
Automated error localization for C programs using
deductive verification

Dmitry Kondratyev

A.P. Ershov Institute of Informatics Systems

C-light and C-kernel

I Correct methods / algorithms at each step.
I Solution:

“Restrictions that contribute to provability are what
make a programming language good.” Tony Hoare

I C-light language
I covers the majority of C99 (C0 — completely, Misra C —

almost);
I sets the calculation order;
I doesn’t have some low-level operations.

I C-kernel language
I is defined in terms of operational semantics;
I axiomatic semantics is correct with respect to operational one.

Translation from C-light to C-kernel
The main idea of this translation is to localize side effects.

As a result, all instructions and expressions are translated into
a form where only variables and constants are their arguments.

For example, the following expression:

f (e1, . . . , ei−1, ei , ei+1, . . . , en)

is translated to

(x = ei , f (e1, . . . , ei−1, x , ei+1, . . . , en)),

where
I ei is not variable or constant;
I ei+1, . . . , en – variables and constants;
I f – a function or +, −, ∗, /, <, >, <=, =>, ! =, ==;
I x is a new variable of the same type as ei .

It is Ops translation rule.

Kinds of C-kernel expressions with memory access
Kinds of lvalues in the C-kernel language:

1. var

2. ∗pointer_var

3. var .structure_field

4. (∗pointer_var).structure_field

5. array [index]

6. ∗(array_of _pointers[index])

Kinds of rvalues with reference operators:

1. &var

2. &(var .structure_field)

3. &(array [index])

Memory allocation:

1. new(type)

2. delete(pointer)

Memory model of the C-light language

MeM is a mapping from an object to its address

MD is a mapping from an object’s address to its value.

If MD contains a pair (adr val ′) (where val ′ is some value),
then the mapping upd(MD, addr , val) differs from MD by
replacing the pair (adr val ′) with the pair (adr val)

If addr does not belong to the domain of MD, then the mapping
upd(MD, addr , val) differs from MD by adding the pair
(adr val)

Axioms about MeM and MD

1. MD(NULL) = void
2. MeM(obj) 6= NULL
3. upd(MD, NULL, val) = MD
4. upd(MeM , obj , NULL) = MeM
5. delete(MD,NULL) = MD
6. (upd(MD, addr , val))(addr) = val
7. (upd(MD, adr1, val))(adr2) = MD(adr2) if adr1 6= adr2
8. upd(MD, MeM(obj), MD(MeM(obj))) = MD
9. upd(MeM , obj MeM(obj)) = MeM
10. (upd(MeM , obj , addr))(obj) = addr
11. (upd(MeM , obj1, adr))(obj2) = MeM(obj2) if obj1 6= obj2
12. (delete(MD, addr))(addr) = void
13. (delete(MD, adr1))(adr2) = MD(adr2) if adr1 6= adr2
14. (delete(MeM , obj))(obj) = void
15. (delete(MeM , obj1))(obj2) = MeM(obj2) if obj1 6= obj2
16. delete(upd(MD, addr , val), addr) = MD
17. delete(upd(MeM , obj , addr), obj) = MeM

The C-lightVer system: overview

/*@ requires \nothing;
 assigns e;
 ensures \result == \old(e) && e == \old(e) + 1;

*/
e++

/*@ requires \nothing;
 assigns e;
 ensures \result == \old(e) && e == \old(e) + 1;

*/
(q = &e, y = *q, *q = *q + 1, y)

MD1 = upd(MD0, MeM(q), MeM(e)) ⋀
MD2 = upd(MD1, MeM(y), MD1(MeM(q))) ⋀
MD = upd(MD2, MD2(MeM(q), BinOpSem(+, MD2(MeM(q)), 1)) ⋀
Val = MD(MeM(y)) ⇒
 Val = \old(MD(MeM(e)) ⋀ MD(MeM(e)) = \old(MD(MeM(e))) + 1

Annotated C-light program
passed to translator,

translates

Annotated C-kernel program
passed to VCG,

generates

Verification condition
passed to Simplify or Z3,

validates

Java Program Verification Challenges

Jacobs B., Kiniry J., Warnier M. Java Program Verification
Challenges. Lecture Notes in Computer Science. 2003. Volume
2852. pp. 202–219.
DOI: https://doi.org/10.1007/978-3-540-39656-7_8

https://doi.org/10.1007/978-3-540-39656-7_8

Translator from C-light to C-kernel

56. for(; i > 0 ; i++)
57. {
58. k++;
59. continue;
60. j++;
61. }

78. /* begin changes BCE5 17 79-85 */
79. for(; i > 0; i++)
80. {
81. k++;
82. goto l;
83. j++;
84. l:
85. }
86. /* end changes */

Reverse translator

69. /* begin changes BCE5 19 70-76 */
70. for(; i > 0; i++)
71. {
72. k++;
73. goto l;
74. j++;
75. l:
76. }
77. /* end changes */

Reverse translator

43. /* begin reverse 70-76 */
44. for(; i > 0 ; i++)
45. {
46. k++;
47. continue;
48. j++;
61. }
62. /* end reverse */

Maryasov I.V., Nepomniaschy V.A., Promsky A.V., Kondratyev D.A.
Automatic C Program Verification Based on Mixed Axiomatic
Semantics. Automatic Control and Computer Sciences. 2014.
Volume 48. Issue 7. pp. 407–414.
DOI: https://doi.org/10.3103/S0146411614070141

https://doi.org/10.3103/S0146411614070141

Inference rule for array update

{P} prog; {Q(MD ← upd(MD,MeM(a, i), rval))}

{P} prog; a[i] = rval {Q}

Inference rule for if statement

{P} prog {B} S1 {Q}, {P} prog {¬B} S2 {Q}

{P} prog; if B S1 else S2 {Q}

Inference rule for invariants

{P} prog {dINV e → Q}

{P} prog; {INV } {Q}

Inference rule for while loop

{P} prog; {I},
{I ∧ B} S {I},

I ∧ ¬B → Q

{P} prog; while B inv I do S {Q}

Inference rule for empty program

P → Q

{P} {Q}

Why verification may fail?

I The program may be incorrect or unsafe;
I The annotations may be incorrect or incomplete;
I The simplifier may be too weak;
I The underlying theory may be incomplete;
I The prover may run out of resources.

In each of these cases, users are typically confronted only with
failed VCs but receive no additional information about the
causes of the failure.

Idea (following Denney and Fischer)

I The Hoare rules are extended by "semantic mark-up"so
that the calculus itself can be used to build up
explanations of the VCs.

I This mark-up takes the form of structured labels that are
attached to the terms used in the Hoare rules, so that the
VCG produces labeled versions of the VCs.

I The labels are maintained through the different
processing steps:

I simplification
I extraction from the final VCs
I rendering into natural language explanations

Denney E., Fischer B. Explaining Verification Conditions. Lecture
Notes in Computer Science. 2008. Volume 5140. pp. 145–159.
DOI: https://doi.org/10.1007/978-3-540-79980-1_12

https://doi.org/10.1007/978-3-540-79980-1_12

Labels

We will derive labeled terms

dtel ,

where

I each term t can be adorned with a label l

I labels will have the form c(o, n)

I c — type
I o — location
I n — optional list of labels

Term supplemented with multiple labels:

Let us consider term supplemented with multiple labels:

dddddtel1el2e...elk−1elk

We may replace multiple labels by first label:

dtel1

where

n(l1) = list(l2,lk−1, lk)

Verification condition structure

Horn clause:

H1 ∧ . . .Hn → C

where

I H1, . . . Hn — hypotheses;
I C — conclusion.

Review of concepts of semantic labels

Concepts Examples Aspects of verification conditions
Hypotheses

I Assertions
I Control

predicates

asm_pre,
asm_inv, then,
while_t

Hypotheses represent the assumptions
that some logic statements hold in some
program points. Among them can be both
the original preconditions and the control
expressions of the statements while and
if.

Conclusions
ens_post,
ens_inv_iter

Conclusions reflect the main purpose of
the verification conditions, which is in the
ensurance that some assertions hold in the
given program points.

Qualifiers
I Substitutions
I Assignments

sub, upd, alloc,
init

Qualifiers introduce more detailed
characterization for hypothesis and
conclusions by recording how a subformula
was produced.

Inductive qualifiers
call, pres_inv

Inductive qualifiers give the secondary
purpose of the verification conditions. For
example, the verification conditions for
the inner loop conceptually relate to the
purpose of the conditions for the nested
loop as well.

Inference rule for update supplemented with semantic labels

{P} prog; {Q(MD ← dupd(MD,MeM(a, i), rval)eupd)}

{P} prog; a[i] = rval {Q}

Inference rule for if supplemented with semantic labels

{P} prog {dBethen} S1 {Q}, {P} prog {d¬B eelse} S2 {Q}

{P} prog; if B S1 else S2 {Q}

Inference rule (invariant) supplemented with semantic labels

{P} prog {dINV easm_inv → dQeens_post}

{P} prog; {INV } {Q}

Inference rule for while supplemented with semantic labels

{dP easm_pre} prog; {dI eens_inv},
d{dI easm_inv ∧ dBewhile_t} S {dI eens_inv_iter}epres_inv ,

dI easm_inv_exit ∧ d¬Bewhile_f → dQeens_post

{P} prog; while B inv I do S {Q}

Inference rule for empty supplemented with semantic labels

dPeasm_pre → dQeens_post

{P} {Q}

Negate_first example

void NegateFirst(int ia[], int Length)
{

//@ pre ...
int i;
//@ inv ...
for (i = 0; i < Length; i++) {

if (ia[i] < 0) {
ia[i] = -ia[i];
break;

}
}
//@ post ...

}

Annotations of Negate_first

Precondition of Negate_first:

pre : ∃old : int[].MD(MeM(ia)) 6= null∧
MD(MeM(ia)) = MD(MeM(old))

Postcondition of Negate_first:

post: ∀i . (0 ≤ i ≤ MD(Length) =⇒
((MD(MeM(old , i)) < 0∧
(∀j . 0 ≤ j < i ⇒ MD(MeM(old , j)) ≥ 0))⇒

MD(MeM(ia, i)) = −MD(MeM(old , i))∧
old [i] ≥ 0⇒ MD(MeM(ia, i)) = MD(MeM(old , i)))

Invariant of Negate_first loop

inv : 0 ≤ MD(i) ≤ MD(Length)∧
(∀j . 0 ≤ j < MD(i)⇒

(MD(MeM(ia, j)) ≥ 0∧
MD(MeM(ia, j)) = MD(MeM(old , j))) .

Negate_first with error

void NegateFirst(int ia[], int Length)
{

//@ pre ...
int i;
//@ inv ...
for (i = 0; i < Length; i++) {

if (ia[i] < 0) {
ia[i] = ia[i];
break;

}
}
//@ post ...

}

C-kernel representation of Negate_first

1 void NegateFirst(int ia[], int Length) {
2 //@ pre ...
3 auto int i;
4 i=0;
5 while(i < Length){
6 //@ inv ...
7 if (ia[i]<0){
8 ia[i] = ia[i];
9 goto L;
10 }
11 else {}
12 auto int* q1;
13 q1 = &i;
14 *q1 = *q1 + 1;
15 }
16 L:;
17 //@ post ...
18 }

Unproven verification condition



dinv(MD← MD1)
easm_inv(6) ∧

dMD1(MeM(i)) < MD1(MeM(Length))ewhile_t(6) ∧
dMD1(MeM(ia),MD1(MeM(i))) < 0ethen(7) ∧
dMD = upd(MD1, (MeM(ia),MD1(MeM(i))),

MD1(MeM(ia),MD1(MeM(i))))eupd(8)

⇒
dposteens_inv(9,L)



pres_inv(6..10)

Kondratyev D., Promsky A. An integrated approach to the error localization
during C program verification. System Informatics. 2013. Issue 1. pp. 79–
96.
DOI: https://doi.org/10.31144/si.2307-6410.2013.n1.p79-96
(In Russian)

https://doi.org/10.31144/si.2307-6410.2013.n1.p79-96

Conjunct from unproven verification condition

dMD = upd(MD1, (MeM(ia),MD1(MeM(i))),
MD1(MeM(ia),MD1(MeM(i))))eupd(8)

Text templates for labels

then → assumption that ”then”-branch is chosen at line . . .

→ means correspondance between label and text template

Label extraction

Denney and Fischer proposed extracting labels from the VC in
ascending order of the number of the lines corresponding to
the label. This is how a list of labels is generated and used to
generate the VC explanation.

An algorithm for extracting labels from the VC was implemented
in the C-lightVer system, which differs from the approach of
Denney and Fischer. This algorithm is based on the representation
of the VC as a depth-first traversal tree. Labels are added to
the list used to generate a VC explanation in the order of that
depth-first traversal.

Generation of explanation of verification condition

The result of the label extraction algorithm is a list of labels
used to generate the VC explanation. After labels are extracted
from the VC, the VC explanation is generated.

The algorithm for generating VC explanation is based on a
sequential traversal of the resulting list of labels. For each
label that is visited during the traversal, the text of its line-
number-filled template is added to the text explaining the VC.

Explanation of unproven verification condition

This VC corresponds to lines 6–10 in the function
"NegateFirst". Its purpose is to contribute the loop
invariant preservation on each iteration.
Hence, given

- assumption that loop invariant holds at line 6,
- assumption that the loop condition holds at line 6,
- assumption that "then"-branch is chosen at line 7,
- substitution for MD

originating in array update at line 8 ,
show that label invariant holds at line 9.

MetaVCG: origins

I Can the correctness of a VCG be guaranteed not only by
testing/verification but also by its construction?

I Basing on classical results by E.W. Dijkstra, R.L. London,
D.C. Luckham etc., M. Moriconi and R. Schwartz
proposed in 1981 a method for mechanically constructing
VCGs from a useful class of Hoare logics.

I Any VCG constructed by the method is shown to be
sound and deduction-complete w.r.t the associated Hoare
logic.

Moriconi M., Schwartz R.L. Automatic construction of verification
condition generators from hoare logics. Lecture Notes in Computer
Science. 1981. Volume 115. pp. 363–377.
DOI: https://doi.org/10.1007/3-540-10843-2_30

https://doi.org/10.1007/3-540-10843-2_30

The C-lightVer system: overview

Annotated
C program

Analysis
and

transformation

Program
in the internal

form

MetaVCG
Recursively

defined
VCG

Hoare system

Verification
conditions

Axioms Proof
environment

MetaVCG: soundness and completeness

I Metagenerator takes a Hoare logic as an input and
automatically derives a recursively defined VCG. The
axiomatic rules must be given in a normal form with
several constraints.

I Many axiomatic rules do not satisfy them, so the authors
provided an equivalence-preserving transformation from a
more liberal general form into a normal one.

I The soundness and completeness were proved for their
method, thus providing that a produced VCG is correct
w.r.t. the original axiomatic definition.

MetaVCG: the pattern language

{P} prog {INV},
{INV /\ e} S {INV},

INV /\ (not e) => Q
|-
{any_predicate(P)} any_code(prog)
{any_predicate(INV)}
while(simple_expression(e)) any_code(S)
{any_predicate(Q)}

Kondratyev D.A., Promsky A.V. Developing a self-applicable verification
system. Theory and practice. Automatic Control and Computer
Sciences. 2015. Volume 49. Issue 7. pp. 445–452. DOI:
https://doi.org/10.3103/S0146411615070123

https://doi.org/10.3103/S0146411615070123

label construct

{(label P asm_pre)} prog {(label INV ens_inv)},
(label

{(label INV asm_inv) /\ (label e while_t)} S
{(label INV ens_inv_iter)}

pres_inv
),
(label INV asm_inv_exit) /\ (label (not e) while_f) =>

(label Q ens_post)
|-
{any_predicate(P)} any_code(prog)
{any_predicate(INV)}
while(simple_expression(e)) any_code(S)
{any_predicate(Q)}

Kondratyev D. Implementing the Symbolic Method of Verification
in the C-Light Project. Lecture Notes in Computer Science. 2018.
Volume 10742. pp. 227–240.
DOI: https://doi.org/10.1007/978-3-319-74313-4_17

https://doi.org/10.1007/978-3-319-74313-4_17

Defining label construct

(label c text)

where

I c – new type of semantic label;

I text – new text template for semantic label.

Text template may contain special control characters:

I %begin – line number of begin of correspomding source code;

I %end – line number of end of corresponding source code.

For example, let us consider definition of then label:

(label
then
assumption that "then"-branch is chosen at lines %begin-%end

)

Related works
I Denney E., Fischer B. Explaining Verification Conditions. Lecture

Notes in Computer Science. 2008. Volume 5140. pp. 145–159. DOI:
https://doi.org/10.1007/978-3-540-79980-1_12

I Maryasov I.V., Nepomniaschy V.A., Promsky A.V.,
Kondratyev D.A. Automatic C Program Verification Based on
Mixed Axiomatic Semantics. Automatic Control and Computer
Sciences. 2014. Volume 48. Issue 7. pp. 407–414.
DOI: https://doi.org/10.3103/S0146411614070141

I Kondratyev D., Promsky A. An integrated approach to the error
localization during C program verification. System Informatics.
2013. Issue 1. pp. 79–96. DOI:
https://doi.org/10.31144/si.2307-6410.2013.n1.p79-96
(In Russian)

I Kondratyev D.A., Promsky A.V. The Complex Approach of the
C-lightVer System to the Automated Error Localization in
C-Programs. Automatic Control and Computer Sciences. 2020.
Volume 54. Issue 7. pp. 728-739. DOI:
https://doi.org/10.3103/S0146411620070093

https://doi.org/10.1007/978-3-540-79980-1_12
https://doi.org/10.3103/S0146411614070141
https://doi.org/10.31144/si.2307-6410.2013.n1.p79-96
https://doi.org/10.3103/S0146411620070093

Automated error localization for C programs using
deductive verification

Dmitry Kondratyev

A.P. Ershov Institute of Informatics Systems

