Ushakova Mariya Sergeevna

Formal Verification of Data Driven Functional
Parallel Programs

Based on PhD thesis

Scientific adviser: Doctor of Sciences in Technology, professor
Legalov Alexander Ivanovich



Trends and Challenges

The increase of programs complexity makes it essential to
ensure the logical correctness of the program.

Concurrency causes new types of errors:
— deadlocks,

— process races,

— asynchrony,

— resource conflicts.

Creating imperative style parallel programs results in:

— the need to simultaneously control the program logic,
resources and interaction of processes,

— the variety of approaches to parallel programming.



Data Driven Functional Parallel (DDEFP)
Programming

. . X
resources are unlimited, [j

the program is an acyclic data flow graph, ¥
calculations start on data readiness, S,

parallelism is implemented at the level of nl P{ V.
operations, 5 5 ]

no loops, iterative calculations are o]
implemented through recursion, ' '

architecture independence.

fact << funcdef x {
£l << ((x,1):[<=,>]):7?;
act << (1,
{ (x, (x,1):=:fact ):* } );
return << act:fl:.;

}

Source code of the function fact, that calculates the 3

factorial Data flow graph of fact



Program-Forming Operators

X F X @ 1
+ T A EXS

F(X) X X R R NT . >

interpretation constant data copying LOJ :
operator operator operator '

Data grouping operators:

X1 X2 X1l X2 X3 i----

Cu/ﬂw/]'

(X1, X2 X3) (X1, X2 X3] {(X,Y):F}

data list parallel list delay list

4

Data flow graph of fact



Program Execution




Program Execution




Program Execution




The Toolkit for Architecture-Independent
Parallel Programming

Interpreter DDFP program

Y

N O

.

Debugger Translator >
* Formal Verificatiog
Data flow graph

DFG optimisation

g

(DFG)
* Event machim)
and debugger
( Static typing CCFG Generator>
Y
e L. Control flow graph Transferri.n 5
GFG optlmlsatlolDd—b (CFG) to the: specific
architectures
8



The Toolkit for Architecture-Independent
Parallel Programming

Interpreter DDFP program

Y

N ()

A

Debugger Translator >
* Formal Verificatiog
Data flow graph

DFG optimisation

g

(DFG)
* Event machim)
and debugger
( Static typing CCFG Generator>
Y
.. Control flow graph Transferrip g
GFG optlmlsatlolDd—b (CFG) to the: specific
architectures
9



Interpreter of DDFP Programs
(Privalikhin D.V.)

++ Cpega paapaboTiH lNudcparop - [fact. pfg]
Marn PeaakThpogaHke Bwa [Mporpamma  OkHO o Cnpagka

=y = &

|hd

fact << funcdef =
{

£l << ((=,1):[<=,>]1:7;
act << (1,

1 (=%, (x, L :—:fact 1%+ )
return << act:fl:.;

4

(5,11 :[=<,=>] -> [false,true]
[(false,true) :? -> [Z]
[1l,expression) @ [2] —> eXpression
expression:. [(5,1):- -> 4

G:fact (4,1):[=<,>] ->» [fal=se,true]
[false,true)l :? -> [Z]

[l,expression) 1 [2] —-» expression
ExXpression: .

10



Debugger and Verifier of DDFP Programs
(Udalova J. V.)

= ndiarop

dain Pepaktop Mporpamsma HacTpordkw MpoekT Cepeuc CrlpaE. a
B Oh T —+% v [ZL TaE
IDEEE {BRRCDBRAR FWREH T+ Y% VYT CSE ER
TeryLWWA halin: PIFAGORprojects/proba/pr.pfg
TerkyWwwWi npoekT: proba 3anyckaeMan PyYHKUWA: I Y func j L |ﬁ
lptg N1- - N3 - ( N4 - =
oper pfg
operd pfg | |
HEFH n2-{ | s
zaderz pfg
NG - : N7 - {
ME - [
= NS - :
N10 - =
N1 - Param:- B
1| | B
, (Param,0):(=, —-:-‘.' 2
HoMep CTpoKK:
ARG = 101 MNODE = (false.true)
H (NODE.true}:= = false
HoMep cTonfua: MoacTaHoEKE 3HaYeHWA B hopMy el N7 ONepaTopa:
({Param:-}.Param):[{Param,0):{<,==):7]
Q ARG = 101 MODE = [101]
(NODE.O):= = true ~




The Toolkit for Architecture-Independent
Parallel Programming

Interpreter

DDFP program

N O

Debugger

D

g

.

Y

Translator >

Y

FG optimisation

Data flow graph
(DFG)

2

Y

Static typing (CFG Generator>

C

\i/

Y

FG optimisation

Control flow graph
(CFG)

Formal verification

NG

Event machine
and debugger

Transferring
to the specific
architectures

N

N

12



Translator into Data Flow Graph

Source code of function abs,
calculating the absolute value

abs << funcdef arg{
({arg:-},arqg):
[ ((arg, 0) :
[<,>=]):?]:. >> return

}

abs — function name;
arg — input argument;

g :f — application of the
function f to the
argument g;

g <<f — assigning the identifier

g to the result of code f
execution;

return — function return value.

arg

L]

Data flow graph of abs

Scheme of data flow graph
13



Scheme of data flow graph Scheme of control flow
(DFG) graph (CFG) 14
Modified CFG



Event Machine (Matkovskii 1.V.)

Scheduler

I

Event machine

v

v

Event
processor

€r<)

Event
processor

&)

v

Event
processor

&)

15



Event Processor (Matkovskii 1.V.)

Signals of the initial marking

e

Queue of the control signals

Incoming
signals

Generating
signals

Handler of control signals

O®G

Processing the DFG node ¢

Handler of the DFG node

OX00

Querying a
CFG node

Querying a
DFG node

oYfeloXo

5%

Control flow graph
(CFG)

%@@ 7
Mﬁ

Data ﬂow graph
(DFG)

16



The Toolkit for Architecture-Independent
Parallel Programming

Interpreter DDFP program

Y

N O

.

Debugger Translator >
* Formal Verificatiog
Data flow graph

DFG optimisation

(o)

(DFG)
* Event machim)
and debugger
( Static typing CCFG Generator>
|
. e L. Control flow graph Transferri.n 5
GFG optlmlsaude—b (CFG) to the: specific
architectures

17



Optimisation of Data Flow Graph
(Vasilyev V.S.)

. Invariant optimisation is the motion of code from recursions
or massive operations of a parallel list, that do not depend on
the recursion argument or the number of the element in the list;

. Dead-code elimination is the removal of code that does not
affect the program result;

. Duplicate-code elimination (elimination of mutual
subexpressions) is the search of same subgraphs and their
replacement by one subgraph with the help of the data copying
operator;

. Optimisations based on equivalent transformations, that are
determined by algebra of data driven functional parallel

computing model.
18



Optimisation of Data Flow Graph
(Vasilyev V.S.) -

fact << funcdef x {
fl << ((x,1) :[<=,>]) :?;
act << (1,
{ (x, (x,1):-:fact ):* } );
return << act:fl:.;

}

Source code of the function fact, that calculates the
factorial

factl << funcdef x {
one << 1;
x 1 << (x,one);
bl << x_1:<=;
b2 << x_1:>;
fl << (bl,b2):?;
act << (one,
{ (x,x 1:-:factl ):* } );
return << act:fl:.

}

Data flow graph of fact 19
Optimised source code of the function fact after optimisation




The Toolkit for Architecture-Independent
Parallel Programming

Interpreter DDFP program

Y

N O

.

Debugger Translator >
* Formal Verificatiog
Data flow graph

DFG optimisation

g

(DFG)
* Event machim)
and debugger
( Static typing CCFG Generator>
|
e L. Control flow graph Transferri.n.g
GFG optlmlsatlolDd—b (CFG) to the: specific
architectures

20



Transferring to the Specific Architectures

1. Transformation of subset of programs in Pifagor
language to C++ language (Vasilyev V.S.)

2. Transformation of programs in Pifagor language
to Verilog and VHDL language for creating very
large integrated circuits:

2.1. transformation of ordinary DDFP programs
with some restrictions to Verilog and VHDL
(Ryzhenko I.N.);

2.2. design of combinational circuit directly in the
Pifagor language (Romanova D.S.)

21



The Toolkit for Architecture-Independent
Parallel Programming

Interpreter DDFP program

Y

N O

.

Debugger Translator >
* Formal verificatioD
Data flow graph

DFG optimisation

g

(DFG)
* Event machim)
and debugger
( Static typing CCFG Generator>
Y
e L. Control flow graph Transferri.n 5
GFG optlmlsatlolDd—b (CFG) to the: specific
architectures

22



Known Results

Basic approaches to formal verification:

— model checking,

— theorem proving,

— different variants of program refinement.

Toolkits for formal verification:

— Boogie (C, Dafny, Java bytecode, Eiffel),
— C-lightVer (formerly called SPECTRUM),
— LIQUID HASKELL (Haskell),

— Predicate programs verifier.

Automated theorem provers:
HOL, Coq, Isabelle, PVS.

Works of Udalova J.V.:
— debugging of DDFP programes,

— using of verification methods for data correctness analysis. >3



Errors in DDFP Programs

Errors in program semantics.
Program nontermination.

— Occur only as a result of infinite recursion.

— There are no program crashes because there are no partially
defined functions in the language.

There are no errors caused by limited resources, that are typical of
parallel programs.

Analysis of the correctness of DDFP programs is reduced to the
analysis of errors similar to errors in sequential programs.

24



Application of Formal Verification Methods
to DDFP Programs

Method selection criteria;

* The proof of correctness is carried out for the already written
programs.

* The specification language should fully describe the logic of
the program.

* Applicability to a wide class of problems.
e (Capability to automate the proof process.
* Simplicity of the method.

Basic group of methods of formal verification:

e model checking,
e theorem proving,

e program refinement. -



Methods for Formal Verification Applicable
to DDFP Programs

Method based on the Hoare logic
The Hoare triple:

Prog(riam Postcondition
code

Method for proving program termination using
the bound function

 the basis is in the decreasing the value of the bound function
at each iteration;

» allows to extend the method based on the Hoare logic

26



Formal Semantics for DDFP Programming

Language
Program-forming operators: . v
F

X F X X1 X2 X3 X1 X2 X3
Lol ED L ¢
F(X) X X (X1, X2, X3) [X1, X2, X3] {(X,Y):F}
interpretation constant data copying operators of grouping in data list, parallel
operator operator operator list, delay list

Built-in functions of Pifagor language are completely defined.
Examples of the function “minus” execution:

20 g

@ @ASEFUNCERR01§ (BASEFUNCERROR) 27




Formal Semantics for DDFP Programming
Language

Semantic rule for built-in function of integer division with remainder
(p is the argument) :

0 ZERODIVIDE
(int, int p:2 <
(datalist, 2 (Dp.:21.:tt:yzppee), else (a/b, a mod b)
(p:type, p:| else — BASEFUNCERROR

BASEFUNCERROR

The Hoare triples for function of integer division with remainder:

p=(a:int,b:int)A(p[2]#0) | n+94 _, r | r=((a/b):int,(amodb):int)

p=(a:int,b:int)A(p[2]=0) | P:% — T r=ZERODIVIDE

p#(a:int,b:int) P:% — T r= BASEFUNCERROR

28




Method for Proving the Correctness of

DDFP Programs Based on the Hoare Logic

To prove the correctness of DDFP programs, an axiomatic

theory for the Pifagor language is constructed:

— objects are Hoare triple,
— axioms are Hoare triples for built-in functions,
— rules of inference are introduced.

-

Hoare logic for the

Pifagor language

Initial
triple

\ [P]Proglq]

the rule of
forward tracing

Triple with
the empty
program

1] [Qf

K Axiomatic theory%

of the specification

the rule of language
transforming
into alformula Formulas
)
P1=>Q

\_

7




Graphical Representation of a Hoare Triple

An example of a function in
Pifagor that calculates the
composition of two functions

Func << funcdef Xx
x:f:g>>return
Func — function name;
X — input argument;

f, g — functions applied to
the argument.

Labeled data flow graph (LDFG) is a data flow graph, whose
edges are marked with formulas in the specification language 30



Transformations of Data Flow Graph

—>» (PAFAG)=Q

Formula in the
specification
The initial triple Fully marked language

(initial LDFG) LDFG -



Types of Data Flow Graph Transformations

 Edge marking is the marking of graph edges with
formulas in the specification language.

 Folding of the program is the reduction of the
program code.

* Modification of a data flow graph:

1) equivalent transformation is a transformation according to
the rules of equivalent transformations for operators of the
Pifagor language;

2) splitting is LDFG splitting resulting in two or more LDFGs
with modified graphs.

32



Marking Edges with Formulas

X

Theorems for f ;

P, | x:f >
P, | x:f =>r
P, | x:f >r

Q,

Q,

Qs

Each theorem corresponds
to one way of the function

f execution

33



Marking Edges with Formulas

X Theorems for f ;

IP\ P, |x:f -r| Q

Check the satisfiability:

r ------ E P=P, -true
P=P, -false
etur
P=P, -false 34




Marking Edges with Formulas

X [x] .
@0?7—@ (90_‘ :_@ Compact rep;‘(;;lgatlon of
(?)_O_"._- @O;_- severad S
- —> T~a1]
] o -1al (] J xJ

(7] ret Lret] Qi Qe R
Z ®,.

y \ J
< x o=@ —»> ‘
- P '
l...Iq] @C" 1o ial 1]
@C - @ ® | (g
(e
(?)_C-<—|F2| 1Q
) 4 .
ey e several LDFGs with the same
v 3 graphs are represented as a one

LDFG,

J
<
@c" * edges are marked with several
i
l--{q] formulas. 35




-1Q

x:f:g —>r

Folding of the Program

Q X

PAF

X1l:g — r

PAF

36




Modification of a Data-Flow Graph by
Splitting

.
37




Modification of a Data-Flow Graph by
Equivalent Transformation

X
h
O . @ .
Delay list release when

coming to the operator of
interpretation:

{X}:F - [X]:F
X:AF} - X:[F]

]

forp_aims

Parallel list release:

XX, ..., X |'F - [x:F, xF, ... x :F]

13

Xilt, f,...,t] - [Xdf, Xt ..., X ]

38



N

Proof Tree

@OI:__X/‘ 4_@ @ @ —p Formulal
C?D_O_‘I'_ &l @ —p Formula2
1 G1
il O (Go) Formula3
I{eil —> ormuia
(]

AL A
| |

< I <~<|‘ _
> =

B
e

@ —initial triple

1o (O — partially marked graph

O — totally marked graph

39

3 e
o]
(s



Usage of Satisfiability Condition for Axioms
and Theorems

OO 00C QQCéCCQ

‘ — initial triple
(O — partially marked graph

O — totally marked graph

40



Usage of Satisfiability Condition for Axioms
and Theorems

41

~ C
‘ ‘ — initial triple
@ C
>C) (O — partially marked graph
‘ ‘ O — totally marked graph
o
— ways of the program
® @ C
() O execution for which the
satisfability condition is
‘ . ‘ violated
® C
M C
@ C



Usage of Satisfiability Condition for Axioms
and Theorems

‘ — initial triple
(O — partially marked graph

O — totally marked graph

' — ways of the program
execution for which the
satisfability condition is
violated

42




Proving the Recursive Function Correctness

The proof of recursive function f(x){ ...f(t)... } correctness is

divided into two stages:

» proof of partial correctness;

e proof of program termination.

Proving of partial correctness

It is based on the principle of induction.

e The program is supposed to terminate.

e The basis of induction is the proof of the correctness of all trivial

branches of recursion.

all recursive arguments:

P(x)

P(H)|f(t) - r Q

F(x) -r

The inductive assumption is the correctness of the proved triple for

43



Proving of Program Termination

The termination of a function is entirely determined by the
input arguments of the recursive function:

f(x){ ...£(0)... }

1. Sis a well-founded set (any non-empty subset has a
minimal element).

2. © is a bound function, whose arguments are the same as
argument of the recursive function f, and values are
from S

An example for factorial: n! =n - (n-1)!

41 =

4-3!=

4-3-21=
4-3-2-11=4-3-2-1

44



Modification of Triples to Prove Program
Termination

Initial Hoare triple:

Modified Hoare triple:

Postcondition

[ereconion | 90 10.|

O(x) > o(t)

45



Elimination of Mutual Recursion

1. Code merging
(simple case of mutual recursion)

2. Universal Recursive Function constructing

GIGEro - 6

— schematic representation of a function A 16

— schematic representation of a function B call from a function A



An Arbitrary Recursive Function A
Transformation to the Direct Recursion

A(x), B1(x), C(x)
ABC(n,x), n=1,2,3 47



The Example of Function divR Verification

divR << funcdef arg {
x<<arg:1l; y<<arg:2; gl<<arg:3; rl<<arg:4;
(
{(x,y,(gql,1):4, (rl,y) :-) :divR},
(g1, rl)
):[((y,xrl):[<=, >]):?]:. >> return

- V

\U
—
Ll

arg — input argument; YVYVY

arg = (x,vy,ql1, r1 L (kY (L, 1)+, ! -
_g %% q ) L (rL,y):-):divR
x=qly+rt LR :

rl is decreased by y C_v )
ql is increased by 1 _>

repeat while r1>=y (V ) 3 10

Auxiliary function DIV i()

DIV << funcdef arg { |
x<<arg:1l; y<<arg:2; LO—
(x, Y, 0,x) :divR >> return iesj%

}

48



The Example of Function divR Verification

divR << funcdef arg {

x<<arg:1l; y<<arg:2; gl<<arg:3; rl<<arg:4;
(
{(x,y,(q1,1) : 4+, (rl,y) :-) :divR},
(ql,rl)
):[((y,xrl):[<=, >]):?]:. >> return
}
The Hoare triple for divR: L O Y
E (X,y,(q1,1):+, :
L (rLy)-):divR
arg=(x:int,y:int,
q,:int,r :int) A _ res=(q :int,r:int)A
(x=0)A(y>0)A | arg:divR - res| (g=0)A(r=0)a
(q1>0)/\(r1>O)/\ (x:y-q+r)/\(r<y)
(x=y-q+r,)

The Hoare triple for DIV:

res=(q:int,r:int)A
(x=y-q+r)A(r<y)

arg=(x:int, y :int)

(x>0)A(y50) | @rg:DIV - res




The Example of Function divR Verification

arg arg
= ; = ;
1 2 3 4 1 2 3 4
<= >
el
LYywvwy o\ Y.V vy,

 (GY(@L )+, X (Y@L )+,

L (rLy):-):divR L (rLy):-):divR




The Example of Function divR Verification

arg=(x:int, y:int,q,:int,r :int) A
(x=0)A(y>0)A(q,=0)A(r,=0)A
(X:.V'Q1+r1>

XYV,

:(X,y,(q:l.,l):'*', :
' (rly):-):divR

res=(q :int,r:int)A
(g=0)A(r=0)A
(x=y-q+r)A(r<y)




The Example of Function divR Verification

dr arg=(x:int, y:int,q,:int,r:int) A
- (x=0)A(y>0)A(gq,=0)A(r,=0)A
(XZY'q1+r1)

TN Yo / T / \
‘\X% i\y/’% \qﬁl% t\r;,l‘/%

-.!-l:].,

} (XY,(QLL):+,
(r1,y):-).divkR ,

res=(q :int,r:int)A
(g=0)A(r=0)A
(x=y-q+r)A(r<y)




The Example of Function divR Verification

arg=(x:int, y:int,q,:int,r;:int) A
(x=0)A(y>0)A(q,=0)A(r,=0)A
(XZY'Q1+r1)

x=arg[1]

LY VY,

:(X1y!(q1!1):+’ :
:(rl,y):-):divR .

res=(q:int,r:int)A
(q=0)A(r=0)A
(x=y-q+r)A(r<y)




The Example of Function divR Verification

arg=(x:int, y:int,q,:int,r;:int) A
(x=0)A(y>0)A(q,=0)A(r,=0)A
(XZY'Q1+r1)

x=arg[1]

LY VY,

:(X1y!(q1!1):+’ :
:(rl,y):-):divR .

(b,Ebool )A(b,=y>r,)

(b,€bool) A(b,= y<r,)

res=(q:int,r:int)A
(q=0)A(r=0)A
(x=y-q+r)A(r<y)




The Example of Function divR Verification

arg=(x:int, y:int,q,:int,r;:int) A
(x=0)A(y>0)A(q,=0)A(r,=0)A
(XZY'Q1+r1)

x=arg[1]

LY VY,

:(X1y!(q1!1):+’ :
:(rl,y):-):divR .

(b,€bool )A(b,=y>r,;)

(b,€bool) A(b,=y<r,)

(fleint)A(fl=1)A(b,=true)

(fleint)A(fl=2)A(b,=true)

res=(q:int,r:int)A
(q=0)A(r=0)A
(x=y-q+r)A(r<y)




YYYY.

E(X,y,(q1,1):+, i
+ (rL,y):-).divR

The Example of Function divR Verification

ACSACHR R
+ (rL,y):-).divR

Gl

G2

56



The Example of Function divR Verification

ACSACHR R
+ (rL,y):-).divR

Gl

YYYYy.

E(X,y,(ql,l):+, i
+ (rL,y):-)divR

G2

57



The Example of Function divR Verification

ACSACHR R
+ (rL,y):-).divR

Gl

YYYYy.

E(X,y,(ql,l):+, i
+ (rL,y):-)divR

G2

58



The Example of Function divR Verification

/ \ TN L VRN

\ / \Y/ \cl]'

f\lj 1/3

- L

HCSACHR R
+ (rLy):-)divR

il

—————— Q

q,=q,+1

ry=ri,—y

res=(q :int,r:int)A
(q=0)A(r=0)A
(x=y-q+r)A(r<y)

Induction Step:
Assume that all recursive
calls are correct

(%,¥,9,,r,) should satisty the

precondition of the function
divR

(x=0)A(y>0)A
(q2>0)/\(r2>0)/\
(x=y-q,+r,)

Then the output edge res is
marked with postcondition of
function divR

res=(q:int,r:int)A
(g=0)A(r=0)A
(x=y-q+r)A(r<y)

59



The Example of Function divR Verification

P,
iq]; (rl
P,
E(Xiy,(ql,é):g §
b (rL,y):-)divR
( y)) : q,=q,+1
ry=ry,—y

res=(q :int,r:int)A
(q=0)A(r=0)A
(x=y-q+r)A(r<y)

——————————— Q

60

G2



The Example of Function divR Verification

(x=0)A(y>0)A(q,=0)A(r,;=0)A
(x=y-q,+r)A(b, =y <r ) A(b,= y>r,)A
(fl=1)A(b,=true)

N
q,=q,+1
N
r,=r,—y

N

res=(q:int,r:int)A
(q=0)A(r=0)A
(x=y-q+r)A(r<y)

—

res=(q:int,r:int)A
(g=0)A(r=0)A
(x=y-q+r)A(r<y)

Gl

(x> O)/\(y>0)/\(q1>O)A(r1>0)/\

(x=y-q,+r )A(by=y=<r,)A(b,=y>r A

(fl=2)A(b,=true)

N

res=(q,,r,)

G2

61



The Example of Function divR Verification
divR(x,y,q,,r.)

{...divR(x,y,q,tL,r -y) ... }

1. Sis the set of natural numbers.

2. Bound function

yvvy (P(X3Y3q1’r1) —X- (y | ql)
glyy()ql)é?\,; 3. Itis necessary to show that

(P(X5y’q1’r1) > (P(Xsy’q1+13 rl'Y)

X-y-q,>x-y-(q,t1)

Modified Hoare triple for divR:

P(x)A Q(arg,res)A
(pe(int>int> int>int>int))A| arg:divR - res| o(x,y,q,,r,)>
(p=r(x,y,q,,r)):int.x—y-q,) o(x,y,q+1,r,—y)

62




General Scheme of the Toolkit for Supporting

Formal Verification of DDFP Programs

System supporting formal verification of DDFP
programs

Program correctness prover

Graph Proof tree
transformations constructing
Proof process
User > control
Theorem . Final formulas
prover » Graph edges marking generator
\J \J

Axioms and theorems library management system

63



Qain Bwo Jdepeso CnpasBka

PepgakTHpoBaHWe HHP OpMaLMOHHOrO rpada c pasMeTKoMn®

lepeBo OoKa3aTensCcTBa

® (0,0
- @ (0,0,0)
@ (0,0,0,0)

& (0,0,1)

({arginint) and{arg == 0)
and
(Prod(i,i,1,arg)<= INT_MAX) )

€8 353

4: {2311

2: {1}6

(<] '

B

=/ {} v KR

a

Fact =< Funcdef arg {
) == Erue;
C1 =<1;
c3d == 1;
n1 << (arg, c0);
n2 << [<=, =];
n3 ==nl:n2;
n4 =< (n3);
ns == nd:?
né =< c2 =< {c1:Fact}
n11 << c4 << {{arg, (arg, c3):-:Fact):*
n12 == (c2, cd);
n13<==nl2:n5
nl4 ==n13.,;
return ==ni4;

( (return=Prod(i,i,1,arg)) and (arg=0) )
or
((returm=1) and (arg=0) )

64



MHOeKChl pOOMTENBCKNX
dropmyn

PegakTHpoBaHWe pasMeTKH OVrH 4

(1,1)
(1,2)
(1,3)

)=

PepgakTHpoBaHWe HHP OpMaLMOHHOrO rpada c pasMeTKoMn®

Qopmynal | Qopmyna 2

(
(arginint)
and
(arg == 0)
and
(Prod(i,i,1,arg)e= INT_MAX)
)

[ v { &

uncdef arg {
Crue;

1]
(arg, c0);
[<=, =]
mi:n2;
(n3);

n4:?

€2 << {c1:Fact}

P A T = Tl O

n12 == (c2, cd);

(<] ' B

N13 << niz.ns,
nl4 ==n13.,;
return << ni4;

( (return=Prod(i,i,1,arg)) and (arg=0) )
or
((returm=1) and (arg=0) )




Main results and conclusions

A method based on the Hoare logic for verification of DDFP programs
in the Pifagor language has been developed.

— the semantics of the Pifagor language is formalized,

— a language for the specification of program properties has been
developed,

— an axiomatic theory based on the Hoare logic was created.

A method for proving the termination of programs in the Pifagor
language is proposed.

A method for removing the mutual recursion of several functions of the
DDFP program is proposed.

The architecture of the toolkit for supporting the formal verification of
DDFP programs is developed.

A prototype of the toolkit has been developed. 66



Future development

Verification of programs in Pifagor

— integrate a theorem proving assistant;

— aggregate a library of programs with unlimited parallelism;
— verification of the process of program transferring to

real-world architectures.

Verification of programs in Smile (a statically-typed
successor of Pifagor)
— modify the proposed methods to use it for Smile;

— updating the verification toolkit.

67



Thank you for your attention!

68



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

