Propositions as Types

Nikolai Kudasov
Innopolis University

Innopolis University, 2023

An adaptation of Philip Wadler’s talk given in St. Louis on August 25th, 2015

Philip Wadler (1956 — now

Philip Wadler (2015) — Propositions as Types

Propositions as Types *

Philip Wadler

University of Edinburgh
wadler@inf.ed.ac.uk

Propositions as Types is a notion with many names and many
origins. It is closely related to the BHK Interpretation, a view of
logic developed by the intuitionists Brouwer, Heyting, and Kol-
mogorov in the 1930s. It is often referred to as the Curry-Howard
Isomorphism, referring to a correspondence observed by Curry in
1934 and refined by Howard in 1969 (though not published until
1980, in a Festschrift dedicated to Curry). Others draw attention
to significant contributions from de Bruijn’s Automath and Martin-
Lo6f’s Type Theory in the 1970s. Many variant names appear in the
literature, including Formulae as Types, Curry-Howard-de Bruijn
Correspondence, Brouwer’s Dictum, and others.

http:/ /www.cs.bc.edu / ~muller/teaching /lc/ WadlerPropositionsAsTypes.pdf
3

http://www.cs.bc.edu/~muller/teaching/lc/WadlerPropositionsAsTypes.pdf

(780-846 AC)

dI'lZ1m1

al-Khw

Fuclid (325-265 BC)

Computability

+ Alonzo Church: Lambda-calculus

An unsolvable problem of elementary number theory
Bulletin the American Mathematical Society, May 1935

+ Kurt Godel: Recursive functions

Stephen Kleene, General recursive functions of natural numbers
Bulletin the American Mathematical Society, July 1935

+ Alan Turing: Turing machines

On computable numbers, with an application to the Entscheidungsproblem
Proceedings of the London Mathematical Society, received 25 May 1936

David Hilbert (1862-19423)

David Hilbert (1928) — Entscheidungsproblem

* Find an algorithm that would take any decision
problem (a yes or no question written as a logic
proposition S in some formal language) and after
finitely many steps would produce either «true» or
«false», depending on whether S is true or false.

19738)

Kurt Godel (1906-

Kurt Godel (1931) — Incompleteness theorem

42. isAziom(z) < peanoAziom(zx) V propAziom(z)V
quantor1Aziom(z) V quantor2Aziom(z) V reduAziom(z) V
setAziom(x)

Z 1s an AXIOM.

43. immConseq(z,y, z) < y = imp(z,z) V v < z.isVar(v) A z = forall(v,y)
x is an IMMEDIATE CONSEQUENCE of y and =z.

44. 1isProofFigure(z) < (\7’0 < n < length(z) .
isAziom(item(n,z)) V30 < p,g < n.
immConseq(item(n, z), item(p, x), item(q, :1:))) A
length(z) > 0
z is a PROOF FIGURE (a finite sequence of FORMULAE, each of which is either an
AXIOM or the IMMEDIATE CONSEQUENCE of two of the preceding ones).

45. proofFor(z,y) < isProofFigure(z) A item(length(z),z) =y
x is a PROOF for the FORMULA y.

46. provable(x) < Ty . proofFor(y, x)
z is a PROVABLE FORMULA. (provable(z) is the only one among the concepts 1-46 for
which we can not assert that it is primitive recursive).

«This statement is not provable»

«l Know It When | See It»

10

Alonzo Church (1903-1995)

Alonzo Church (1935) — Lambda-calculus

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY.!

By Aronzo CHURCH.

The purpose of the present paper is to propose a definition of effective
calculability ® which is thought to correspond satisfactorily to the somewhat
vague intuitive notion in terms of which problems of this class are often stated,
and to show, by means of an example, that not every problem of this class

18 solvable.
— —

We introduce at once the following infinite list of abbreviations,

1— Aab - a(b))
2 — b a(a(d)),
38— xab-a(a(a(d))),

and so on, each positive integer in Arabic notation standing for a formula
of the form Aab-a(a(:- - -a(d) - - *)).

T ——————— R —————————SWS

12

Alonzo Church (1935) — A-calculus

Complete syntax for A-calculus.

155

19738)

Kurt Godel (1906-

Kurt Godel (1936) — Recursive functions

General recursive functions of natural numbers?).

Von

S. C. Kleene in Madison (Wis., U.S.A.).

The substitution

1) P(Zys oo Tn) = 0%y (@ys o 0s Ba)s oo oy Zm (T1s - - 05 Ty)),s
and the ordinary recursion with respect to one variable
@) @(0,2,, ..., 2,) = P (T4, ... Ty)

Y+ 1L %, .. 2) =142 ...,), Ty, ..., T,),
where 0, 4,, ..., Xm, ¥, ¥ are given functions of natural numbers, are
examples of the definition of a function ¢ by equations which provide a
step by step process for computing the value ¢ (%, ..., k,) for any
given set k,,..., k, of natural numbers. It is known that there are
other definitions of this sort, e. g. certain recursions with respect to two
or more variables simultaneously, which cannot be reduced to a succession
of substitutions and ordinary recursions?). Hence, a characterization of
the notion of recursive definition in general, which would include all
these cases, is desirable. A definition of general recursive function of
natural numbers was suggested by Herbrand to Godel, and was used by
Gddel with an important modification in a series of lectures at Princeton
in 1934. In this paper we offer several observations on general recursive
functions, using essentially Godel’s form of the definition.

16

Alan Turing (1912-1954)

Alan Turing (1936) — Turing machines

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ¢computable” numbers may be described briefly as the real

numbers whose expressions as a decimal are calculable by finite means.
T — L

In §§9. 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally he
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers 7, e, etc. The computable numbers do not, however, include
all cefinable numbers, and an example is given of a definable number
which is not computable.

18 S——

Part 2

Propositions as lypes

19

Gerhard Gentzen (1909-1945)

Gerhard Gentzen (1935) — Natural deduction

2]

Gerhard Gentzen (1935) — Natural deduction

AJ*
B A—- B A
(— 1 (— E)
A— B B
A B A& B A& B
&1 &E;) (&E;)

22

Example proof by natural deduction

B & Al? B & Al?
A (&ET) B (&El)
A& B

(B& A) — (A& B)

T — T

(&)

(= %)

25

Simplifying proofs

Al

Simplifying example proof

1B & AJ? B & A7
(&Er) (&El)
A B (&)
A& B BV [A]F
(— I7) (&I)
(B& A) — (A& B) B&:A(. B)

A& B

29

Simplifying example proof

B & A)? B & A)?

A& B BlY [A]*
(— I7 (&I)
(B& A) — (A& B) B& A
(— E)
A& B)
U
B]Y [A]* &) B]Y [A]* &)
B& A

B& A
— (&E;) ——— (&E)
B
(&)

26

Simplifying example proof

B & A)? B & A)?

A& B B]Y [A]"
(— I (&I)
(B& A) — (A& B) B& A
(— E)
A& B |
U
B]Y [A]* B]Y [A]*
(&I) (&I)
B& A B& A
— (&E,) —— (&E)
A B
(&I)
A& B
J
Al* [B]Y

Alonzo Church (1903-1995)

Alonzo Church (1940) — Typed A-calculus

[z A]F
N : B N L:A— B M:A
(1) ()
M. N:A— B L M:B
M:A N:B L:A& B L:A& B
&1 (&E;) (&E;)

(M,N): A& B fst L: A snd L : B

2

Example program: swap

z: B& Al? z: B & Al?
(&Er) (&El)
snd 2z : A fst 2 : B
(&)
(snd z,fst 2): A& B
(= T%)

Az. (snd z,fst 2) : (B& A) — (A & B)

30

Evaluating programs

[ZE:.A]:E
. N: A— B M:A(>E)
(Ax. N) M : B = N{M/z}: B
M::A NB
(&I)
(M,N): A& B
(&E;)

fst (M,N): A = M:A

il

Alan Turing (1942) — Proof of normalisation

AN EARLY PROCF OF NORMALIZATION
BY A.M. TURING

R.0. Gandy

Mathematical Institute, 24-29 St. Giles,
Oxford 0X1 3LB, UK

Dedicated to H.B. Curry on the occasion of his 80th birthday

In the extract printed below, Turing shows that every
formula of Church's simple type theory has a normal form.
The extract is the first page of an unpublished (and incomgete)
typescript entitled 'Some theorems about Church's system'.
(Turing left his manuscripts to me; they are deposited in the
library of King's College, Cambridge). An account of this
system was published by Church in 'A formulation of the simple
theory of types' (J. Symbolic Logic 5 (1940), pp. 56-68).
e —————————

‘“

S

Evaluating example program

[z : B& A)? [z : B& A)?
(&Er) (&El)
snd z : A fst z: B
(snd z,fst z) : A& B ly: B]Y |x: A"
(= I7) (&I)
Az. (snd z,fst z) : (B& A) — (A& B) (y,z): B& A

(— E)
(Az. (snd z,fst 2)) (y,x) : A& B

Evaluating example program

[z : B& A)? [z : B& A)?
(&Er) (&El)
snd z: A fst z : B

(snd z,fst z) : A& B ly: B]Y |x: A"
(= I7) (&I)
Az. (snd z,fst z) : (B& A) — (A& B) (y,x):B&A(B

(Az. (snd z,fst 2)) (y,x) : A& B

Y
ly:BlY |z A]" ly:BlY |z A]"
&I

(¥,

(&T)
r): B& A (y,z) : B& A
(&E’r) (&El)
nd (y,z) : A fst (y,x): B
(s

(&)
nd (y,x),fst (y,x)) : A& B

Evaluating example program

[z : B& A)? [z : B& A)?
(&Er) (&El)
snd z: A fst z : B

(snd z,fst z) : A& B ly: B]Y |x: A"
(= I7) (&I)
Az. (snd z,fst z) : (B& A) — (A& B) (y,x):B&A(B

(Az. (snd z,fst 2)) (y,x) : A& B

Y
ly:BlY |z A]" ly:BlY |z A]"
&I

(¥,

(&T)
r): B& A (y,z) : B& A
(&E’r) (&El)
nd (y,z) : A fst (y,x): B
(s

(&)
nd (y,x),fst (y,x)) : A& B

|
[z A" [y B

&
(x,y): A& B (D

| — T

Haskell Curry (1900-1982) William Howard (1926-)

36

Howard (1980) — Propositions as Types

THE FORMULAE-AS-TYPES NOTION OF CONSTRUCTION

W. A. Howard

Department of Mathematics, University of
Illinois at Chiecago Cirele, Chicago, Illinois 60680, U.S.A.

Dedicated to H. B. Curry on the occasion of his 80th birthday.

The following consists of notes which were privately circu-

lated in 1969. Since they have been referred to a few times in

the literature, it seems worth while to publish them. They have

been rearranged for easier reading, and some inessential correc-
tions have been made.

S7

Curry-Howard correspondence

propositions as types
proofs as programs

proof simplification as program evaluation

38

Curry-Howard correspondence

Natural Deduction
Gentzen (1935)

Type schemes
Hindley (1969)

System F
Girard (1972)

Modal Logic
Lewis (1910)

Double-negation translation
Godel (1932), Gentzen(1935)

§

¢ @G

Typed A-calculus
Church (1940)

ML Type System
Milner (1975)

Polymorphic A-calculus
Reynolds (1974)

Monads (state, exceptions)
Kleisli (1965), Moggi (1987)

Continuations
Reynolds (1972)

Functional programming languages

« Lisp (McCarthy, 1958)

« Scheme (Steele and Sussman, 1970)

+ ML (Milner et al., 1973)

« Haskell (Hudak, Peyton Johnes, Wadler, 1987)
« Erlang (Armstrong, Virding, Williams, 1987)

OCaml (Leroy, 1996)

* Scala (Odersky, 2003)

« F# (Syme, 2005)

« Idris (Brady, 2009)

40

Theorem provers

Automath (de Bruijn, 1970)

ML /LCF (Milner et al., 1973)

Type Theory (Per Martin-Lo6f, 1975)
Mizar (Trybulec, 1975)

NuPrl (Constable, 1985)

HOL (Gordon and Melham, 1988)

Coq (Huet and Coquend, 1988)
[sabelle (Paulson, 1993)

Epigram (McBride and McKinna, 2004)
Agda (Norell, 2005)

41

42

Baez, Stay (2009) — A Rosetta Stone

Physics, Topology, Logic and Computation:

A Rosetta Stone
Category Theory | Physics | Topology Logic Computation
object system | manifold | proposition data type
morphism process | cobordism proof program

Table 1: The Rosetta Stone (pocket version)

43

Homotopy Type Theory (2013)

Homotopy
Type Theory

Univalent Foundations of Mathematics

4

Elliott (2017) — Compiling to Categories

Compiling to Categories

CONAL ELLIOTT, Target, USA

magSqr (a,b) = sqr a + sqr b

magSqr = addC o (mulC o (exl » exl) » mulC o (exr » exr))

@éi)))%}@

45

Elliott (2018)

The Simple Essence of Automatic Differentiation

The Simple Essence of Automatic Differentiation

CONAL ELLIOTT, Target, USA

L T——

6 PROGRAMMING AS DEFINING AND SOLVING ALGEBRA PROBLEMS

Stepping back to consider what we’ve done, a general recipe emerges:

Start with an expensive or even non-computable specification (here involving differentiation).
Build the desired result into the representation of a new data type (here as the combination
of a function and its derivative).

Try to show that conversion from a simpler form (here regular functions) to the new data
type—even if not computable—is compositional with respect to a well-understood collection
of algebraic abstractions (here Category etc).

If compositionality fails (as with 9, unadorned differentiation, in Section 3.1), examine
the failure to find an augmented specification, iterating as needed until converging on a
representation and corresponding specification that is compositional.

Set up an algebra problem whose solution will be an instance of the well-understood algebraic
abstraction for the chosen representation. These algebra problems always have a particular
stylized form, namely that the operation being solved for is a homomorphism for the chosen
abstractions (here including a category homomorphism, also called a “functor”).

Solve the algebra problem by using the compositionality properties.

Rest assured that the solution satisfies the required laws, at least when the new data type is
kept abstract, thanks to the homomorphic specification.

46

Cheung etal. (20198)

A principled functional language for machine learning

A functional perspective on machine learning via
programmable induction and abduction

Steven Cheung!, Victor Darvariu', Dan R. Ghica', Koko Muroya!:?, and
Reuben N. S. Rowe?

! University of Birmingham
 University of Kent
3 RIMS, Kyoto University

47

