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Ar . This paper presents matching logic, a first-order logic (FOL) variant for spec-
ifying and reasoning about structure by means of patterns and pattern matching. Its
sentences, the patferns, are constructed using variables, symbobs, connectives and quan-
tifiers, but no difference is made between function and predicate symbols. In models, a
pattern evaluates into a power-set domain (the set of values that matchit), in contrast to
FOL where functions and predicates map into a regular domain. Matching logic uniformly
generalizes several logical frameworks important for program analysis, such as: proposi-
tional logic, algebraic specification, FOL with equality, modal logic, and separation logic.
Patterns can specify separation requirements at any level in any program configuration,
not only in the heaps or stores, without any special logical constructs for that: the very
nature of pattern matching is that if two structures are matched as part of a pattern, then
they can only be spatially separated. Like FOL, matching logic can also be translated
into pure predicate logic with equality, at the same time admitting its own sound and
complete proof system. A practical aspect of matching logic is that FOL reasoning with
equality remains sound, o off-the-shelf provers and SMT solvers can be used for matching
logic reasoning. Matching logic is particularly well-suited for reasoning about programs in
programming languages that have an operational semantics, but it is not limited to this.
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Basic Notation
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Motivating and illustrative example

Consider the operational semantics of a real language like C, whose configuration has
more than 100 semantic components [ref below] . The semantic components, here called
“cells” and written using symbols (...)cel, can be nested and their grouping (symbol) is gov-
erned by associativity and commutativity axioms. Thereis a top cell (...)s holding subcells
(.-.)code; {---)heap; {---)in; {---)out among many others, holding the current code fragment, heap,
input buffer, output buffer, respectively.

e C. Ellison and G. Rosu. An executable formal semantics of C with applications. In POPL, pages 533544. ACM,
2012.

* C. Hathhorn, C. Ellison, and G. Ro3u. Defining the undefinedness of C. In PLDI'15, pages 336345. ACM, 2015.

* A.Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Ro*u. Semantics-based program verifiers for all languages. In
OOPSLA'16, pages 7491. ACM, 2016.
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Reading, storing and reverse writing
a sequence of integers

struct listlNode { int wval; struct listNode #next; I};

void list_read_write(int n) {

rule (§ = return; ---Jcode {A = - -)in (- - = rev(A))or A n = len(A)
int i=0;
struct listNede #x=0;

inv (8 A len(B)=n—1i A i<n -)in (list(x, ) ~)heap A A=rev(a)@s
while (i < n) {
struct listNode *y = x;

x = (struct listNode*) malloc(sizeof (struct listNode));
scanf ("%d", &(x->val));

I->next = y;

i+=1;17

inv (- @)ou {list(z,3) Iheap A rev(A) = a@p
while (=) {
struct listNode #y;
¥ = Z->next;
printf ("%d, " ,x->val);
free(xz);

X =y; r
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Towards the loop invariant

{{LDDF k}cnde {}: T, nn, 1, E}EI‘IV (I —a, r+ 1y, h’)heap {S}m (f}nut}cfg

The intuition for this pattern is that it matches all the configurations whose code starts with
LOOP (k, the “code frame”, matches the rest of the code), whose environment binds program
identifiers n and i to values n and 7, respectively, and x to location x (e, the “environment
frame”, matches the rest of the environment map) such that both z and z + 1 are allocated
and bound to some values in the heap (h, the “heap frame”, matches the rest of the heap),
whose input buffer contains some sequence (3) and whose output buffer contains the empty

sSCOUL eI Ce,
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Towards the loop invariant (cont.)

The interesting patterns are those combining symbols and logical connectives. For
example, suppose that we want to restrict the pattern above to only match where 1 < n.

((LOOPk)code (X T, n=n, 11, €eny (T a, T+ 1Y, A)peap (B)in (€)out)cfg N T <1

(Quantifiers can be used, for example, to abstract away irrelevant parts of the pattern.
Suppose, for example, that we work in a context where the code and the output cells are
irrelevant, and so are the frames of the environment and heap cells. Then we can “hide”

them to the context as follows:
(Jde.de.dh . ((x—z,n—=n, i1 €env (T a. T+ 1 Y, h)heap (B)in C)cfe) N 1< 1

Following a notational convention proposed and implemented in K http://kframework.org
we use “..." as syntactic sugar for such existential quantifiers used for framing:

((xr—=z,n—=n, i1t e (Tr—=a T+1+—=Y - Jheap (B)in ~)ecfg N T <N
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Towards the loop invariant (cont.)

Inspired from the invariant of the first loop in slide5  let us add some more constraints:
((list(z, ) “)heap (B *<)in )efg N len(B)=n—i A i1 <n A A=rev(a)Qp

The pattern above is additionally stating that the (...);, cell starts with a prefix of size
equal to n — 7 which appended to the reverse of the sequence that x points to in the heap
equals the original input sequence A. We can arrange the pattern to better localize the
logical constraints to the sub-patterns for which they are relevant. For example, the first
two constraints are relevant for the sequence 3, so we can move them to ther place:

((hst(z,a) )heap (B A len(B)=n—i A i <n -)in = )efg N A=rev(a)Qp
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Towards the loop invariant (cont.)

The above transformation is indeed correct, thanks to Proposition about constraint propa-
gation . Similarly, the remaining constraint can be localized to the two cells that need it.
Using also the fact that cell concatenation is commutative, we rewrite the pattern into:

(B Alen(B)=n—i A i1<n ), (list(z,a) - )pheap N A=rev(a)Qf ---)
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Syntax of patterns

Definition 2.1. Let (S,X) be a many-sorted signature of symbols. Matching logic (S, X)-
formulae, also called (S,XY)-patterns, or just (matching logic) formulae or patterns
when (S, X) is understood from context, are inductively defined as follows for all sorts s € S

s u= x € Varg [/ Variable
T(Pgyys - @5, ) with o € Xg, o s (written Xy ¢ whenn=0) [/ Structure
(P [/ Complement
Ws N\ Ps [/ Intersection
dx.ps with x € Var (of any sort) // Binding
Let PATTERN be the S-sorted set of patterns. By abuse of language, we refer to the symbols
in X also as patterns: think of o € Xy, s, s as the pattern o(x1:81,...,Tn:8n).

Nikolay V. Shilov - review of "Matching Logic" by Grigore Rosu (2017) for
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Some “standard” syntax stuff

lo ease notation, ¢ € PATTERN means @ 1s a pattern, while s € PATTERN or ¢ €
PATTERN; that it has sort s. We adopt the following derived constructs (“syntactic sugar”):

T = dr:s.x Y1 = P2 = - Vs
1, = T, P12 = (@1 = w2) A(p2 = ¢1)
p1Vepa = (-1 A-pr) Vz.p = —(Jz.-yp)

We adapt from first-order logic the notions of free variable, (variable capture free) sub-
stitution, and variable renaming, briefly recalled below. Let F'V () denote the free variables
of p, defined as follows: FV(x) = {x}, FV(0(@sys s, ) = FV(ps)U---U FV(ps, ),
FV(-p) = FV(p), FV(p1Ap2) = FV(p1)UFV(p2), and FV(3z.p) = FV(p) \ {z}.
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Semantics

Definition 2.2. A matching logic (S,X)-model M, or just a X-model when S is under-
stood, or stmply a model when both S and ¥ are understood, consists of:

(1) An S-sorted set {Ms}scs, where each set My, called the carrier of sort s of M,

s assumed non-empty; and
(2) A function opnr - Mg, X --- x My, — P(M,) for each symbol o € Xy, s, s, called the

interpretation of o in M.
Note that symbols are interpreted as relations, and that the usual (S, £)-algebra models
are a special case of matching logic models, where |op(my, ..., my)| =1 for any m; € My, ,
.., My € Mg . Similarly, partial (S, ¥)-algebra models also fall as special case, where
oy (my,...,my)| < 1, since we can capture the undefinedness of o)y on mq, ..., m, with
on(my,...,my) = (). We tacitly use the same notation o)y for its extension to argument

sets, P(Ms,) X --- x P(M,,) — P(My), that is,
om(Ar, ..., Ap) = Hom(ar,...,an) | a1 € Ay,... a4y € Ay}

where A) C M,,,..., A, T M, .

21-28(?).10.2022 Nikolay V. Shilov - review of "Matching L.og|c by Grigore Rosu 19
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Why matching logic?

Definition 2.3. Given a model M and a map p : Var — M, called an M -valuation, let
its extension p : PATTERN — P(M) be inductively defined as follows:

e o(x) = {p(x)}, for allx € Var,

plo(pr,-..,0n)) = onm(ple1),...plen)) forallo € Xy, s, s and appropriate @1, ..., Pn
p(—p) = M, \ ply) for all p € PATTERN,

plor N wa) = pler) Nplwa) for all vy, @2 patterns of the same sort

p(3z.0) = U (@) | ¢ : Var = M, p'[var\(23= Plvarfz} } = Uaenr la/z](¢)

where “\7 is set difference, “p[y 7 is p restricted to V- C Var, and “pla/x]” is map p' with
Plx)=a and p'(y) = ply) ify# x. If a € ply) then we say a matehes ¢ (with witness p).
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How to understand matching?

It is easy to see that the usual notion of term matching is an instance of the above;
indeed, if ¢ is a term with variables and M is the ground term model, then a ground term a
matches g iff there is some substitution p such that p(p) = a. It may be insightful to note

that patterns can also be regarded as predicates, when we think of “a matches pattern ¢”

as “predicate ¢ holds in @”. But matching logic allows more complex patterns than terms or
predicates, and models which are not necessarily conventional (term) algebras.
Interpreting formulae as sets of elements in models is reminiscent of modal logic, where

they are interpreted as the “worlds” in which they hold, and of separation logic, where they
are interpreted as the “heaps” they match.

21-28(?).10.2022 Nikolay V. Shilov - review of "Matching L.og|c by Grigore Rosu 14
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Extension works as expected
with the derived constructs

e p(p1V 2) =plp1)Up(p2)

o p(p1 — p2) ={m € M| m € p(p1) implies m € p(p2)} = Ms \ (p(p1) \ p(¥2))

o p(p1 <> p2) ={m € M, | m € p(¢1) iff m € p(pa)} = M \ (B(1) A Bp2))
(“A” is the set symmetric difference operation)

¢ ﬁ(vrly:} = n{F(‘:‘i}} | P; : Var — M, p![lr’ﬂ.r\{:z}= pl ‘lr’r:a.r"-.,{.r}} = nﬂEﬂI P[E!IJ:J (H::]

Nikolay V. Shilov - review of "Matching Logic" by Grigore Rosu (2017) for
21-28(?).10.2022 ruStep seminar 15



Warning: Matching Logic is not two-valued!

Therefore, the matching logic interpretation of the logical connectives is not two-valued
like in classical logics. In particular, the interpretation of ¢, — @y is the set of all the
elements that if matched by ¢ then are also matched by 3. One should be careful when
reasoning with such non-classical logics, as basic intuitions may deceive. For example, the
interpretation of ¢ — 2 is the total set (i.e., same as T) iff all elements matching ¢; also
match 5, but it is the empty set iff ¢, is matched by no elements (same as L) while ¢, is
matched by all elements (same as T).

Nikolay V. Shilov - review of "Matching Logic" by Grigore Rosu (2017) for
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Matching Logic is not two-valued! (cont.)

] 1 - Ifin doubt, thanks to the set-theoretical interpretation
of the matching logic connectives, we can always draw diagrams to enhance our intuition; for
example, Figure depicts the semantics of pattern implication and of pattern equivalence.

gray area matches @1 — @2 gray area matches ) ¢ p2

(¢1 2) = {m € My | m € p(p1) implies m € p(p2)} = Ms \ (p(e1) \ P(e2))

® 0 —
® p(p1 > p2) ={m e M |m e p(p1) it m € p(pa)} = Ms \ (B(ep1) A p(p2))
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Predicates

Definition 2.4. Pattern o, is an M-predicate, or a predicate in M, iff for any M-
valuation p : Var — M, it is the case that p(ps) is either Mg (it holds) or | (it does not
hold). Pattern ps is a predicate iff it is a predicate in all models M.

Note that T, and L are predicates, and if ¢, 1 and 2 are predicates then so are -y,
w1 N w2, and Jz .. That is, the logical connectives of matching logic preserve the predicate
nature of patterns.

Definition 2.5. M satisfies ©w., written M = p.. iff p(ws) = M. for all p: Var — M.

Nikolay V. Shilov - review of "Matching Logic" by Grigore Rosu (2017) for
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Properties of entailment

Proposition 2.6. Unless otherwise stated, assume the default pattern sort to be s. Then:
(1) If pr,p2 : Var— M, pilpve)= p2lrv(e) then pi(y) = p2(p)
(2) If x € Vars then M = x iff | M| =1
(3) If o € Xy, .. 5,5 and ©1,...,p, are patterns of sorts 81, ..., sy, respectively, then we
have M = o(p1,...,¢0n) f o (pler),---,p(en)) = Mg for any p: Var— M
(4) M = -y iff p(p) =0 for any p: Var— M
(5) M = @1 N2 iff M =@ and M = @2
(6) If Ax.ps closed, M = 3x.ps iff {p(ws) | p: Var — M} = Mg; hence, M = 3z.x
(7) M = @1 — @2 iff pler) € plw2) for allp: Var — M
(8) M = @1 <> w2 iff p(pr1) = plp2) for all p: Var — M
(9) M =Vz.po iff M = ¢

Nikolay V. Shilov - review of "Matching Logic" by Grigore Rosu (2017) for
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Warning on entailment

Note that property “if ¢ closed then M = —p iff M = ", which holds in classical logics
like FOL, does not hold in matching logic. This is because M = ¢ means —p is matched
by all elements, i.e., ¢ is matched by no element, while M F= ¢ means ¢ is not matched
by some elements. These two notions are different when patterns can have more than two
interpretations, which happens when M can have more than one element.
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Matching logic specification

Definition 2.7. Pattern ¢ is valid, written = @, iff M = ¢ for all M. If F C PATTERN
then M = F iff M = ¢ forall p € F. F entails p, written F' = o, iff for each M, M = F
implies M = @. A matching logic specification is a triple (S, %, F') with F C PATTERN.
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Pure predicate logic reasoning
can be used to reason about patterns

Proposition 2.8. The following properties hold for patterns of any sort s € S, so the
Hilbert-style arioms and proof rules that are sound and complete for pure predicate logic
are also sound for matching logic, for any sort

(1) = @, where @ is a propositional tautology over patterns of sort s.

(2) Modus ponens: = @1 and = @1 — @2 imply = 2.

(3) B (Vz.p1 = v3) = (p1 = VT .p3) when z & FV(p).

(4) Universal generalization: = @ implies =V . @.

(5) Substitution: = (Vr.p) — ply/x|, with variable y € FV (Yx. ) of same sort as .
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Basic structural properties

Proposition 2.10. (Structural Framing) If o € X, s, s and @;, o; € PATTERN,, such
that = @; = ¢ foralli € 1...n, then Eo(py,...,0,) = olpl,....¢@)).
Proposition 2.11. (Distributivity of symbol application) Let 0 € X4, o s and p; €
PATTERN, for all1l < i < n. Pick a particular 1 <i < n. Let ¢ € PATTERN,, be another
pattern of sort s; and let C,;[0] be the context o(p1,...,pi—1.0,@ixt1,...0n) (a context
C0| is a pattern with one occurrence of a free variable, “O1", and C[p| is Cle/O]). Then:

(1) E Coilpi V¢l ¢ Coilpi] V Coil @]

(2) E Coil3z. il < 3x.Cyilpi], where x & FV(Cy;i[O])

(3) E Coilpi A #i] = Coilpi]l A Coil#])

(4) | CoilVz . pi] = Yz .Coilpi], where x & FV(C,:[0])
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Basic structural properties (cont.)

Definition 2.12. With the notation in Prﬂpﬂﬁitiﬂn@. C,.:|0] s injective in specification
(S,X,F) iff F & Cyilx] AN Csilyl = Coilz Ayl, where z,y € Vars, are distinct variables
which do not occur in C, ;[0J]. We drop (S, X, F) when understood. Symbol o is injective on
position i iff C, ;0] is .iﬂjﬁﬂﬂﬂﬁ with ©1, ..., Vi_1, ©it1,.....Pn chosen as distinct variables.
Proposition 2.13. (Distributivity of injective symbol application) With the notation
in Definition|2.13, if C, ;[0 is injective in (S, X, F) and @;, ¢, € PATTERN,, then:

{1) F |= Gﬂ'._i[{:'ji] A Cﬂ.i['@;] — Cﬂ,'i ["fgi A 1'?;

(2) F EVz.Chilpil = CyilVx . @], where x & FV(C,;[])
Together with Proposition|2.11] this tmplies the full distributivity of injective contexts w.r. 1.
the matching logic constructs A, V, ¥V, 3 (but not —).
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Instances
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Propositional Calculus

Onslide 22 (1) in Proposition E, we showed that propositional reasoning 1s sound for
matching logic. Here we go one step further and show that we can can instantiate matching
logic to become precisely propositional calculus, without any translation needed 1n any
direction. The idea1s to add a special sort for propositions, say Prop, then to use the already
existing syntax of matching logic to build propositions as we know them, and then to show
that the existing semantics of matching logic, given by [, yields the expected semantics of
propositions as we know it in propositional calculus (let us refer to it as |:H_Gp).

We build a matching logic signature as follows: S contains only one sort, Prop, and X
1s empty. Let us also drop the existential quantifier, so that the resulting syntax of patterns
becomes exactly that of propositional calculus: ¢ == Varpro, | 7@ | 9Ag.

Proposition 3.1. For any proposition ¢, the following holds: |=p,,, ¢ iff = ¢.
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(Pure) Predicate Logic

Recall , that by pure predicate
logic in this paper we mean predicate logic or first-order logic (FOL) with only predicate
symbols (no function and no constant symbols).

Proposition [2.8showed that predicate logic reasoning is sound
for matching logic. Similarly to propositional calculus in Slide26 , here we go one step

further and show that we can can instantiate matching logic to become precisely predicate
logic

We follow the same approach like for
propositional calculus: add a special sort for predicates, say Pred, then use the already

existing syntax of matching logic to build formulae as we know them in predicate logic, and
then show that the existing semantics of matching logic, given by |=, yields the expected
semantics of pure predicate logic. We let |=p;, denote the predicate logic satisfaction.
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(Pure) Predicate Logic (cont.)

Recall that predicate logicis the fragment of first-order logic with just predicate symbols,
that is, with no function (including no constant) and no equality symbols. We consider only
the many-sorted case here. Formally, if S is a sort set and II is a set of predicate symbols,
the syntax of pure predicate logic formulae 1s

p = m(ry,...,x,) with m €1l ., x; € Vary, ..., z, € Varg
| ¢ [oAp | 3x.0.
Without loss of generality, suppose that we can pick a fresh sort name, Pred; that
is, Pred ¢ S. Let us now construct the matching logic signature (S U {Pred},¥), where

2is1..sn.Pred = s, s, are the only symbols in »; that 1s, 2 contains precisely the predicate
symbols of the predicate logic signature, but regarded as pattern symbols of result sort Pred.
Suppose also that we disallow any variables of sort Pred in patterns. Then the matching logic
patterns of sort Pred are precisely the predicate logic formulae, without anyv translation in

any direction.
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(Pure) Predicate Logic (cont.)

Proposition 4.1. For any predicate logic formula @, the following holds: E=pr ¢ iff = ¢

Proof. That E=p; @ implies = ¢ follows by Proposition 2.8t each of the proof rules of
the complete proof system of (pure) predicate logic 1s sound for matching logic. For
the other implication, note that we can associate to any predicate logic model MFPL
({M "} ses {marre b ren) a matching logic model MME = ({ MM} coit preay {marme b rex),
where MMEL = MFPE for all s € S and ML = {x} (with » some arbitrary but fixed element)
and ‘:'TMML{al ..... ap) ={xtiff myspe(ay. ... .ay) holds, and myme(ag, . ... a,) = () otherwise.
Furthermore, we can show that for any PL formula ¢, we have M+ =p; o iff M ML E=nmr .
Since dc-es not contain any variables of sort Pred, by (1) in Proposition 2.6|it suffices to
show that for any p : Var — M?TL| it is the case that MTY p =p; ¢ iff p(p) = {*}. We
can easily show this property by structural induction on . The only relatively non-trivial
case 1s the complement construct, which shows why 1t was important for ﬂ-fﬁf_i’d to contain
precisely one element: MPL, p Epr —p iff MPFPE, p FEpr @ iff (by the induction hypothesis)
plp) # {x} iff p(p) = 0 iff p(—p) = {*}.

Therefore, MPL Isz w 1ff M ML =ar . Since the predicate logic model MPL was
chosen arbitrarily, it follows that = ¢ implies E=pp ©. ]
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First-Order Logic

Formally, given a FOL signature (S, %, II), the syntax of its (many-sorted) formulae is:

te = x € Varg
| o(ts,,---,ts,) witho e X, o
p = m(ts,,...,ts,) Withmellg s,

| = [oAp | 3x. 0.
Compare the above with the syntax of matching logic in Slide 10.  Unlike FOL, matching
logic does not distinguish between the term and predicate syntactic categories, reason for
which its syntax is in fact more compact than FOL’s. Moreover, matching logic allows
logical constructs over all the syntactic categories, not only over predicates, and locally
where they are needed instead of only at the top, predicate level. Also, matching logic allows
quantification over any sorts, including over sorts of symbols thought of as predicates.
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First-Order Logic (cont.)

Like in predicate logic, we add a Pred sort and regard the FOL predicate
symbols as matching logic symbols of result Pred, and disallow variables of sort Pred and
restrict the use of logical connectives and quantifiers to only patterns of sort Pred. Then
there is a one-to-one correspondence between FOL formulae and matching logic patterns
of sort Pred; we let ¢ range over them. Moreover,
we constrain each FOL operational symbol o € X;, 5, s to be interpreted as a function,
that 1s, we write the symbols meant to be
functions as o : s1...s, — s. Formally, let (SM£ ML) be the matching logic signature
with SME = § U {Pred} and ML — vy {m:851...8n = Pred | m €1l 5.}, and let F be
{Fz:s.0(x1:81,...,2:8,) = 2z | 0 € By, 5,5} stating that each symbol in ¥ is a function.

Proposition 7.1. For any FOL formula ¢, we have =por ¢ iff F = .
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First-Order Logic (cont.)

Consider we want to refer to all real numbers of the
form 1/z with x a strictly positive integer, but this time using a given predicate positive?(z)
that Fells whether z is positive. .WE-. can use the pattern 1/‘3.‘.‘;’1 (positive?(z) =8 T p, ed); but
that is too verbose. We would like to just write 1/x A positive?(x).

Notation 7.2. If ¢ 1s a FOL formula, we take the freedom to write © instead of ¢ = T ppeq.

The following result allows us to do that:
Proposition 7.3. If p, p1 and ps are FOL formulae, then

e = (p1=Tred NP2="TpPred) = (71 ANP2 =T Pred)
o |: _'(P — TF?‘E(!} — (_'p — TF?‘E(!}
Other similar properties for derived FOL constructs can be derived from these.

Proof. Trivial: each of p(p), p(p1), and p(p2) can only be () or {*}, for any valuation p. [
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Modal Logic

Hereafter we only discuss S5 and thus implicitly mean the S5 modal logic whenever we say modal logic.

We start by giving the syntax and semantics of modal logic. Let Varp,.,, be a countable

set of propositional variables p, q, etc. Then the modal logic syntax 1s defined as follows:
p 1= Varppp
=@ o9 | Op.

The remaining propositional constructs A, V and <+, can be defined as derived constructs.
Therefore, syntactically, modal logic adds the [ construct to propositional logic, which is
called necessity: Uy is read “it is necessary that ¢”. The dual possibility construct can be
defined as a derived construct: Q@ = == is read “it is possible that ¢”. Semantically, the

truth value of a formula is relative to a “world”. Propositions can be true in some worlds
but false in others, and thus formulae can also be true in some worlds but not in others:
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Modal Logic (cont.)

Definition 8.1. Let W be a set of worlds. Mappings v : Varp,,, xW — {true, false}, called
(modal logic) W -valuations, state that each proposition only holds in a giwen (possibly
empty or total) subset of worlds. Valuations extend to modal logic formulae:
e v(—p,w) = true iff v(p,w) = false
e (1 — o, w) = true iff v(pr, w) = false or v(p2, w) = true
o v([p, w) = true iff v(p,w') = true for every w' € W
Formula ¢ is valid in W, written W =g5 @, iff v(p, w) = true for any W -valuation v and
any w € W. Formula ¢ is valid, written =g5 @, iff W Eg5 @ for all W.
Modal logic (S5) admits the following sound and complete proof system
(N) Rule: If o derivable then Cy derivable| (What about Modus Ponens Rule: If  and ¢ — 1 are derivable then ) is derivable? |
(K) Axiom: (@1 — w2) — (Opy — Ops)
(M) Axiom: Op — ¢
(5) Axiom: Qp — OOy

Nikolay V. Shilov - review of "Matching Logic" by Grigore Rosu 34

21-28(7).10.2022
8(?).10.20 (2017) for ruStep seminar



Modal Logic (cont.)

We next show that we can define a matching logic specification (S, 2, F') which faithfully
captures modal logic, both syntactically and semantically. The idea is quite simple: S
contains precisely one sort, say World; ¥ contains one constant symbol p € Xy g for
each propositional variable p € Varp.,,, plus a unary symbol ¢ € Xword world; and F

contains precisely one axiom stating that { is the definedness symbol |, namely
Qx : World (x is a free World variable in this pattern). Then we let [y be the totality
construct , that is, syntactic sugar for =Q—.

Nikolay V. Shilov - review of "Matching Logic" by Grigore Rosu 35

21-28(7).10.2022
8(?).10.20 (2017) for ruStep seminar



Modal Logic (cont.)

Note that any modal logic
formula ¢ can be regarded, as 1s, as a ground matching logic pattern over this signature; by
“sround” we mean a pattern without variables, so the other implication is also true, because
disallowing variables includes disallowing quantifiers.

Proposition 8.2. For any modal logic formula ¢, we have g5 ¢ iff = ¢.
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Separation Logic

Separation logic (originating with ideas in late 1990, followed by a canonical work

e J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS'02, pages 55-74.
IEEE, 2002.

There are many variants, but here we only consider the original variant according to the cited paper.
Moreover, here we only discuss separation logic as an assertion-language, used for specifying state properties,
and not its extension as an axiomatic programming language semantic framework.

Separation logic extends the syntax of formulae in FOL As follows:
p == (FOL syntaz)

emp

Nat — Nat

pxe

P i . , 1
© —* magic wand
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Separation Logic (cont.)

Its semantics is based on a fixed model of stores and heaps, which are finite-domain maps
from variables and, respectively, locations (which are particular numbers), to integers. Be-
low we recall the formal definition of satistaction in the original variant of separation logic,
noting that subsequent variants of separation logic extend the underlying model to include
stacks (instead of stores) as well as various types of resources that are encountered in modern
programming languages.

Nevertheless, we leave the thorough
analysis of the diversity of separation logic variants proposed in the last 15 years through
the lenses of matching logic as a subject for future work.
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Separation Logic (cont.)

Definition 9.1. (Separation logic semantics ) Partial finite-domain
maps s : Var — Nat are called stores, partial finite-domain maps h : Nat — Nat are

called heaps, and pairs (s,h) of a store and a heap are called states. The semantics of the
separation logic constructs are given in terms of such states, as follows:

e (s,h) Esr ¢ for a FOL formula ¢ iff s Eror ¢ (the heap portion of the model is
irrelevant for the FOL fragment);

e (s.h) EsL emp iff Dom(h) = 0);
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Separation Logic (cont.)

Definition 9.1. (Separation logic semantics, cont.)

e (s,h) Esi e1 — es where e; and ey are terms of sort Nat (thought of as “expres-
sions”) iff Dom(h) = s(e1) # 0 and h(s(e1)) = 3(ea), where s is the (partial function)
extension of s to expressions (with variables) of sort Nat, defined similarly to the
extension of valuations to patterns in Definition |2.5) (slide 13);

e (s,h) EsL 1 * w2 iff there exist h1 and ha such that Dom(h1) N Dom(h2) = ()
and h = hy = ha (the merge of hi and hs, a partial function on maps written as an
associative/commutative monoid ) and (s,h1) EsL @1, (8, he) EsL @2;

e (s,h) Esr p1—*x 2 iff for any hy with Dom(hy) N Dom(h) = 0, if (s, h1) EsL ©1
then (s, h * hy) Esr @2; i.e., the semantics of “magic wand” is defined as the states
whose heaps extended with a fragment satisfying p1 result in ones satisfying p2.

Separation logic formula @ is valid, written =g, @, iff (s,h) Es1 @ for any state (s, h).
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Separation Logic (cont.)

One of the most appealing aspects of separation logic is that it allows
us to define compact and elegant specifications of heap abstractions using inductively defined
predicates. Such an abstraction which is quite common is the linked-list abstraction list(x, S)
stating that x points to a linked list containing an abstract sequence of natural numbers S:

list(x, €) o emp A x =0

list(x,n - S) B PPN [n, z| * list(z, S)
Above, € is the empty sequence, n - S is the sequence starting with natural number n and
followed by sequence S, and x — [n, z| is syntactic sugar for x — nx* (z +1) — z. So a
linked list starting with address x takes either empty heap space, in which case x must be 0
and the abstracted sequence is €, or there is some node in the linked list at location z in the
heap that holds the head of the abstracted sequence (n) and a link (z) to another linked list

that holds the tail of the abstracted sequence (\5).
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Separation Logic (cont.)

We only discuss maps from natural numbers to natural numbers, but they can be similarly defined over
arbitrary domains as keys and as values. Consider a matching logic specification of maps with its axioms
explicitly listed, and with a syntax that deliberately resembles that of separation logic (i.e., we use “*” instead
Of II’II)

_+— _: Nat x Nat — Map emp* H=H

emp : — Map Hy « Hy = Hy x Hy

% Map x Map — Map (Hy = Hy) * Hy = Hy % (Hy % H3)
Or—a=_1 r—axr—b=_1

Recall that there are no predicates here, only patterns. When regarding the above ADT as
a matching logic specification, we can prove that the bottom two pattern equations above
are equivalent to —(0 — a) and, respectively, (x — a*xy +— b) — x # y, giving the
and %  the feel of “predicates”.
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Separation Logic (cont.)

Maps, like natural numbers, do not admit finite (or even recursively enumerable) equational (or first-order)
axiomatizations, so adding a good enough subset of equations is the best we can do in practice. We chose ones
that have been proposed by algebraic specification languages and by separation logics for several reasons.

* First, they have been extensively used, so there is a good chance they are good enough for many purposes.

* Second, we do not want to imply that we propose a novel axiomatization of maps; our novelty is the
presentation of known specifications of maps using the general infrastructure of matching logic at no
additional translation cost.



Separation Logic (cont.)

Consider the canonical model of partial maps M, where: My, = {0,1,2,...}; My =
partial maps from natural numbers to natural numbers with finite domains and undefined
in 0, with emp interpreted as the map undefined everywhere, with +  interpreted as the
corresponding one-element partial map except when the first argument is 0 in which case it
is undefined (note that +  was declared using —), and with %  interpreted as map

merge when the two maps have disjoint domains, or undefined otherwise (note that =
was also declared using —). M satisfies all axioms above.
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Separation Logic (cont.)

We start with matching logic definitions for complete linked lists and for list fragments.
Let list € Xnat, map and lseq € X natx Nat,Map e two symbols together with patterns

list(0) = emp Iseg(x, x) = emp
list(tx) Ne #0=3dz.x — 2z * list(2) lseg(x,y) N #Fy=dz.x+— zxlseg(z,y)
The main difference between our definitions above and their separation logic variants
is that the latter cannot use the (FOL) equality symbol as we did.

There are two important questions about the matching logic specification above:

(1) Does this specification admit any solution in M, i.e., total relations listyr : Mo —
P(Mptap) and Isegpy : Mgt X Mgt — P(Marap) satisfying the patterns above?

(2) If yes, is the solution unique? This is particularly important because we do not
require initiality constraints on M nor smallest fixed-point constraints on solutions.

We answer these questions positively.
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Separation Logic as
an Instance of Matching Logic

Consider the FOL fragment
in Slides 30-32 where the signature X includes the signature of maps . Any
additional FOL constructs, background theories, and/or built-in domains that one wants to
consider in separation logic specifications, are handled as already explained in Slides 30-32

It is clear then that all the syntactic constructs of separation logic, except for the
magic wand, —, are given by the above matching logic signature. The magic wand, on the
other hand, can be defined as the following derived construct:

p1—x@2 = JH:Map.H N |H % @1 — 2]

Recall that || is T (it matches the entire set) iff its enclosed pattern ¢
is T; otherwise, if ¢ does not match some elements, then |¢] is L (it matches nothing).
In words, @;—* @ matches all maps A which merged with maps matching ¢, yield only
maps matching @,.
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Separation Logic as
an Instance of Matching Logic

Thanks to the notational convention that Booleans b, respectively usual
predicates p, stand for equalities b = true, respectively p = T preq

Any separation logic formula is a matching logic pattern of sort Map.
Semantically, note that separation logic hard-wires a particular model of maps. That

is, its satisfaction relation =gy, ¢ is defined using a pre-defined universe of maps, which is
conceptually the same as our model of maps

Proposition 9.2. If ¢ is a separation logic formula, then =gr ¢ iff Map = .
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Reduction to FOL with equality
and axiomatization



Translation of FOL to Pure Predicate Logic

It is known that FOL formulae can be translated into equivalent predicate logic with equality
formulae (i.e., no function or constant symbols ) , by replacing all functions
with their graph relations . Specifically, function symbols o : s1 xX--- X5, — s
are replaced with predicate symbols 7, : 51 X--- X s, X s, and then terms are transformed into
formulae by adding existential quantifiers for subterms. Let us define such a translation, say
PL. 1t takes each FOL predicate w(¢1,...,t,) into a pure predicate logic formula as follows:

PL(7(t1, ... ty))=3r1---rn. PLa(t1,r1) A--- A PLa(tn,rn) Am(r1,...,7n)

x

where PLs(t,r) is a translation of term ¢ into a predicate stating that t equals variable r:

PLy(xz,r) = (z=r7)
PlLy(o(ty,...,tn),r) = dry---3drp . PLo(t1,71) A+ A PLo(ty,70) A g (T1y .oy Ths )

el
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Translation of Matching Logic

We can similarly translate matching logic patterns into equivalent predicate logic for-
mulae. Consider predicate logic with equality (and no function or constant symbols) whose
satisfaction relation is =7, . For matching logic signature (S, X), let (S,1lx) be the predicate
logic signature with Iy = {7, : 51 X--- X85, X5 |0 € X4, s, s}, like above but without the

axioms stating that these predicates have a functional interpretation in models (because the
matching logic symbols need not be interpreted as functions).
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Translation of Matching Logic (cont.)

We define the translation PL

of matching logic (S, ¥)-patterns into predicate logic (S, Ily)-formulae inductively:
PL(p) = Vr.PLy(p,1)
PLy(xz,7) = (x =71)
PLy(o(p1, - .., on),r) = 3ry---3Iry . PLo(p1,7m1) A=+ A PLa(@n,Tn) ATip(r1,. .oy, 1)
PLy(—p,r) = ~PLy(p, 1)
PLy(p1 A pa,1) = PLa(p1,7) A PLa(a, 1)
PLy(dx ., r) = dx. PLy(p, 1)
PL({@I- cay fpn}) = {PL(QQI) ey PL(W?’L)}
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Translation of Matching Logic (cont.)

The predicate logic formula PLs(p,r) captures the intuition that “r matches ¢”. The top
transformation above, PL(¢) = Vr. PLy(¢, 1), is different from (and simpler than) the cor-
responding translation of predicates from FOL to predicate logic. It captures the intuition
that the pattern ¢ is valid iff it is matched by all values r. Then the following result holds:

Proposition 10.1. If F' is a set of patterns and ¢ is a pattern, F' = ¢ iff PL(F') =5; PL(p).
Proof. It suffices to show that there is a bijective correspondence between matching logic
(S, X)-models M and predicate logic (5, IIx;)-models M’, such that M = ¢ ift M’ =5, PL(y)
for any (S, X)-pattern . The bijection is defined as follows:

e M. = M; for each sort s € S;

® Tonr © Mg, X+ X My x Mg with (ay,...,an,a) € mgpp iff opp : Mg, X+ - X Mg, —
P(M,) with a € opr(a,...,an).

To show M = ¢ iff M" =F5; PL(yp), it suffices to show a € p(p) iff pla/r] EF; PL2(p, 1) for

any p : Var = M, which follows easily by structural induction on . ]
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Sound and Complete Deduction

* Onslides 54 & 55, we propose a sound and complete proof system for matching logic (for total
interpretations). The first group (slide 54) of rules/axioms are those of FOL with equality, the second group
slide 55) of rules/axioms are about membership.

* We have made no effort to minimize the number of rules and axioms in our proof system. On the contrary,
our approach was to include all the rules and axioms that turned out to be useful in proof derivations,
especially if they already existed in FOL. Moreover, we preferred to frame unexpected properties of
matching logic as axioms or proof rules, so that users of the proof system are fully aware of them.

Theorem 11.2. The proof systen inslides 54-55 is sound and complete: F = ¢ iff F F .



FOL axioms and rules

1. - propositional tautologies

2. Modus Ponens: F @1 and F ¢1 — @2 imply F @2

3. F(Vxr.p1 — w2) = (p1 — Vr.po) when x & F'V (1)

4. Universal Generalization: F ¢ implies - Vz . ¢

5. Functional Substitution: F (Vz.p) A (Jy.¢" =y) — [’ /x]
5’. Functional Variable: F dy. 2z =y

6. Equality Introduction: = o = ¢

7. Equality Elimination: b @1 = @2 A plp1/xz] — @[p2/x]
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Membership axioms and rules

8. FVx.xecpiff -y

9. Fxey=(r=y) when z,y € Var

10. Fz € =p=—(x € p)

1. Fzepi Apa=(x € p1) A (x € pa)

12. - (x € dy.p) = Jy.(x € ¢), with x and y distinct

13. F 2€0(P150 Pim15 Pis Pit1s9n) = Y. (Y Epi A zE€T (1,
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What to read/watch next
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