
Model Checking Games
and a Genome Sequence Search

Sergey Staroletov

Barnaul, February 19, 2021

1 / 60

Briefly about the work

The paper

S M Staroletov 2020. Model checking games and a genome sequence
search. J. Phys.: Conf. Ser. 1679 032020

2 / 60

Briefly about the work

Introduction

To foster interest in logical methods, in particular, formal
verification, it is advisable to train such methods using games and
puzzles
However, the same methods can be used to solve real problems
In this paper, we show the use of non-deterministic programming
for the task of finding a pattern in a genome sequence

3 / 60

Briefly about the work

Motivation

Describe a methodology to solve algorithmic puzzles by the
negation of an LTL formula
Make first steps into computational biology
Touch “Swarm model checking”
Cite friends
Scopus++

4 / 60

Briefly about the work

Reviewers’ comments

Devoted to model checking, accept
Non serious, reject
Too much code
Issues in RNA and DNA description (resolved)

5 / 60

Briefly about the work

In this paper, we

1 focus on the model checking games concept
2 show how to encode real algorithms in Promela
3 discuss an effective string comparison implementation in Promela
4 move to fuzzy string comparison
5 apply it in the genome sequence search
6 discuss ways how to solve hard computation tasks in model

checking using swarm model checking and state hashing
approaches.

6 / 60

Preliminaries

Preliminaries

7 / 60

Preliminaries

Preliminaries

Model checking with SPIN
Bitstate hashing and hashcompact
Swarm model checking
SARS-CoV-2 genome: related information
Substring search methods

8 / 60

Preliminaries

Model checking with SPIN

SPIN1 is a utility for model checking the correctness of distributed
software. The abbreviation SPIN stands for Simple Promela
INterpreter
The SPIN system verifies not the programs themselves, but their
models
To build a model for an original parallel program or an algorithm,
the verifying engineer (usually manually) builds a representation
of this program in a C-like input language, called Promela
(Protocol MEta-LAnguage)

1Holzmann G J 1997 The model checker SPIN
9 / 60

Preliminaries

Model checking with SPIN

In this paper, we rely on the following language features:
the presence of arrays;
the presence of do-while loops;
the presence of if clause including the non-deterministic choice.

As well as we use the following SPIN model checker features:
checking of LTL properties expressed in predicates with key
program variables;
ability to present a counter-example as a trail of visited states if
the LTL property does not hold;
optimized depth-first search (DFS);
bitstate hashing to dramatically reduce used memory;
ability to parallelize the model checking process using the swarm
technique.

10 / 60

Preliminaries

Bitstate hashing and hashcompact

In order to reduce memory for storing the states, in addition to strict
(exhaustive) verification, SPIN offers hashing methods to do the
checking that can visit most of the states until a hash collision has not
occurred.

11 / 60

Preliminaries

Bitstate hashing and hashcompact

In such case, for every state of S bits, a hash value of m bits is
computed, which is associated with a m unique bit position within
a large bit array of size 2m 2.
For every new hash value generated the tool inspects the current
value of the bit that corresponds to the hash value, and if it is zero,
set it to one. If the bit is already set, it counts this as a hash
collision.
Supplementary, the SPIN tool by default uses two hash functions,
and stores two bits in the bit array for every state. A hash collision
now requires a collision on both bits.

2Holzmann G J 1998 An analysis of bitstate hashing
12 / 60

Preliminaries

Bitstate hashing and hashcompact

An alternative strategy recommended by Wolper3 is called
hashcompact. In the hashcompact method, the state descriptor is
compressed from S bits to 64 bits, using a single hash function. The
resulting 64-bit values are then stored in a normal lookup table with
collision resolution.

3Wolper P and Leroy D 1993 Reliable hashing without collision detection
13 / 60

Preliminaries

Swarm model checking

Swarm model checking is an approach to generate and run a bunch of
verification tests (VTs) by combining three basic ideas to modify the
search process4:

search randomization (use different seed values for
non-deterministic choices);
search diversification (performing searches forwards or in reverse,
varying hashing options);
search parallelization (run multiple VTs in parallel).

Swarm is implemented using a pre-processor tool that generates a
script to compile different VTs from an input Promela model and runs
them.

4Holzmann G J, Joshi R and Groce A 2008 Swarm verification
14 / 60

Preliminaries

Swarm model checking

15 / 60

Preliminaries

SARS-CoV-2 genome: related information

SARS-CoV-2, the coronavirus that cases CoVID-19 pandemic, is
having a strong influence to the world economy, led to thousands of
deads and changed plans of billions of people; in the other side, it
catalyzes the processes of digitalization and puts an enormous interest
to research in the sphere of biology and computational biology.

16 / 60

Preliminaries

SARS-CoV-2 genome: related information

The coronavirus genome has been already decoded and is
available in5

Wu et al.6 analyzed the genome and found that it is 89% similar to
the bat coronavirus bat-SL-CoVZC457

The viral genome is represented as a single-stranded RNA, which
consists of adenine (A), guanine (G), cytosine (C) and uracil (U)
The uracil symbol is often represented as thymine (T) in the
sequence to do proper software support
So we have a string of 29903 nucleotides with alphabet
{A,G,C,T}.

5Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete
genome URL: https://www.ncbi.nlm.nih.gov/nuccore/NC045512

6Wu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y, Tao Z W, Tian J H, Pei
Y Yet al. 2020 A new coronavirus associated with human respiratory disease in China

7Bat SARS-like coronavirus isolate bat-SL-CoVZC45, complete genome
URL:https://www.ncbi.nlm.nih.gov/nuccore/MG772933

17 / 60

Preliminaries

SARS-CoV-2 genome: related information

18 / 60

Preliminaries

SARS-CoV-2 genome: related information

19 / 60

Preliminaries

SARS-CoV-2 genome: related information

20 / 60

Preliminaries

SARS-CoV-2 genome: related information

21 / 60

Preliminaries

SARS-CoV-2 genome: related information

The search of similarities with BLAST:

22 / 60

Preliminaries

SARS-CoV-2 genome: related information

A graphical representation of the viral genome that was built using a
patched version of mfold software:

23 / 60

Preliminaries

SARS-CoV-2 genome: related information

One of the main tasks in this field is the comparison of the genomes,
that can help to investigate from whose animals the virus has come
and which parts of them are changed due to mutations. The latter
brings us to the problem of string comparison, and the comparison
should be fuzzy.

24 / 60

Preliminaries

Substring search methods

In a naive algorithm, the search for all admissible shifts is
performed using a cycle in which the condition for the equality of
the current characters of the string and the pattern is checked.
Such an algorithm has O(N2) complexity, where N corresponds to
the length of the string (we will use |string| for the length)
There are plenty of algorithms to do the searching more effectively
(including hashing, trie, suffix automaton, Knuth–Morris–Pratt
automaton)
In this work, we consider the Z-function algorithm which is popular
in the competitive programming contests and requires
|string|+|pattern| additional memory, and has the complexity of
O(N) to build the Z-function and O(N) to search the pattern
It is fast and requires no pointers or complex data structures so it
could be implemented in such a modeling language as Promela

25 / 60

Preliminaries

Substring search methods

IFMO wiki:

26 / 60

Preliminaries

Substring search methods

The Z-function from string S is an array Z, each element Z[i] of which is
the length of the longest common prefix between S and the suffix of S
starting at i:

Z [i](s) = max{k} : s[i , ..., i + k] = s[0, ..., k] (1)

27 / 60

Preliminaries

Substring search methods

The pseudocode to build the Z-function in a loop through a given string
and a pattern according to (1):

int[] zFunction(s : string):
int[] zf = int[|s|]
int left = 0, right = 0
for i = 1 to |s| - 1
zf[i] = max(0,
min(right - i, zf[i - left]))
while i + zf[i] < |s| and
s[zf[i]] == s[i + zf[i]]
zf[i]++
if i + zf[i] > right
left = i
right = i + zf[i]

return zf

28 / 60

Preliminaries

Substring search methods

The pseudocode to find a substring pattern in a string text using the
Z-function:

int patternSearch(text:string,
pattern:string):
int[] zf = zFunction(pattern + ’#’ + text)
for i = |pattern| + 1 to |text| + 1
if zf[i] == |pattern| return i

29 / 60

Preliminaries

Substring search methods

Using Promela language features, we prepared the following
implementation of the Z-function construction in Promela:

short
zf[STR_SIZE+PATTERN_SIZE+1];
inline S(j, ret) {
if
::(j < PATTERN_SIZE) ->
ret = pattern[j];

::(j == PATTERN_SIZE) ->
ret = EPS; //#

::(j > PATTERN_SIZE) ->
ret = text[j - PATTERN_SIZE - 1];

fi
}

30 / 60

Preliminaries

Substring search methods

inline MAX(a, b, ret) {
if
::(a >= b) -> ret = a;
::else -> ret = b;

fi
}
inline MIN(a, b, ret) {
if
::(a < b) -> ret = a;
::else -> ret = b;

fi
}

31 / 60

Preliminaries

Substring search methods

//building the Z-function
int left = 0;
int right = 0;
int n = STR_SIZE +
PATTERN_SIZE + 1;
int i = 1;
do
::(pos1 < MAX1) -> {
printf("%d \n", i);
int min = 0;
MIN((right - i),
zf[i - left], min);
int max = 0;
MAX(0, min, max);
zf[i] = max;
bool isOk = true;

32 / 60

Preliminaries

Substring search methods

do
::isOk -> {
short s1 = 0;
S(zf[i], s1);
short s2 = 0;

S((i + zf[i]), s2);
isOk = (i + zf[i] < n)
&& (s1 == s2);
if
::isOk -> zf[i] = zf[i] + 1;
::else -> skip;
fi

}
::else -> break;
od

33 / 60

Preliminaries

Substring search methods

if
::((i + zf[i]) > right) -> {
left = i;
right = i + zf[i];
}
::else -> skip;
fi
i = i + 1;
}
::else -> break;

od

34 / 60

Preliminaries

Substring search methods

It is pretty similar to the algorithmic pseudocode that we have shown
before, but this implementation opens some doors to use the formal
verification and model checking games for fuzzy comparing of
genomes.

35 / 60

Model checking games

Model checking games

36 / 60

Model checking games

Model checking games

The concept of model checking games originated from logic and
theoretical model checking
The evaluation of logical formulae can be described by such
games, played by two players on an arena which is formed as the
product of a structure K and a formula ψ
One player (Verifier) attempts to prove that ψ is satisfied in K
while the other (Falsifier) tries to refute this8

Earlier, this formalism was used in9 to play property checking
games in a process calculus and modal µ logic with pre-defined
rules for players’ moves. This formalism is used to study a
particular logic and construct wining strategies

8Fischer D, Gradel E and Kaiser 2010 Model checking games for the quantitative
µ-calculus

9Stevens P and Stirling C 1998 Practical model-checking using games
37 / 60

Model checking games

Model checking games

Recently presented10 Differential Hybrid games are contests of
two players, called Angel and Demon, over hybrid program α and
property φ that is [α]φ and < α > ¬φ refer to complementary
winning conditions (φ for Demon, ¬φ for Angel)
The achievements in this theory can be used to construct
cooperative hybrid systems

10Platzer A 2017 Differential hybrid games
38 / 60

Model checking games

Model checking games

In this work, we proceed to a different way: the model checking game
will have two players (a user and a model checker), the user declares
that the system does not satisfy formula φ and the model checker tries
to refute it and provide a counter-example.

39 / 60

Model checking games

Model checking games

In Karpov’s book11 the method of puzzle solving by the model checker
was introduced by the example of wolf, goat and cabbage problem.
The idea of the puzzle is as follows:

It is necessary to transfer the both three alive to the different
side of a river using series of trips in a boat that only carry two
objects and a ferryman. While the heroes stay steady in the
presence of the man, but there exist some restrictions while
they stay alone on one and the other side of the river: the wolf
can eat the goat and the goat can eat the cabbage.

A domain-specific approach to construct and solve the task is given
in12.

11Karpov Y G 2010 Model checking. Verification of parallel and distributed program
systems (in Russian) ISBN 978-5-9775-0404-1

12Baar T 2015 A DSL and a SPIN-frontend for river-crossing problems defined with
Xtext

40 / 60

Model checking games

Model checking games

41 / 60

Model checking games

Model checking games

The task can be solved using a recursive DFS algorithm, by trying a
path of transfers for different objects with these restrictions. Using
model checking, it is proposed to encode the state of the system and
the rules of changing the state, then create an LTL rule that ”Always
the finite state will not be reached” and if the solution really exists, the
model checker can find a path to the finite state and present it as a
counterexample. And the state trail to the end state becomes the
solution of the problem.

42 / 60

Model checking games

Model checking games

43 / 60

Model checking games

Model checking games

We describe the approach using another different simple Numeric
puzzle that requires not so much coding.
Let there be a number n.

If it is even, divide it by 2, i.e. n⇒ n/2
If it is odd, multiply by 3 and add 1, i.e. n⇒ 3n + 1
And repeat the actions until n achieves 1.

If we start with the number 7, is it possible to get 1?

44 / 60

Model checking games

Model checking games

To solve the problem, we encode the task rules in Promela:

int N;
active proctype main() {
N = 7;
do

::(N % 2 == 0) -> {
printf("n = %d, div \n", N);
N = N / 2;

}
::else -> {
printf("n = %d, 3n+1 \n", N);
N = 3 * N + 1;

}
od

}
ltl check_me { [] (N != 1)}

45 / 60

Model checking games

Model checking games

We added the LTL rule check me, it which we try to ensure that N
will never be 1
As the solution exists, the model checker while verification will find
a path to get 1 from 7 using the rules
The steps how to get 1 will be printed by our printf operators in the
simulation mode using a generated counter-example trail.

46 / 60

Model checking games

Model checking games

Formally, the model checking games can be represented as

{¬φ,T} model checking
=========⇒ ((C ⊂ T) ` φ) ∨ ∅ (2)

Where φ is an LTL formula, T is a transition system, C is a
counter-example as a solution of the task, part of the transition system,
∅ here means that the verifier was unable to find a counter-example.

47 / 60

Model checking games

Model checking games

48 / 60

Fuzzy genome comparing during a model checking game

On implementation of fuzzy genome comparing during a model
checking game

49 / 60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

In order to do fuzzy substring search, we added the following into the
Z-function Promela code:

a non-deterministic choice when we compare symbols while
building the Z-function;
a condition to limit the possible percentage of changes.

50 / 60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

So, the comparison process (instead of testing s1==s1) becomes:

bool isEquals = false;
if
::(s1 == s2) -> isEquals = true;
::(s1 != s2) -> isEquals = false;
::(s1 != s2) -> {
casesTotal++;
if
::(casesOk * 100 / casesTotal <= prob) ->
{ isEquals = true; casesOk++; }
::else -> isEquals = false;

fi
}

fi
isOk = isEquals

51 / 60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

Here prob is a given percentage probability with which we want to
compare the strings
This algorithm means that when constructing the Z-function, the
equality of characters is tested and a deviation is allowed with a
given probability

52 / 60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

As input strings are represented as arrays, we add the definition for the
input alphabet:

\#define A 0
\#define T 1
\#define G 2
\#define C 3

As Promela does not support I/O operations, we implemented a .fasta
file (with input genome sequence) processor and a Promela code
generator

53 / 60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

Generated input code:

54 / 60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

According to rules of model checking games, we should specify a
negation for the rule that shows the fact of solving the puzzle. In a
fuzzy genome sequence search, we specify a simple rule

G(impossible == 1) (3)

(”always it is impossible to find a substring”), where variable impossible
is the variable that is changed in a linear substring search using
Z-function we built previously

55 / 60

Fuzzy genome comparing during a model checking game

Overall structure of the solution

The model loads sequences, builds the Z-function and makes the
substring search with the given probability of deviation. If found, the
control variable is set. The model checking game here – to ask the
model checker that it will never happen and its duty is to provide a
counter-example with string substitutions after which the genome
pattern can be found in the given genome sequence.

56 / 60

Fuzzy genome comparing during a model checking game

Overall structure of the solution

57 / 60

Results

Results and their discussion

To start, we tried to do a search for a small pattern (less than 100
chars) with some mutations in a whole genome sequence string using
a simple laptop with 8GB of RAM.

After some runs in the SPIN simulation mode (it uses different
random seeds) we were able to see that the substring is found
Exhausted verification is not feasible due to huge memory and
time consumption (as we have the non-deterministic choice and
large state space)
Bitstate mode (”-DBITSTATE”) with default parameters runs for
some time and goes out of memory

58 / 60

Results

Results and their discussion

Hashcompact mode (”-DHC”) with default parameters has a small
memory consumption but finishes without producing any
counter-example
Swarm model checking with default swarm script runs out of
memory (because it uses the bitstate mode).
Swarm model checking using a patched swarm script to substitute
the bistate mode to the hashcompact mode was able to produce a
counter-example and solve the task

59 / 60

Results

Results and their discussion

To think further, to do a model checking game to compare two full
genomes with a given deviation rate requires a lot of VTs with
different randomized transitions seeds
The task here should be divided into loading the data to common
memory (the same phase to all VTs) and then different Z-function
calculations using the same data. It would require a custom model
checker
We also see that the CPU swarm technique is not a good idea to
execute a bunch of VTs, and possible GPU swarm or FPGA
swarm should be used.

60 / 60

	Briefly about the work
	Preliminaries
	Preliminaries
	Model checking games
	Fuzzy genome comparing during a model checking game
	Results

