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0,1 𝑛, 𝑛 ∈ N is a set of arbitrary words of length 𝑛 over 0,1  (Boolean hypercube or 
Boolean hypercube of dimension 𝑛, the elements from 0,1 𝑛 are sometimes called 
Boolean vectors). 
  
0,1 + =  0,1 𝑛∞

𝑛=1  is a set of binary words of arbitrary finite length. 
 
Hereinafter, by discrete functions we mean the functions of the kind  
𝑓: 0,1 + → 0,1 +, and the functions of the kind 𝑓: 0,1 𝑛 → 0,1 𝑚, 𝑛,𝑚 ∈ N. 
  
For a function 𝑓: 0,1 𝑛 → 0,1 𝑚 the preimage finding problem or inversion problem 
is formulated as follows: given some 𝛾 ∈ Range 𝑓 (we assume that Range 𝑓 ≠ ∅), to 
find such 𝛼 ∈ 0,1 𝑛, that 𝑓 𝛼 = 𝛾. 
  
The majority of cryptanalysis problems can be viewed in the context of this problem. 
 
Below we are mainly interested in discrete functions defined by programs 
(algorithms). From a theoretical point of view they are functions defined by programs 
for the binary Turing machine (such as the one described in [1]). 
 
 
 
----------------------------------------------------------------------------------------------------------------- 
[1] Garey M., Johnson D. Computers and Intractability. 1979. 



Formal basis. 
 
Consider an arbitrary total function 𝑓: 0,1 + → 0,1 +, defined by 
program 𝑀 𝑓 , the complexity of which is bounded from above by a 
polynomial in the length of an input. Let 𝑓𝑛: 0,1

𝑛 → 0,1 𝑚 be a 
function defined by 𝑀 𝑓  by constructing some 𝛾 ∈ 0,1 𝑚 for an 
arbitrary 𝛼 ∈ 0,1 𝑛. 
  
The general inversion problem for 𝑓: given the text defining the 
program 𝑀(𝑓), an arbitrary 𝑛 ∈ N and arbitrary 𝛾 ∈ Range 𝑓𝑛 to find 
such 𝛼 ∈ 0,1 𝑛, that 𝑓𝑛 𝛼 = 𝛾. 
  
The basic theoretical result is the analogue of the Cook theorem 
(Cook-Levin theorem). In the context of the inversion problem for 𝑓 it 
establishes its polynomial reducibility to the problem of finding a 
satisfying assignment of a satisfiable Boolean formula in Conjunctive 
Normal Form (CNF). 
 



Let 𝐶 be a CNF over the set of variables 𝑋 = 𝑥1, … , 𝑥𝑁  and 𝑓𝐶  be a Boolean function defined by 𝐶 
𝑓𝐶: 0,1

𝑁 → 0,1 . 
  
𝐶 is satisfiable, if there exists such 𝛼 ∈ 0,1 𝑁, that 𝑓𝐶 𝛼 = 1 (𝛼 is a satisfying assignment), 
otherwise 𝐶 is unsatisfiable. The decision problem, that consists in determining whether an arbitrary 
𝐶 is satisfiable, is the classical NP-complete problem. Thus, the following problem is NP-hard: «for an 
arbitrary CNF to answer the question whether it is satisfiable or not, and if the answer is “yes” to 
construct an assignment of variables that satisfies this formula». Both problems are commonly 
denoted as SAT. 
 
Despite its NP-hardness, in many specific cases SAT can be solved quite effectively. There are 
examples of 𝐶 containing tens of thousands variables and hundreds thousands clauses, for which 
state of the art algorithms can determine whether it is satisfiable or not in minutes or even seconds. 
 
It has been 20 years since the development of the CDCL algorithm [2], but in this short time, the SAT 
solvers based on it became the computational instrument widely employed to solve combinatorial 
problems from diverse areas, such as symbolic verification, software analysis, discrete optimization, 
bioinformatics, cryptanalysis, computational combinatorics, etc. In 2000 there was established the 
annual competition for SAT solvers (SAT competition) which are usually held in the context of “The 
International Conference on Theory and Applications of Satisfiability Testing”. 
 
In the present report the inversion problems described earlier are reduced to SAT. The examples 
show how the corresponding algorithms can be applied to cryptanalysis problems. 
----------------------------------------------------------------------------------------------------------------------------------- 
[2] Marques-Silva J., Sakallah K. GRASP: a search algorithm for propositional satisability. IEEE 
Transactions on Computers. 1999. Vol 48. Iss. 5. Pp. 506–521. 



Reducibility theorem [3]. 
 
Theorem 1. 
Let 𝑓: 0,1 + → 0,1 + be a discrete function specified by a polynomial algorithm 
𝑀 𝑓 . Then there exists an algorithm 𝑀′, which is polynomial in 𝑛, such that given the 
text of program 𝑀 𝑓  and the number 𝑛, 𝑛 ∈ N, it constructs  CNF  𝐶 𝑓𝑛  over 𝑋, for 
which the following holds: 
1. For each 𝛾 ∈ 𝑅𝑎𝑛𝑔𝑒 𝑓𝑛 and some 𝑋𝑖𝑛 ⊂ 𝑋, 𝑋𝑜𝑢𝑡 ⊂ 𝑋 КНФ 

𝐶 𝑓𝑛, 𝛾 = 𝐶 𝑓𝑛 |𝛾/𝑋𝑜𝑢𝑡   is satisfiable and from any of its satisfying assignments 
one can extract in polynomial time in 𝑛 the assignment 𝛼 of variables from 𝑋𝑖𝑛, 
such that 𝑓𝑛 𝛼 = 𝛾; 

2.     For any 𝛾 ∉ 𝑅𝑎𝑛𝑔𝑒 𝑓𝑛 CNF 𝐶(𝑓𝑛, 𝛾) is unsatisfiable. 
 
The CNF 𝐶 𝑓𝑛  is called template CNF. 
 

By 𝐶 𝑓𝑛 |𝛾/𝑋𝑜𝑢𝑡  we denote the result of substitution of the set of values 𝛾 to variables 
from set 𝑋𝑜𝑢𝑡 in 𝐶 𝑓𝑛 . 
 
--------------------------------------------------------------------------------------------------------------- 
[3] Semenov A., Otpuschennikov I., Gribanova I., Zaikin O., Kochemazov S. Translation 
of algorithmic descriptions of discrete functions to SAT with applications to 
cryptanalysis problems. Logical Methods in Computer Science. 2020. Vol. 16. Iss. 1, pp. 
29:1-29-42. 
 



 
The idea used as a foundation of the proof of Theorem 1 is that based 
on 𝑀(𝑓) and the number 𝑛 it is possible to effectively construct a circuit 
𝐺(𝑓𝑛), that uses functional elements from the basis ∧,¬ , and 
specifies the function 𝑓𝑛: 0,1

𝑛 → 0,1 𝑚. Then using this circuit one 
can use an algorithm with linear complexity in the number of nodes in 
this circuit to transition to a template CNF 𝐶 𝑓𝑛  using the so-called 
Tseitin transformations [4]. The sets 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡, that were referred 
above are the sets of variables associated with the inputs and the 
outputs of circuit 𝐺 𝑓𝑛 . 
 
Note that it is the Tseitin transformations that are the main tool for 
reducing many verification problems to SAT. In particular it is true in the 
case of the problem of equivalence checking for two circuits. 
 
------------------------------------------------------------------------------------------- 
[4] Цейтин Г.С. О сложности вывода в исчислении высказываний//  
Записки научных семинаров ЛОМИ АН СССР. 1968. Т. 8. С. 234–259. 
 
 



Equivalence checking problem.  

 

Simple example: prove that the following two Boolean circuits are equivalent 
(i.e. they specify the same Boolean function) : 

 

 

 

 

 

 

 

 

 

 

¬ ¬ 

∧ ∧ 

∨ 

𝑥1 𝑥2 

𝑥1⊕𝑥2 

∧ ∨ 

¬ 

∧ 

𝑥1 𝑥2 

𝑥1⊕𝑥2 

𝑆 𝑔  𝑆 ℎ  



Reduce the equivalence checking problem for these two circuits to SAT. First , 
construct the following circuit. 

«Glue» the inputs with the same 
names together and connect the 
outputs of original circuits via the 
XOR functional element.  
 
It is clear that circuits 𝑆(𝑔) and 
𝑆(ℎ) implement the same function 
if and only if the circuit 𝑆(𝑔 ⊕ ℎ) 
is identically zero over 0,1 2. 
 

𝑆 𝑔 ⊕ ℎ  
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𝑥1 𝑥2 

∧ ∨ 

¬ 

∧ 
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Next, construct CNF 𝐶(𝑔 ⊕ ℎ) for circuit 𝑆(𝑔 ⊕ ℎ). It is done via Tseitin 
transformations in linear time in the size of 𝑆(𝑔 ⊕ ℎ). The idea of Tseitin 
transformations is very simple: with each node of a circuit except input nodes 
we associate a new Boolean variable and a Boolean formula that connects the 
inputs of this node with its output via logical equivalence. 

1. 𝑦1 ≡ ¬𝑥1 
2. 𝑦2 ≡ ¬𝑥2 
3. 𝑦3 ≡ 𝑦1 ∧ 𝑥2 
4. 𝑦4 ≡ 𝑦1 ∨ 𝑦2 
5. 𝑦5 ≡ 𝑥1 ∧ 𝑥2 
6. 𝑦6 ≡ 𝑥1 ∧ 𝑥2 
7. 𝑦7 ≡ 𝑥1 ∨ 𝑥2 
8. 𝑦8 ≡ ¬𝑦6 
9. 𝑦9 ≡ 𝑦7 ∧ 𝑦8 
10. 𝑦10 ≡ 𝑦5⊕𝑦9 
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∧ ∧ 

∨ 

𝑥1 𝑥2 
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Next, represent each formula from the constructed set as CNF over the 
corresponding set of Boolean variables (for example, the formula 𝑦1 ≡ ¬𝑥1 
transforms into 𝐶𝑦1 = 𝑦1 ∨ 𝑥1 ∧ (¬𝑦1 ∨ ¬𝑥1), formula 𝑦3 ≡ 𝑦1 ∧ 𝑥2 

becomes CNF 𝐶𝑦3 = 𝑦3 ∨ ¬𝑦1 ∨ ¬𝑥2 ∧ (¬𝑦3 ∨ 𝑦1) ∧ (¬𝑦3 ∨ 𝑥2), etc.). 

 
Then, consider the CNF 

𝐶 𝑔 ⊕ ℎ = 𝐶𝑦1 ∧ ⋯∧ 𝐶𝑦10 ∧ 𝑦10 

 
From the properties of the Tseitin transformations it follows that the circuit 
𝑆(𝑔 ⊕ ℎ) represents the Boolean function that is identically zero over 0,1 𝑛 
(in our case over 0,1 2), if and only if CNF 𝐶(𝑔 ⊕ ℎ) is unsatisfiable.  
 
If the circuits are not equivalent then this CNF is satisfiable and there exists its 
satisfying assignment – the certificate that proves that two circuits are not  
equivalent (on the corresponding input values one scheme outputs 0, while 
the other outputs 1). 



Cryptanalysis. Again, let 𝑓: 0,1 𝑛 → 0,1 𝑚 be a discrete function that transforms 
binary words of length 𝑛 into binary words of length 𝑚, which is defined 
everywhere over 0,1 𝑛 and is specified by an algorithm 𝑀(𝑓). Given 𝛾 ∈
𝑅𝑎𝑛𝑔𝑒 𝑓 ⊆ 0,1 𝑚, we need to find 𝛼 ∈ 0,1 𝑛, such that 𝑓 𝛼 = 𝛾 (inversion 
problem). 
 
This problem is typical for cryptography. Example: Let 𝑀 𝑓𝑆𝐻𝐴−256  be the 
program that defines the SHA-256 hash function: 

𝑓𝑆𝐻𝐴−256: 0,1
512 → 0,1 256 

 
Now let 𝛾𝑘 denote the image of function 𝑓𝑆𝐻𝐴−256, in which 𝑘  first bits are zeros. 
Then the problem of finding some pair 𝛼, 𝛾𝑘 , such that 𝑓𝑆𝐻𝐴−256 𝛼 = 𝛾𝑘 is 
essentially a cryptocurrency mining problem. 
 
The functions of the kind 𝑓, that are employed in cryptography, are typically very 
fast to compute. Therefore, the problems of their inversion can be effectively 
reduced to SAT. There are several software systems that make it possible to 
automatically perform such reductions. One of them is the Transalg system [5]. 
 
--------------------------------------------------------------------------------------------------  
[5] Otpuschennikov I., Semenov A., Gribanova I., Zaikin O. Kochemazov S. Encoding 
Cryptographic Functions to SAT Using Transalg System // European Conference on Artificial 
Intelligence (ECAI) 2016, Frontiers in Artificial Intelligence and Applications. 2016. Vol. 285. 
Pp. 1594–1595.  

 



Keystream generator is a discrete function 
 

𝑓𝑛: 0,1
𝑛 → 0,1 + 

𝛼 = 𝛼1, … , 𝛼𝑛  — input (initial) value (secret key). 
𝛾 = (𝛾1, … , 𝛾𝑚) — keystream fragment of length 𝑚. 
The goal is given 𝑦 to use the knowledge about the 
algorithm for computing 𝑓𝑛  to find 𝑥. 

Cryptanalysis problem: given a known algorithm 
for computing 𝑓𝑛  and a fragment of keystream to 
find the initial values of generator registers. 

A5/1 keystream generator 

А5/1 is based on three LFSRs with the following 
feedback polynomials: 
LFSR1:𝑋19 + 𝑋18 + 𝑋17 + 𝑋14 + 1 
LFSR2:𝑋22 + 𝑋21 + 1 
LFSR3:𝑋23 + 𝑋22 + 𝑋8 + 1 
The size of the secret key is 64 bits. Let 𝑏1

𝜏, 𝑏2
𝜏, 𝑏3

𝜏 be 
the values of cells number 9, 30 and 52 at time 
moment 𝜏. The register number 𝑗 ∈ 1,2,3  is shifted 
at moment 𝜏 if and only if 

𝑏𝑗
𝜏 = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑏1

𝜏, 𝑏2
𝜏. 𝑏3

𝜏  
𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑥, 𝑦, 𝑧 = 𝑥 ∧ 𝑦 ∨ 𝑦 ∧ 𝑧 ∨ 𝑥 ∧ 𝑧 

A5/1 keystream generator 



Example. Encoding A5/1 to SAT 

define len 128; 

__in bit regA[19]; 

__in bit regB[19]; 

__in bit regC[19]; 

__in out stream[len]; 

int midA = 8; 

int midB = 8; 

int midC = 8; 

//Shift LFSR A 

bit shift_rslosA() 

{ 

 bit x = regA[18]; 

 bit y = regA[18]^regA[17]^regA[16]^regA[13]; 

 for(int j = 18; j > 0; j=j-1) 

 { 

  regA[j] = regA[j-1]; 

 } 

 regA[0] = y; 

 return x; 

} 

//Shift LFSR B 

bit shift_rslosB() 

{ 

 bit x = regB[21]; 

 bit y = regB[21]^regB[20]; 

 for(int j = 21; j > 0; j=j-1) 

 { 

  regB[j] = regB[j-1]; 

 } 

 regB[0] = y; 

 return x; 

} 

 

//Shift LFSR C 

bit shift_rslosC() 

{ 

 bit x = regC[22]; 

 bit y = regC[22]^regC[21]^regC[20]^regC[7]; 

 for(int j = 22; j > 0; j=j-1) 

 { 

  regC[j] = regC[j-1]; 

 } 

 regC[0] = y; 

 return x; 

} 

 

bit majority(bit x, bit y, bit z){ 

 return x & y | x & z | y & z; 

} 

 

void main(){ 

 for (int i=0; i < len; i = i+1){ 

  bit maj = majority(regA[midA], 

regB[midB],regC[midC]); 

  if (!(maj^regA[midA])) shift_regA(); 

  if (!(maj^regB[midB])) shift_regB(); 

  if (!(maj^regC[midC])) shift_regC(); 

  stream[i] = regA[18]^regB[21]^regC[22]; 

 } 

} 

 

 

 

The corresponding CNF contains 39936 clauses over the set of 8768 variables. 



The problem of cryptanalysis of A5/1 in the SAT form was solved in [6] 
(using a specific distributed computing environment). The employed 
parallelization technique was later developed into a general method 
applicable to construction of decompositions for a wide variety of SAT 
instances.  
 
A new class of cryptographic attacks of the “guess and determine” kind, 
including the state of the art ones, was described in [8]. 
 
 
----------------------------------------------------------------------------------------- 
[6] Semenov A., Zaikin O., Bespalov D., Posypkin M. Parallel logical cryptanalysis of the 
generator A5/1 in BNB-grid system. Lecture Notes in Computer Science. 2011. Vol. 6873. 
Pp. 473-483. 
[7] Semenov A., Zaikin O. Algorithm for finding partitionings of hard variants of Boolean 
satisfiability problem with application to inversion of some cryptographic functions. 
SpringerPlus, 5(1). Pp. 1-16, 2016. 
[8] Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On 
cryptographic attacks using backdoors for SAT. In Proc. of the Thirty-Second AAAI 
Conference on Articial Intelligence (AAAI), pages 6641-6648, 2018. 



A guess and determine attack looks as follows. Given a system of equations (or a Boolean formula) that 
encodes the cryptanalysis problem, one substitutes into it the values of several bits. These substitutions 
weaken the original system making it linear. A good example of such attack is the Anderson’s attack [9] 
on the A5/1 generator. The set of guessed bits described by Anderson is shown on the following figure. 

 

 

 

 

 

 
 

 

 

This set contains 53 bits (marked gray). Assigning any values to all variables corresponding to gray cells, 
when taking into account several specific features of the generator (register shifts) results in a system of 
linear equations over GF(2). Thus, in the Anderson’s attack one needs to solve 253 systems of linear 
equations. Using several modern GPUs this attack shows very reasonable time. 

 

Another approach used in guess-and-determine attacks is to use some combinatorial algorithms 
(designed to tackle instances of NP-hard problems) to solve weakened cryptanalysis equations: in this 
case we do not require the corresponding problems to be polynomially solvable. Instead, we expect that 
the algorithm applied to the problem will manage to cope with the vast majority of the subproblems. 

---------------------------------------------------------------------------------------------------------------------------------- 

[9] Anderson, R.: A5 (was: Hacking digital phones). Newsgroup Communication (1994), http: 
//yarchive.net/phone/gsmcipher.html 



In the paper [6] cited above we used the SAT solving algorithms for this purpose, and the set of guessed bits 
looked as follows: 
 
 
 
 
 
 
 
 
 
 
This set contains only 31 variables, but to mount this attack one has to use the computing cluster or with 
general purpose processing units (CPUs) because CDCL algorithms do not work well on GPUs. Volunteer 
computing project, such as SAT@home [10], can be viewed as a good alternative of a computing cluster. 
 
In paper [7] (actually, the first publication in this direction was published in Russian back in 2012) it was 
proposed to automatically construct guess-and-determine attacks by reducing the problem of finding an attack 
with a good runtime estimation to a black-box optimization problem. However, in case of the attacks from [7] 
their runtime estimations do not have any theoretical justifications that would prove their accuracy (however, 
for many functions the estimations constructed in this manner turn out to be quite good in practice). Such 
theoretical justifications can be constructed for a class of guess-and-determine attacks proposed in [8]. Let us 
consider them in more detail. 
-------------------------------------------------------------------------------------------------------------------------------------- 
[10] Posypkin M., Semenov A., Zaikin O. Using BOINC Desktop Grid to Solve Large Scale SAT Problems. Computer 
Science. 13 (1). 2012. Pp. 25-34. 
[7] Semenov A., Zaikin O. Algorithm for finding partitionings of hard variants of Boolean satisfiability problem 
with application to inversion of some cryptographic functions. SpringerPlus, 5(1). Pp. 1-16, 2016. 
[8] Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On cryptographic attacks using 
backdoors for SAT. In Proc. of the Thirty-Second AAAI Conference on Articial Intelligence (AAAI), pages 6641-
6648, 2018. 
 
 



Once again, consider the problem of inversion for function 
𝑓𝑛: 0,1

𝑛 → 0,1 𝑚,  

specified by some algorithm. Let 𝐶𝑓𝑛  be a template cnf for 𝑓𝑛.  

Notation:  

𝑋 − the set of all variables from  𝐶𝑓𝑛, 𝑋𝑖𝑛 − the set of variables from 𝑋, which encode the inputs of 𝑓𝑛. 

Fact ([11],[12], etc.): the substitution of an arbitrary 𝛼 ∈ 0,1 |𝑋𝑖𝑛| to 𝐶𝑓𝑛 and subsequent application of 
the Unit Propagation rule [13] results in derivation (in linear time) of values of all variables from 𝑋, 
including the variables that encode the value of a considered function on input 𝛼. Let us refer to the 
values of variables from 𝑋, that were constructed in such a way, as to values induced by 𝛼.  

For an arbitrary 𝐵 ⊆ 𝑋 denote by 𝛽𝛼  the set of values of variables from 𝐵, that was induced by 𝛼. By 𝛾𝛼 
denote the value of 𝑓𝑛 on input 𝛼 (𝛾𝛼 = 𝑓𝑛 𝛼 ). Let 𝐶𝑓𝑛 𝛽𝛼 , 𝛾𝛼  be a CNF constructed by substituting the 
values 𝛽𝛼 and 𝛾𝛼 into  𝐶𝑓𝑛. Assume that 𝐴 is an arbitrary deterministic (possibly incomplete) algorithm 
for solving SAT. 

Now let Ω = 0,1 |𝑋𝑖𝑛| = 0,1 𝑛 be a space of elementary events, over which a uniform distribution is 
specified. With fixed 𝐵 and 𝑡 > 0 associate the random variable 𝜁𝐵, the value of which on an arbitrary 
input 𝛼 ∈ 0,1 𝑛 is equal to 1 if algorithm 𝐴 finds the satisfying assignment of CNF 𝐶𝑓𝑛 𝛽𝛼 , 𝛾𝛼  in time 
at most 𝑡 (denote this fact as 𝑡𝑖𝑚𝑒 𝐴 𝐶𝑓𝑛 𝛽𝛼 , 𝛾𝛼 = 𝛼 ≤ 𝑡). Otherwise, 𝜁𝐵 
is equal to 0 on an input 𝛼. Thus, 𝜁𝐵 is a Bernoulli random variable. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
[11] Bessiere C., Katsirelos G., Narodytska N., Walsh T. Circuit complexity and decompositions of global 
constraints. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Articial Intelligence 
(IJCAI), Pp. 412-418, 2009. 
[12] Семенов А.А. Декомпозиционные представления логических уравнений в задачах обращения 
дискретных функций. Известия РАН. Теория и системы управления. 2009. №5. С. 47-61. 
[13] Marques-Silva J., Lynce I., Malik S. Conflict-Driven Clause Learning SAT Solvers. In handbook of 
Satisfiability. Pp. 131-153. 2009. IOS Press. 



For each particular 𝐵 ⊆ 𝑋 define the following value: 

𝜌𝐵 𝑡 =
# 𝛼|𝑡𝑖𝑚𝑒 𝐴 𝐶𝑓𝑛 𝛽𝛼,𝛾𝛼 =𝛼 ≤𝑡

2𝑛
  

 
The numerator of the formula contains the number of such 𝛼, that algorithm 
𝐴 in time ≤ 𝑡 can find an assignment which satisfies 𝐶𝑓𝑛 𝛽𝛼 , 𝛾𝛼 . In this 
context it is clear that 𝜌𝐵 𝑡  is the probability of success for variable 𝜁𝐵, thus, 
the spectrum of 𝜁𝐵 is 1,0  and the distribution is 𝜌𝐵 𝑡 , 1 − 𝜌𝐵 𝑡 . 
Therefore, M 𝜁𝐵 = 𝜌𝐵 𝑡 . 
 
For a fixed 𝑡 > 0 let us refer to an arbitrary set 𝐵, 𝐵 ⊆ 𝑋, 𝐵 = 𝑠, such that 
𝜌𝐵 𝑡 > 0, as to Inverse Backdoor Set, IBS with parameters 𝜌𝐵 𝑡 , 𝑠, 𝑡 .  
 
Let 𝐵 be  an IBS with 𝜌𝐵 𝑡 > 0 for function 𝑓𝑛. Let us describe a guess-and-
determine attack on 𝑓𝑛, which is based on 𝐵. 
 
Assume that we know 𝛾 ∈ 𝑅𝑎𝑛𝑔𝑒 𝑓𝑛: 𝛾 = 𝛾𝛼 for some 𝛼 ∈ 0,1 𝑛. We need to 
find this 𝛼. For each 𝛽 ∈ 0,1 |𝐵| consider CNF 𝐶𝑓𝑛 𝛽, 𝛾𝛼  and launch 
algorithm 𝐴 on this CNF, terminating it as soon as the runtime exceeds 𝑡.  For 
some 𝛽: 𝛽 ≠ 𝛽𝛼 𝐴 may even manage to prove unsatisfiability of 𝐶𝑓𝑛 𝛽, 𝛾𝛼  in 
time  ≤ 𝑡 . The probability that 𝐴 will find a satisfying assignment for 
𝐶𝑓𝑛 𝛽𝛼 , 𝛾𝛼  in time ≤ 𝑡 is 𝜌𝐵 𝑡 . 

 



Thus, when analyzing an arbitrary 𝛾 ∈ 𝑅𝑎𝑛𝑔𝑒 𝑓𝑛 we need to traverse the whole set 𝐵. If it did not 
yield a result (when 𝜌𝐵 𝑡  is small), one can pick the next 𝛾 (it is assumed that each separate 𝛾 is 
induced by an independently chosen 𝛼 ∈ 0,1 𝑛). 

This way it is possible to repeat the traversal of 𝐵 again and again for different 𝛾 ∈ 𝑅𝑎𝑛𝑔𝑒 𝑓𝑛. Then 
the probability that in at least one out of 𝑄 cases the traversal of 0,1 |𝐵| will «hit» the correct 𝛽𝛼, 
is 

𝑃 𝑄 = 1 − 1 − 𝜌𝐵 𝑡
𝑄

. 

Therefore, the runtime required to traverse 0,1 𝑠, 𝑠 = |𝐵| at most 𝑄 times (i.e. the attacks 
runtime) is 

𝑡 ⋅ 2𝑠 ⋅ 𝑄. 
Question: how to choose 𝑄 in such a way that the resulting attack can be considered successful? 

It is clear, that when 𝑄 ≥
3

𝜌𝐵 𝑡
 𝑃 𝑄 > 0,95, and when 𝑄 ≥

4

𝜌𝐵 𝑡
 𝑃 𝑄 > 0,98. Hereinafter, 

we consider the runtime of a successful attack to be 

𝑡 ⋅ 2𝑠 ⋅
3

𝜌𝐵 𝑡
 

Question: how to evaluate 𝜌𝐵 𝑡  ? 

Important fact: Since 𝜌𝐵 𝑡 = M 𝜁𝐵 , it is possible to estimate 𝜌𝐵 𝑡  by estimating M 𝜁𝐵  via the 
Monte Carlo method [14],[15]. I.e.: 1) Observe the values of 𝜁𝐵  on a sample of size 𝑁: generate 𝑁 
independent inputs 𝛼, then knowing 𝛽𝛼 and 𝛾𝛼 launch 𝐴 on 𝐶𝑓𝑛 𝛽𝛼 , 𝛾𝛼 ; if 𝐴 finds satisfying 
assignment in time ≤ 𝑡, then 𝜁𝐵 = 1, otherwise 𝜁𝐵 = 0; 2) compute the sum of values of 𝜁𝐵  over 
the sample and divide it into 𝑁. 
 
---------------------------------------------------------------------------------------------------------------------------- 
[14] Metropolis N., Ulam S. The Monte Carlo Method. J. Amer. statistical assoc., 44(247):335-341, 1949. 
[15] Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: «Наука». 1971. 
 
 



From the Chebyshev’s inequality we have: 

Pr 𝜌𝐵 𝑡 −
1

𝑁
⋅  𝜁𝐵

𝑗𝑁
𝑗=1 ≤ 𝜖 ≥ 1 −

1

4⋅𝜖2⋅𝑁
  

Therefore, we can guarantee an arbitrarily good accuracy of the estimation of  𝜌𝐵 𝑡  (when 𝜌𝐵 𝑡 ≠ 0) by 
increasing the number of observations of 𝜁𝐵. 

Thus, for a given IBS 𝐵 we can consider the runtime of a corresponding attack to be equal to: 

              𝑡 ⋅ 2|𝐵| ⋅
3𝑁

 𝜁𝐵
𝑗𝑁

𝑗=1

  (*) 

The formula (*) is important because it allows one to view the problem of finding an attack (of the considered kind) 
with best effectiveness as a pseudo-Boolean optimization problem. 

Indeed, represent an arbitrary set 𝐵 ⊆ 𝑋 by vector 𝜆 of size |𝑋| (ones in this vector correspond to variables from 𝑋, 
which are present in 𝐵). Consider the function 

 Ψ𝐶𝑓𝑛 ,𝐴: 0,1
|𝑋| → R (**) 

The value of (**) is computed for an arbitrary 𝜆 ∈ 0,1 |𝑋| as follows: construct a set 𝐵 = 𝐵𝜆, specified by vector 𝜆; 
generate a sample of 𝑁 random inputs for 𝑓𝑛 and observe the random variable 𝜁𝐵  for 𝑁 times; compute (*) 
(runtime estimation for an attack). 

Consider a problem of minimization of pseudo-Boolean black-box function of the kind (**). One can use many 
different metaheuristic algorithm for solving it. In [8] we used the tabu search for this purpose, in [16] we applied 
(1+1)-Evolutionary Algorithm and a special variant of a genetic algorithm. The paper [17] contains a review on the 
application of metaheuristic algorithms for pseudo-Boolean black-box optimization to the problems of finding 
decompositions of hard SAT instances (including the problems of constructing guess-and-determine attacks on 
cryptographic functions). 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------- 
[8] Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On cryptographic attacks using backdoors 
for SAT. In Proc. of the Thirty-Second AAAI Conference on Articial Intelligence (AAAI), pages 6641-6648, 2018. 
[16] Pavlenko, A., Semenov, A., Ulyantsev, V.: Evolutionary computation techniques for constructing SAT-based 
attacks in algebraic cryptanalysis. LNCS. 2019. Vol. 11454 (EvoApplications). Pp. 237–253. 
[17] Semenov A., Zaikin O., Kochemazov S. Finding Effective SAT Partitioning via Black-Box Optimization. In book 
“Black Box Optimization, Machine Learning, and No-Free Lunch Theorems”. Springer Optimization and Its 
Applications 170. (2021) (In Print) 
 



   AES-128, 
2,5 rounds, 
One portion=1KP 
  

PRESENT-80 
6 rounds 
One portion=2KP 
(finding 80-bit secret key ) 

  
SAT immunity estimation 
found by minimization of 
function (**) 

1,45 × 1015 sec. 
|B|=42 
SAT-solver ROKK (1 th.) 
 
 
 
3KP 
The memory requirements are negligible. 

8,49 × 1015 sec. 
|B|=39 
SAT-solver ROKK (1 th.) 
750 KP 
 
 
2,85 × 1015 sec. 
|B|=39 
SAT-solver Painless (36 th.) 
10 KP 

  
  
Runtime estimation of the 
attack from [18] 

280 AES-operations; 
Approximately corresponds to  
3,08 × 1016 sec.  
|B|=80 (supposedly) 
 
2KP 
Memory requirements: 280 bits 

  
  
  

 --- 

  
  
Runtime estimation of the 
attack from [19] 
  
  

  
  
  

 --- 

 6,60 × 1018 sec.  
|B|=52 
  
Enhanced Binary Characteristic Set Algorithm (EBCSA) 
  
1 KP (!) 

[18] Bouillaguet C., Derbez P., Fouque P.-A. Automatic search of attacks on round-reduced AES and 
applications // Lecture Notes in Computer Science. 2011. Vol. 6841 (CRYPTO). Pp. 169–187. 
[19] Yeo S.L., Li Z., Khoo K., Low Y.B. An Enhanced Binary Characteristic Set Algorithm and Its Applications to 
Algebraic Cryptanalysis // Lecture Notes in Computer Science. 2017. Vol. 10355 (ACNS). Pp. 518–536. 

Some computational results 



[16] Pavlenko, A., Semenov, A., Ulyantsev, V.: Evolutionary computation techniques for constructing SAT-
based attacks in algebraic cryptanalysis. LNCS. 2019. Vol. 11454 (EvoApplications). Pp. 237–253. 

Some computational results. Estimations from paper [16] 



Some computational results 

  Grain 1.0 
Full-round 
One portion=1KP 
(finding 80-bit secret key) 
  

PRESENT-80 
6 rounds 
One portion=2KP 
(finding 80-bit secret key) 

  
SAT immunity 
estimation found by 
minimization of 
function (**) 

 
1,27 × 1027 sec. 
|B|=79 
SAT-solver ROKK (1 th.) 
2KP 
 

 
1,09 × 1022 sec. 
|B|=61 
SAT-solver ROKK (1 th.) 
6KP 
 
 

The results of these experiments are especially curious. PRESENT [20] is a 
popular lightweight block cipher. Grain 1.0 [21] is a stream cipher with very 
high encryption speed. Traditionally, block ciphers are viewed as more resistant 
than keystream ones. However, here we see that the runtime estimation for an 
attack on PRESENT is almost 105  times smaller than that of the attack on 
Grain! 
 
[20] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., 
Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block 
cipher. CHES 2007. LNCS, vol. 4727, pp. 450–466 (2007) 

[21] Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained 
environments. Int. J. Wire. Mob. Comput. 2(1), pp. 86–93 (2007) 



On the definition of SAT immunity 
 
The first definition of SAT immunity was introduced by N.T. Courtois with co-
authors in [22] 
 
Definition (SAT Immunity or satisfaction immunity). We define the SAT 
Immunity of a given cipher and for M plaintext/ciphertext pairs of the cipher as 
being the smallest possible number of key bits which can be fixed so that given 
M KP we can compute the secret key by the best available SAT solver in a 
relatively short time, say less than 1000 seconds.” (N.T. Courtois et al. [22]) 
 
Further, N. Courtois notes, that “This notion is as precise as it can be”, and it is 
impossible to agree with this comment. And the problem here is not even in 
the performance of SAT solving algorithms and the underlying hardware. The 
definition is incorrect in principle. Let us give a simple example. 
 
----------------------------------------------------------------------------------------------------- 
[22] Courtois N.T., Gawinecki J.A., Song, G. Contradiction immunity and guess-
then-determine attacks on GOST // Tatra Mountains Mathematical 
Publications. 2012. Vol. 53. Pp. 65–79. 
 



Imagine the following two situations: 
 
1. For a considered cryptanalysis problem we found a set of guessed bits of size, say, 40. Assume that 

fixing the values of the corresponding variables results in SAT instances that can be solved by a SAT 
solver under 0.001 seconds.; 

2. We found a set of guessed bits of size 32, but solving an arbitrary SAT instance constructed by fixing 
the values of corresponding variables takes from 0,91 to 0,99 seconds. 

 
Question: what is the UNSAT immunity of the considered cipher? Is it 40? Or32? Seemingly, it is 32 in 
accordance with the definition by Courtois. However, the total runtime of the corresponding guess-and-
determine attacks is: 
 
<109 951 16 28 seconds in the first case ( 𝐵 = 40) 
>386 547 05 66 seconds in the second case ( 𝐵 = 32) 
 
Thus, it is necessary to define the resistance of ciphers to algebraic attacks (including the attacks that 
employ SAT solvers) by other means. 
 
In light of the above, it is natural to consider the following value to be the correct estimation of SAT 
immunity (for a fixed algorithm 𝐴 and time limit 𝑡) : 
 

min
𝐵∈2𝑋

2|𝐵| ⋅ 𝑡 ⋅
3

𝜌𝐵 𝑡
  

 



 

 

 

 
Thank you for your attention! 


