Model Checking Games
and a Genome Sequence Search

Sergey Staroletov

Barnaul, February 19, 2021

1/60

Briefly about the work

The paper

S M Staroletov 2020. Model checking games and a genome sequence
search. J. Phys.: Conf. Ser. 1679 032020

2/60

Briefly about the work

Introduction

@ To foster interest in logical methods, in particular, formal
verification, it is advisable to train such methods using games and
puzzles

@ However, the same methods can be used to solve real problems

@ In this paper, we show the use of non-deterministic programming
for the task of finding a pattern in a genome sequence

3/60

Briefly about the work

Motivation

@ Describe a methodology to solve algorithmic puzzles by the
negation of an LTL formula

@ Make first steps into computational biology
@ Touch “Swarm model checking”

@ Cite friends

@ Scopus++

4/60

Briefly about the work

Reviewers’ comments

@ Devoted to model checking, accept

@ Non serious, reject

@ Too much code

@ Issues in RNA and DNA description (resolved)

5/60

Briefly about the work

In this paper, we

@ focus on the model checking games concept

©@ show how to encode real algorithms in Promela

© discuss an effective string comparison implementation in Promela
© move to fuzzy string comparison

@ apply it in the genome sequence search

© discuss ways how to solve hard computation tasks in model
checking using swarm model checking and state hashing
approaches.

6/60

Preliminaries

Preliminaries

7/60

Preliminaries

Preliminaries

@ Model checking with SPIN

@ Bitstate hashing and hashcompact

@ Swarm model checking

@ SARS-CoV-2 genome: related information
@ Substring search methods

8/60

Model checking with SPIN

@ SPIN' is a utility for model checking the correctness of distributed
software. The abbreviation SPIN stands for Simple Promela
INterpreter

@ The SPIN system verifies not the programs themselves, but their
models

@ To build a model for an original parallel program or an algorithm,
the verifying engineer (usually manually) builds a representation
of this program in a C-like input language, called Promela
(Protocol MEta-LAnguage)

"Holzmann G J 1997 The model checker SPIN
9/60

Model checking with SPIN

In this paper, we rely on the following language features:

@ the presence of arrays;

@ the presence of do-while loops;

@ the presence of if clause including the non-deterministic choice.
As well as we use the following SPIN model checker features:

@ checking of LTL properties expressed in predicates with key
program variables;

@ ability to present a counter-example as a trail of visited states if
the LTL property does not hold;

@ optimized depth-first search (DFS);

@ bitstate hashing to dramatically reduce used memory;

@ ability to parallelize the model checking process using the swarm
technique.

10/60

Preliminaries

Bitstate hashing and hashcompact

In order to reduce memory for storing the states, in addition to strict
(exhaustive) verification, SPIN offers hashing methods to do the
checking that can visit most of the states until a hash collision has not

occurred.

Exhaustive (visit all states) J

Approximate {visit some of
states using hashing)

11/60

Preliminaries

Bitstate hashing and hashcompact

@ In such case, for every state of S bits, a hash value of m bits is
computed, which is associated with a m unique bit position within
a large bit array of size 2™ 2.

@ For every new hash value generated the tool inspects the current
value of the bit that corresponds to the hash value, and if it is zero,
set it to one. If the bit is already set, it counts this as a hash
collision.

@ Supplementary, the SPIN tool by default uses two hash functions,
and stores two bits in the bit array for every state. A hash collision
now requires a collision on both bits.

2Holzmann G J 1998 An analysis of bitstate hashing
12/60

Bitstate hashing and hashcompact

An alternative strategy recommended by Wolper?® is called
hashcompact. In the hashcompact method, the state descriptor is
compressed from S bits to 64 bits, using a single hash function. The

resulting 64-bit values are then stored in a normal lookup table with
collision resolution.

SWolper P and Leroy D 1993 Reliable hashing without collision detection
13/60

Preliminaries

Swarm model checking

Swarm model checking is an approach to generate and run a bunch of
verification tests (VTs) by combining three basic ideas to modify the
search process®:

@ search randomization (use different seed values for
non-deterministic choices);
@ search diversification (performing searches forwards or in reverse,
varying hashing options);
@ search parallelization (run multiple VTs in parallel).
Swarm is implemented using a pre-processor tool that generates a
script to compile different VTs from an input Promela model and runs
them.

“Holzmann G J, Joshi R and Groce A 2008 Swarm verification
14/60

Preliminaries

Swarm model checking

15/60

Preliminaries

SARS-CoV-2 genome: related information

SARS-CoV-2, the coronavirus that cases CoVID-19 pandemic, is
having a strong influence to the world economy, led to thousands of
deads and changed plans of billions of people; in the other side, it
catalyzes the processes of digitalization and puts an enormous interest
to research in the sphere of biology and computational biology.

16/60

Preliminaries

SARS-CoV-2 genome: related information

@ The coronavirus genome has been already decoded and is
available in®

@ Wu et al.® analyzed the genome and found that it is 89% similar to
the bat coronavirus bat-SL-CoVZC45’

@ The viral genome is represented as a single-stranded RNA, which
consists of adenine (A), guanine (G), cytosine (C) and uracil (U)

@ The uracil symbol is often represented as thymine (T) in the
sequence to do proper software support

@ So we have a string of 29903 nucleotides with alphabet
{A,G,C,T}.

5Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete
genome URL: https://www.ncbi.nlm.nih.gov/nuccore/NC045512

SWu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y, Tao Z W, Tian J H, Pei
Y Yet al. 2020 A new coronavirus associated with human respiratory disease in China

"Bat SARS-like coronavirus isolate bat-SL-CoVZC45, complete genome
URL:https://www.ncbi.nlm.nih.gov/nuccore/MG772933

17/60

Preliminaries

SARS-CoV-2 genome: related information

ORIGIN

[

61
121
181
241
301
361
421
481
541
601
661
721
781
841
9@1
961

1021
1e81
1141
1201
1261
1321
1381
1441
1501
1561
1621
1681
1741
1801

-

attaaaggtt
gttctctaaa
cacgcagtat
ttctgcagge
cgtccgggty
acacgtccaa
agactccgtg
cttagtagaa
acgttcggat
cgaaggcatt
cgaaatacca
tggccatagt
tccttatgaa
actcatgcgt
ccctgatgge
atgcactttg
tgaacatgag
gacacctttt
ttttgtattt
gcttgatgge
caaccaaatg
gacgggcgat
aggtgccact
atgtcacaat
cttgaaaacc
ttatgttggt
ttgtaaccat
aatactccaa
gatcgccatt
aggtttggat
aaaaggaaaa

e aaa e

tataccttcc
cgaactttaa
aattaataac
tgcttacggt
tgaccgaaag
ctcagtttgc
gaggaggtct
gttgaaaaag
gctcgaactg
cagtacggtc
gtggcttacc
tacggcgeeg
gattttcaag
gagcttaacg
taccctecttg
tccgaacaac
catgaaattg
gaaattaaat
cccttaaatt
tttatgggta
tgcctttcaa
tttgttaaag
acttgtggtt
tcagaagtag
attcttegta
tgccataaca
acaggtgttg
aaagagaaag
attttggcat
tataaagcat
gctaaaaaag

e s

caggtaacaa
aatctgtgtg
taattactgt
ttcgtcecgtg
gtaagatgga
ctgttttaca
tatcagaggc
gegttttgec
cacctcatgg
gtagtggtga
gcaaggttct
atctaaagtc
aaaactggaa
gaggggcata
agtgcattaa
tggactttat
cttggtacac
tggcaaagaa
ccataatcaa
gaattcgatc
ctctcatgaa
ccacttgega
acttacccca
gacctgagca
agggtggtcg
agtgtgccta
ttggagaagg
tcaacatcaa
ctttttetge
tcaaacaaat
gtgcctggaa

- . T

accaaccaac
gctgtcactc
cgttgacagg
ttgcagcecga
gagccttgte
ggttcgcgac
acgtcaacat
tcaacttgaa
tcatgttatg
gacacttggt
tcttcgtaag
atttgactta
cactaaacat
cactcgctat
agaccttcta
tgacactaag
ggaacgttct
atttgacacc
gactattcaa
tgtctatecca
gtgtgatcat
attttgtggc
aaatgctgtt
tagtcttgec
cactattgce
ttgggttcca
tteccgaaggt
tattgttggt
ttccacaagt
tgttgaatcec
tattggtgaa

P

tttcgatctc
ggctgcatge
acacgagtaa
tcatcagecac
cctggtttca
gtgctcgtac
cttaaagatg
cagccctatg
gttgagcigg
gtccttgtce
aacggtaata
ggcgacgagc
agcagtggtg
gtcgataaca
gcacgtgctg
aggggtgtat
gaaaagagct
ttcaatgggg
ccaagggttg
gttgegtecac
tgtggtgaaa
actgagaatt
gttaaaattt
gaataccata
tttggaggct
cgtgctageg
cttaatgaca
gactttaaac
gcttttgtag
tgtggtaatt
cagaaatcaa

ttgtagatct
ttagtgcact
ctecgtctatc
atctaggttt
acgagaaaac
gtggctttgg
gcacttgtgg
tgttcatcaa
tagcagaact
ctcatgtgog
aaggagctgg
ttggcactga
ttacccgtga
acttctgtgg
gtaaagcttic
actgctgeccg
atgaattgca
aatgtccaaa
aaaagaaaaa
caaatgaatg
cttcatggca
tgactaaaga
attgtccagc
atgaatctgg
gtgtgttctc
ctaacatagg
accttcttga
ttaatgaaga
aaactgtgaa
ttaaagttac
tactgagtcc

18/60

Preliminaries

SARS-CoV-2 genome: related information

28321
28381
28441
28501
28561
28621
28681
28741
28801
28861
28921
28981
20041
29101
29161
20221
20281
29341
294901
29461
209521
20581
20641
29701
29761
20821
29881

gtttggtgga
atcaaaacaa
cactcaacat
caatagcagt
tggtgacggt
gccagaaget
gggagccttg
aatcgtgcta
cagaggcggc
ttcaactcca
tgctgetett
taaaggccaa
gaagcctcgg
acgtggtcca
tgattacaaa
aatgtcgecgc
catcaaattg
tattgacgca
tgatgaaact
tgctgcagat
aactcaggcc
ttttccgttt
acaagtagat
gggaggactt
acagtgaaca
tttagtagtg
aaaaaaaaaa

ccctcagatt
cgteggecec
ggcaaggaag
ccagatgacc
aaaatgaaag
ggacttccct
aatacaccaa
caacttcctc
agtcaagcct
ggcagcagta
getttgetge
caacaacaag
caaaaacgta
gaacaaaccc
cattggccge
attggcatgg
gatgacaaag
tacaaaacat
caagccttac
ttggatgatt
taaactcatg
acgatatata
gtagttaact
gaaagagcca
atgctagagga
ctatccccat
aaaaaaaaaa

caactggcag
aaggtttacc
accttaaatt
aaattggcta
atctcagtec
atggtgctaa
aagatcacat
aaggaacaac
cttctcgttc
ggggaacttc
tgecttgacag
gccaaactgt
ctgccactaa
aaggaaattt
aaattgcaca
aagtcacacc
atccaaattt
tcccaccaac
cgcagagaca
tctccaaaca
cagaccacac
gtctactctt
ttaatctcac
ccacattttc
gagctgccta
gtgattttaa
aaa

taaccagaat
caataatact
ccectegagga
ctaccgaaga
aagatggtat
caaagacggc
tggcacccge
attgccaaaa
ctcatcacgt
tectgetaga
attgaaccag
cactaagaaa
agcatacaat
tggggaccag
atttgcccce
ttcgggaacg
caaagatcaa
agagcctaaa
gaagaaacag
attgcaacaa
aaggcagatg
gtgcagaatg
atagcaatct
accgaggcca
tatggaagag
tagcttctta

ggagaacgca
gcgtcttggt
caaggcgtte
gctaccagac
ttctactacc
atcatatggg
aatcctgcta
ggcttctacg
agtcgcaaca
atggctggea
cttgagagca
tctgetgetg
gtaacacaag
gaactaatca
agcgcttcag
tggttgacct
gtcattttge
aaggacaaaa
caaactgtga
tccatgagea
ggctatataa
aattctcgta
ttaatcagtg
cgcggagtac
ccctaatgtg
ggagaatgac

gtggggcgcg
tcaccgetcet
caattaacac
gaattcgtgg
taggaactgg
ttgcaactga
acaatgctgce
cagaagggag
gttcaagaaa
atggcggtga
aaatgtctgg
aggcttctaa
ctttcggcag
gacaaggaac
cgttcttcgg
acacaggtgc
tgaataagca
agaagaaggc
ctettettece
gtgctgactc
acgttttcge
actacatagc
tgtaacatta
gatcgagtgt
taaaattaat
aaaaaaaaaa

19/60

Preliminal

SARS-CoV-2 genome: related information

TITLE
JOURNAL

COMMENT

FEATURES
source

Direct Submission

Submitted (@5-JAN-2020) Shanghai Public Health Clinical Center &
School of Public Health, Fudan University, Shanghai, China
REVIEWED REFSEQ: This record has been curated by NCBI staff. The
reference sequence is identical to MN9@8947.

On Jan 17, 2020 this sequence version replaced NC_845512.1.
Annotation was added using homology to SARSr—CoV NC_@84718.3. ###
Formerly called 'Wuhan seafood market pneumonia virus.' If you have
questions or suggestions, please email us at infe@ncbi.nlm.nih.gov
and include the accession number NC_B845512.### Protein structures
can be found at

https: //www.ncbi.nlm.nih.gov/structure/?term=sars—cov-2.### Find
all other Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) sequences at
https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/

##Assembly=Data=START##

Assembly Method 11 Megahit v. V1.1.3

Sequencing Technolegy :: Illumina

##tAssembly—-Data-END##

COMPLETENESS: full length.
Location/Qualifiers
1..29903
/organism="Severe acute respiratory syndrome coronavirus
P
/mol_type="genomic RNA"
/isolate="Wuhan-Hu-1"
/host="Homo sapiens"
/db_xref="taxon:2697849"
/country="China"
Jcollection_date="Dec-2019"
1..265
266..21555
/gene="0RFlab"
/locus_tag="GU280_gpo1"
/db_xref="GeneID:43748578"
join(266..13468,13468..21555)
Jaene="0RF1akh'

20/60

Preliminaries

SARS-CoV-2 genome: related information

Genomic Sequence: NC_045512.2 Go to reference sequence detai
Gotonucleotide: Graphics FASTA GenBank
) S wc_ossizz- | Find: V4 iad Q=T R Tools - | 4% Tacks~ ¥, bowrload + @ D -
X m X X 10k (13 14k 1ok 1ok EX3 EX3 2o
Genes PrE
o 2 T oren
[] e oa57zssor. EE— v pos7zsaio) I
— P posvesano | I e 057255041 E 1P po9725305. I _on37z5e111 I
= ve_po97scal 1 I v posvessee I P_PBI7ESIESL 9
¥P_pe97essec. . YP_PBI724
wP_pesraszesd I APA3.virep
e pS7255051
= Uira proteaze oot seo M coron oo I P11 I v
ouFzess @ suo-n XN AR CoronansF4_C I > oAz B NeP1z I
facro. nsu? I nsPio B DEXKOC Upfi-like BE
Hspz FLzpro B nsps B
ADP-ribose binding .. | ATF binding site lch. F=H
DERD box helicase. I
P 057425101 L TS 1 £037426151 I
— P_Ba37425LLL vp_pas7 425151 B
= P_p05742612 1| B 1P p057425171 B
¢ sazrazeied
w2

Ve as7zssiz |
= Uiral protease EEECEE Feptidase C3a nsps
oesss @ G0N ER e CoronaisFa_c B nsp? W HoFI0 B
s

acro I
g riero B
ADP-riboss binding .. IH

P 837243501

Corono_s5z I
Spike_rec_bind IR

21/60

Preliminaries

SARS-CoV-2 genome: related information

The search of similarities with BLAST:

fS—— ot S 0 B | e
Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome Seversacuteres . 55221 55221 100% 00 100.00% 29903 NC_0455122
Sovero scute coronavius 2 oate JSAVT-UPHL . ss221 5221 100% 0O 10000% 29904 MWSG62%4.1
Soverm aaute coronavius 2 olats JSAUT-UPHL - ss221 5221 100% 0O 10000% 29904 MWs627221
Severe acute coronavins 2 isolate SARS-CoV:2Iunan/USAICA-GZ8 176312020, complete.Severe acute s . 55217 55217 3% 00 100.00% 29901 MTGZ181Z.1
Sovero acute coronavius 2 Solats SARS-CoV:ZnumanUSA/CA-COC-0139/2020, complet.. Severs acute s, . 55215 55215 100% 00 100.00% 29903 NT481992.1
Sovera seute coronavins 2 solals SARS.G complstog.. Severs acuta ros. 55215 56215 100% 00 100.00% 29903 NT4TO142.1
Severs acute coronavirus 2 solate SARS-CoV-2human/USAICA-CZ8- 104012020, complete . Severs acute rss._. 55215 55215 100% 0O 100.00% 29903 MT438758.1
Soverascuts coronavins 2 olals SAIGA-C78.1004/2620, complet lores.. 5E215 G215 100% 0O 100.00% 2003 MT43Er22.1
Sovero scute coronavius 2 oate COHEST3S7 P a7i202.. Severs acue us... SS215 §6215 100% 0O 100.00% 29903 MWAST5021
Soverm aaute coronavius 2 olats GOHEST3S1 P 25/202.. Sevors s us... 55215 §6215 100% 0D 100.00% 29903 MWAG7454.1
Severe acute coronavins 2 solate SARS-G GOHEST3S7 A 55202 . Severs acue s . 55215 55215 100% 0D 100.00% 29903 MWAS7G3.1
Sovero acute coronavins 2 solate SARS-G COHESTSST A 54202 . Severs acute es. . 55215 55215 100% 0D 100.00% 29803 MWas7ag21
Sovera seute coronavins 2 solals SARS.G CCHEST387 A 28200 . Sovors ey s . 56215 §6215 100% 0D 100.00% 29903 MW4§7430.1
Severs acute coranavirus 2 solate SARS-CoV-2iuman/CHN/P10-SARS-CoV-22020, com .. Severs acute res... 55215 S5215 100% 00 100.00% 29903 MWO11767.1
Soverascuts coronavins 2 olals I Sovers acuta res . 55215 55215 100% 00 100.00% 20803 MWO11768.1
Sovero scute coronavius 2 oate I Sovero acute ros.. 65215 S5215 100% 00 100.00% 20803 MWOII7ES.0
Soverm aaute coronavius 2 olats Somol... Sovers agute .. 55215 55215 100% 00 100.00% 29903 MWD1176L.1
Severe acute coronavins 2 islate SARS-CoV:2Iuman/CHN/P2: SARS-CoV-2/2020, corto... Severe acute s, 55215 55215 100% 00 100.00% 29903 MWO11762.1
Sovero acute coronavins 2 solate SARS-CoV:2unan/USAICA-C78-1226/2020,complete. Severs acute s . 55214 55214 %% 00 100.00% 29902 MT4S82011
Severe acute coronavirus 2 isolate SARS-CoV-2Muman/CHNWHUHNCOVO11/2020,compl . Severe acute res... 55210 55416 100% 00 99.99% 30018 MTO7SBS.1
Sovera scuts coronavins 2 islals Joto g Sovers acutsros. 56210 55210 100% 00 00.09% 20003 MTAZ0137.1
Severe acute coronavirus 2 isolate Jt A-CZB-1048/2020, lete te res... 55210 55210 99% 00 100.00% 29900 MT449641.1
Sovors acuts cornavius 2 solats 112020, complets genome Severs acuts os... 5210 55210 100% 00 99.95% 29945 MI1Z12161
Sovors acuta cornavius 2 solats JSAOH-UHTL-2112020, comple... 55210 55210 100% 00 99.99% 29903 MW5S2369.1

22/60

Preliminaries

SARS-CoV-2 genome: related information

A graphical representation of the viral genome that was built using a
patched version of mfold software:

23/60

Preliminaries

SARS-CoV-2 genome: related information

One of the main tasks in this field is the comparison of the genomes,
that can help to investigate from whose animals the virus has come
and which parts of them are changed due to mutations. The latter
brings us to the problem of string comparison, and the comparison
should be fuzzy.

24/60

Preliminaries

Substring search methods

@ In a naive algorithm, the search for all admissible shifts is
performed using a cycle in which the condition for the equality of
the current characters of the string and the pattern is checked.
Such an algorithm has O(N?) complexity, where N corresponds to
the length of the string (we will use |string| for the length)

@ There are plenty of algorithms to do the searching more effectively
(including hashing, trie, suffix automaton, Knuth—Morris—Pratt
automaton)

@ In this work, we consider the Z-function algorithm which is popular
in the competitive programming contests and requires
|string|+|pattern| additional memory, and has the complexity of
O(N) to build the Z-function and O(N) to search the pattern

@ lItis fast and requires no pointers or complex data structures so it
could be implemented in such a modeling language as Promela

25/60

Preliminaries

Substring search methods

IFMO wiki:

eo0e M < 08 & neercifmory @ e @ o +

MceBAOKOA [rpeenrs]
int(] zFunction(s : string):
int(] zf = dntln]
fori=1ton-1
while i + zf(i] < n and s(zf(i]]

2f[i]++
return zf

sl + 2fli]]

DeKTHBHBL A/ITOPHTM HIOHCKA. (rasurs)

Z-6noxom i [i].
inn paores anropuTuia 3asenew ase nepemeksie: [ef1 n Fight — wavano u konew i nosmnen Konia Z:6noxos, ecn nx
HoGKonsKo, BLIGpaeToR HanSonsw). Wanasansio Left = O right = 0. Tiycrs waw wapocrist asenan Z oy o7 O g0 i — 1. Haiiaew Z[i]. Pacoworpum asa cyvas.
1.0 > right
no crpoxe § Ti + 1 Sy J nepean nosuuwA B cTpoxe S ANA KOTOPO! He BBINONHAETCA PABEHCTBO
S[i + 1 = S[j]. oraa j aro n Z-oymauan ann noaw . Toraa left = i, right = i+ — 18 [i] 6 oy Toro, wro ovo
vausro,
2.i<ri
Cpasw ZIi — lefr] + iw right. Ecn right wosse, 7o wago npocto rightu i),
TaKow cryae Viave bt yxe 1il, i — left)

Z-6110K C MaKCAMAnbHOI
npaBoii rpaxmLien

LIITTTTITTIT]

left right

i i
(eTopoit (nepaiit
cnyvait) cny-ait)

26/60

Substring search methods

The Z-function from string S is an array Z, each element Z][i] of which is

the length of the longest common prefix between S and the suffix of S
starting at i:

Z[i|(s) = max{k} : s[i,...,I + k] = s[0, ..., K] (1)

27/60

Substring search methods

The pseudocode to build the Z-function in a loop through a given string

and a pattern according to (1):

int[] zFunction(s : string):
int[] zf = int[|s]]
int left = 0, right = 0
for i =1 to |s|] -1
zf[i] = max (0,

min(right - i, zf[i - left]))

while 1 + zf[i] < |s]| and

s[zf[i]] == s[i + zf[i]]
zE[i]++

if i + zf[i] > right
left = 1i

right = 1 + zf[i]
return zf

28/60

Substring search methods

The pseudocode to find a substring pattern in a string text using the
Z-function:

int patternSearch (text:string,
pattern:string) :

int[] zf = zFunction(pattern + ’"#’ + text)
for i = |pattern| + 1 to |text]| + 1

if zf[i] == |pattern| return i

29/60

Preliminaries

Substring search methods

Using Promela language features, we prepared the following
implementation of the Z-function construction in Promela:

short
zf[STR_SIZE+PATTERN_SIZE+1];
inline S(j, ret) {
if

::(j < PATTERN_SIZE) ->

ret = pattern[j];

:(j == PATTERN_SIZE) ->

ret = EPS; //#

::(j > PATTERN_SIZE) ->

ret = text[j - PATTERN_SIZE - 1];
fi

}

30/60

Preliminaries

Substring search methods

inline MAX (a, b, ret) {
if
i (a >= b) -> ret = a;
::else —> ret = Db;
fi
}
inline MIN(a, b, ret) {
if
::(a < b) —> ret = a;
::else —-> ret = b;
fi
}

31/60

Substring search methods

//building the Z-function
int left = 0;
int right = 0;
int n = STR_SIZE +
PATTERN_SIZE + 1;
int 1 = 1;
do
::(posl < MAX1) —> {
printf ("%d_\n", 1i);
int min = 0;
MIN((right - i),
zf[1i - left], min);
int max = 0;
MAX (0, min, max);
zf[i] = max;

bool isOk = true;
32/60

Preliminaries

Substring search methods

do
::1s0k —> {
short sl = 0;
S(zf[i], sl1);
short s2 = 0;
S((1 + z£f[1]), s2);
[i

isOk = (i1 + zf[i] < n)

&& (sl == s2);

if
::1s0k —> zf[i] = z£f[i] + 1;
::else —> skip;

fi

}

::else —-> break;

od

33/60

Preliminaries

Substring search methods

if
t:((L + z£f[4i]) > right) -> {
left = 1i;
right = 1 + z£f[1i];
}
::else -> skip;
fi
i =1+ 1;
}
::else —> break;
od

34/60

Preliminaries

Substring search methods

It is pretty similar to the algorithmic pseudocode that we have shown
before, but this implementation opens some doors to use the formal
verification and model checking games for fuzzy comparing of
genomes.

35/60

Model checking games

Model checking games

36/60

Model checking games

Model checking games

@ The concept of model checking games originated from logic and
theoretical model checking

@ The evaluation of logical formulae can be described by such
games, played by two players on an arena which is formed as the
product of a structure K and a formula v

@ One player (Verifier) attempts to prove that ¢ is satisfied in K
while the other (Falsifier) tries to refute this®

@ Earlier, this formalism was used in® to play property checking
games in a process calculus and modal p logic with pre-defined
rules for players’ moves. This formalism is used to study a
particular logic and construct wining strategies

8Fischer D, Gradel E and Kaiser 2010 Model checking games for the quantitative
u-calculus

®Stevens P and Stirling C 1998 Practical model-checking using games
37/60

Model checking games

Model checking games

@ Recently presented’? Differential Hybrid games are contests of
two players, called Angel and Demon, over hybrid program « and
property ¢ that is [a]¢ and < a > —¢ refer to complementary
winning conditions (¢ for Demon, —¢ for Angel)

@ The achievements in this theory can be used to construct
cooperative hybrid systems

OPlatzer A 2017 Differential hybrid games
38/60

Model checking games

Model checking games

In this work, we proceed to a different way: the model checking game
will have two players (a user and a model checker), the user declares
that the system does not satisfy formula ¢ and the model checker tries
to refute it and provide a counter-example.

39/60

Model checking games

Model checking games

In Karpov’s book'" the method of puzzle solving by the model checker

was introduced by the example of wolf, goat and cabbage problem.

The idea of the puzzle is as follows:
It is necessary to transfer the both three alive to the different
side of a river using series of trips in a boat that only carry two
objects and a ferryman. While the heroes stay steady in the
presence of the man, but there exist some restrictions while
they stay alone on one and the other side of the river: the wolf
can eat the goat and the goat can eat the cabbage.

A domain-specific approach to construct and solve the task is given
in12
in's.

"Karpov Y G 2010 Model checking. Verification of parallel and distributed program
systems (in Russian) ISBN 978-5-9775-0404-1
2Baar T 2015 A DSL and a SPIN-frontend for river-crossing problems defined with

Xtext
40/60

Model checking games

Model checking games

e e

41/60

Model checking games

The task can be solved using a recursive DFS algorithm, by trying a
path of transfers for different objects with these restrictions. Using
model checking, it is proposed to encode the state of the system and
the rules of changing the state, then create an LTL rule that "Always
the finite state will not be reached” and if the solution really exists, the
model checker can find a path to the finite state and present it as a
counterexample. And the state trail to the end state becomes the
solution of the problem.

42/60

Model checking games

Model checking games

| D] 318/ 8.0

Mpo6nema uncna 10958 [Numberphile]

43/60

Model checking games

Model checking games

We describe the approach using another different simple Numeric
puzzle that requires not so much coding.
Let there be a number n.

@ Ifitis even, divide itby 2,i.e. n=n/2
@ Ifitis odd, multiply by 3 and add 1, i.e. n=3n+ 1
@ And repeat the actions until n achieves 1.

If we start with the number 7, is it possible to get 17?

44/60

Model checking games

To solve the problem, we encode the task rules in Promela:
int N;

active proctype main () {

N = 7;
do
2 (N & 2 == 0) —> {
printf ("n_=_%d, _div_\n", N);
N =N / 2;
}
::else —> {
printf ("n_=_%d, . 3n+1_\n", N);
N =3 N+ 1;
}
od

}
1tl check_me { [] (N != 1)}

45/60

Model checking games

Model checking games

@ We added the LTL rule check_me, it which we try to ensure that N
will never be 1

@ As the solution exists, the model checker while verification will find
a path to get 1 from 7 using the rules

@ The steps how to get 1 will be printed by our printf operators in the
simulation mode using a generated counter-example trail.

46/60

Model checking games

Model checking games

Formally, the model checking games can be represented as

{_@’ T} model checking ((C c T) - ¢) v (2)

Where ¢ is an LTL formula, T is a transition system, C is a
counter-example as a solution of the task, part of the transition system,
() here means that the verifier was unable to find a counter-example.

47/60

Model checking games

Model checking games

Task description

Transition system

It is impossible

I don't know... Model checker

Problem solved

48/60

Fuzzy genome comparing during a model checking game

On implementation of fuzzy genome comparing during a model
checking game

49/60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

In order to do fuzzy substring search, we added the following into the
Z-function Promela code:

@ a non-deterministic choice when we compare symbols while
building the Z-function;

@ a condition to limit the possible percentage of changes.

50/60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking

game

So, the comparison process (instead of testing s1==s1) becomes:

bool isEquals = false;

if
:: (sl == s2) —-> isEquals = true;
:: (sl !'= s2) -> isEquals = false;
t: (sl !'= s2) —> {
casesTotal++;
if
:: (casesOk » 100 / casesTotal <= prob)
{ isEquals = true; casesOk++; }
::else -> isEquals = false;
fi
}
fi

isOk = isEquals

51/60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

@ Here prob is a given percentage probability with which we want to
compare the strings

@ This algorithm means that when constructing the Z-function, the
equality of characters is tested and a deviation is allowed with a
given probability

52/60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

As input strings are represented as arrays, we add the definition for the
input alphabet:

\#define A O
\#define T 1
\#define G 2

\#define C 3

As Promela does not support I/0O operations, we implemented a .fasta
file (with input genome sequence) processor and a Promela code
generator

53/60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

Generated input code:

//generated code
cevl@l=A; cvl1]=T; cv[2]=T; cv[3]=A; cvlal=A; cv[5]=A; cv[6]=G; cv[7]=G; cv[8]=T;

ev[9]=T; cv[10]=T; cv[11]l=A; cv[12]=T; cv[13]=A; cv[14]=C; cv[15]=C; cv[16]=T; cv[17]=T;
ev[18]=C; cv[19]=C; cv[20]=C; cv[21]=A; cv[22]=G; cv[23]=G; cv[24]=T; cv[25]=A; cv[26]=A;
ev[27]1=C; cvl28]=A; cv[29]=A; cv[30@]=A; cv[31]=C; cv[32]=C; cv[33]=A; cv[34] 1=C;
cv[36]=C; cv[37]=A; cv[38]=A; cv[39]=C; cv[40])=T; cv[41]=T; cv[42]=T; cv[43] 1=G;
cv[45]=A; cvl[46]=T; cv[47]1=C; cv[48]=T; cv[49]=C; cv[50]=T; cv[51]1=T; cv[52] 1=T;
cv[54]=A; cv[55]=6G; cv[56]=A; cv[57]=T; cv[58]=C; cv[59]1=T; cv[60]=G; cv[61] 1=T;
cev[63]=C; cvl[64]=T; cv[65]-C, cv[66]=T; cv[67]=A; cv[68]=A; cv[69]=A; cv[70]=C; cv[71]=G;
ev[72]=A; cv[73]1=A; cv[74]1=C; cv[75]=T; cv[76]1=T; cv[77]=T; cv[78]=A; cv[79]=A; cv[B0]=A;
cv[81]=A; cvI[82]=T; cv[83]1=C; cv[B4]=T; cvI[85]=G; cvI[86]=T; cv[87]1=6G; cvI[88]=T; cv[89]=G;
ev[90]=6; cv[91]=C; cv[92]=T; cv[93]1=G; cv[94]=T; cv[95]=C; cv[96]=A; cv[97]=C; cv[98]=T;
ev[99]=C; cv[100]1=G; cv[101]=G; cv[102]=C; cv[103]=T; cv[104]=G; cv[105]=C; cv[1@6]=A;
ev[107]1=T; cv([108]=6; cv[109]=C; cv[118]=T; cv[111]=T; cv[112]=A; cv[113]=6G; cv([114]=T;
ev[115]=6; cv([116]=C; cv[117]=A; cv[118]=C; cv[119]=T; cv[128]=C; :v[lZl]:A; cv([122]=C;
ev[123]1=6; cv([124]1=C; cv[125]=A; cv[126]=G; cv[127]=T; cv[128]=A; cv[129]=T; cv([138]=A;
ev[131]=A; cv[132]=T; cv[133]=T; cv[134]=A; cv[135]=A; cv[136]=T; cv[137]=A; cv([138]=A;
cv[132]=C; cv[140]=T; cv[141]=A; cv[142]=A; cv[143]1=T; cv[144]=T; cv[145]=A; cv[146]=C;

54/60

Fuzzy genome comparing during a model checking game

Fuzzy genome comparing during a model checking
game

According to rules of model checking games, we should specify a
negation for the rule that shows the fact of solving the puzzle. In a
fuzzy genome sequence search, we specify a simple rule

G(impossible == 1) (3)
("always it is impossible to find a substring”), where variable impossible

is the variable that is changed in a linear substring search using
Z-function we built previously

55/60

Overall structure of the solution

The model loads sequences, builds the Z-function and makes the
substring search with the given probability of deviation. If found, the
control variable is set. The model checking game here — to ask the
model checker that it will never happen and its duty is to provide a
counter-example with string substitutions after which the genome
pattern can be found in the given genome sequence.

56/60

Fuzzy genome comparing during a model checking game

Overall structure of the solution

fasta sequence

Promela code
generator

genome sequence

.fasta sequence

Promela code
generator

genome pattern

probability

check the position

57/60

Results and their discussion

To start, we tried to do a search for a small pattern (less than 100
chars) with some mutations in a whole genome sequence string using
a simple laptop with 8GB of RAM.

@ After some runs in the SPIN simulation mode (it uses different
random seeds) we were able to see that the substring is found
@ Exhausted verification is not feasible due to huge memory and

time consumption (as we have the non-deterministic choice and
large state space)

@ Bitstate mode ("-DBITSTATE”) with default parameters runs for
some time and goes out of memory

58/60

Results and their discussion

@ Hashcompact mode (*-DHC”) with default parameters has a small
memory consumption but finishes without producing any
counter-example

@ Swarm model checking with default swarm script runs out of
memory (because it uses the bitstate mode).

@ Swarm model checking using a patched swarm script to substitute
the bistate mode to the hashcompact mode was able to produce a
counter-example and solve the task

59/60

Results and their discussion

@ To think further, to do a model checking game to compare two full
genomes with a given deviation rate requires a lot of VTs with
different randomized transitions seeds

@ The task here should be divided into loading the data to common
memory (the same phase to all VTs) and then different Z-function
calculations using the same data. It would require a custom model
checker

@ We also see that the CPU swarm technique is not a good idea to
execute a bunch of VTs, and possible GPU swarm or FPGA
swarm should be used.

60/60

	Briefly about the work
	Preliminaries
	Preliminaries
	Model checking games
	Fuzzy genome comparing during a model checking game
	Results

