution tree of a consensus protocol – a set of all feasible protocol states and transitions between them

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

A sample 
execution tree

An execution tree:

• Node – a protocol state
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An Execution Tree for a Consensus Protocol
A protocol state characterises:

• the state of every concurrent thread (e.g. the index of an executing instruction, and local variable values);
• the state of (a) concurrent object(s) used for threads synchronisation (e.g. a concurrent queue);

An execution tree of a consensus protocol – a set of all feasible protocol states and transitions between them

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

A sample 
execution tree

An execution tree:

• Node – a protocol state
• Edge – move by one of the threads, that 

leads to a new state
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An Execution Tree for a Consensus Protocol
A protocol state characterises:

• the state of every concurrent thread (e.g. the index of an executing instruction, and local variable values);
• the state of (a) concurrent object(s) used for threads synchronisation (e.g. a concurrent queue);

An execution tree of a consensus protocol – a set of all feasible protocol states and transitions between them

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 0 0 1 1 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

An execution tree:

• Node – a protocol state
• Edge – move by one of the threads, that 

leads to a new state
• Final state is marked with a decision value

A sample 
execution tree



109

The Notion of a Protocol State Valency

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 1 0 0 0 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

• An univalent state: all final states, following from this state, have the same decision (consensus) value

An univalent state:
All following final states have 
the same consensus value

(We shuffled decision values compared to a previous slide)
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The Notion of a Protocol State Valency

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 1 0 0 0 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

• An univalent state: all final states, following from this state, have the same decision (consensus) value

• A bivalent state: the decision value for a consensus problem is not yet fixed

(We shuffled decision values compared to a previous slide)

A bivalent state:
Following final states have 
different consensus values
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The Notion of a Protocol State Valency

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 1 0 0 0 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

• An univalent state: all final states, following from this state, have the same decision (consensus) value

• A bivalent state: the decision value for a consensus problem is not yet fixed

• An X-valent state: an univalent state with decision value X

(We shuffled decision values compared to a previous slide)

A 0-valent state:
All following final states 
have “0” as consensus value
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The Notion of a Protocol State Valency

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 1 0 0 0 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

• An univalent state: all final states, following from this state, have the same decision (consensus) value

• Bivalent state: the decision value for a consensus problem is not yet fixed

• X-valent state: an univalent state with decision value X

An univalent state:
All following final states have 
the same consensus value

(We shuffled decision values compared to a previous slide)

A bivalent state:
Following final states have 
different consensus values

A 0-valent state:
All following final states 
have “0” as consensus value
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Graphical Notation for Univalent and Bivalent States

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

Move 1

Move 2 Move 2

Move 2 Move 2

0 1 0 0 0 1

Initial
state

Decision (consensus) values

Thread 1 move
Thread 2 move

An univalent state:
All following final states have 
the same consensus value

(We shuffled decision values compared to a previous slide)

A bivalent state:
Following final states have 
different consensus values

A 0-valent state:
All following final states 
have “0” as consensus value



Thread A moves

Thread B moves

- Bivalent:
the decision value is not yet fixed

Types of protocol states:

- Univalent:
the decision value is fixed;
x-valent: the decision value is x

Edges (thread moves):

1 0 1 1 1 1

X - Final; x – the decision value

An initial
state

Possible final states

Assumption for this sample tree: Each thread moves only twice 114

A Sample Execution Tree for a 2-thread Binary Consensus Problem



1 0 1 1 1 1

Possible final states

An univalent
state A bivalent

state

1 0 1 1 1 1

Possible final states 115

State Valency: Univalent and Bivalent States
The notion of a state valency (bivalent or univalent) is used to prove various theorems

Properties:
• All final states, that follow from any univalent state, correspond to the same decision value
• Final states, that follow from any bivalent state, correspond to different decision values
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Object Type Consensus Number

Read-write register (safe, regular, or atomic type) 1

Memory snapshot primitive 1

FIFO, double ended, or priority queue 2

Set 2

An atomic (n, n(n+1)/2) – register assignment At least n

An atomic multiple assignment into m registers 2m - 2

A read-modify-write (RMW) register At least 2

A register supporting CAS operation Infinite

An extended queue Infinite

Consensus Numbers for Some Concurrent Objects


