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Majority of ML for source code is done 
using token representation of code 

(Naturalness hypotheses, Allamanis 2017)

Recent approaches explore using graph  
representation of source code
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Introduction
Summary

• All ML tasks for source code require some level of understanding to process source 
code


• It would be beneficial to have a shared model 


• Such models called pre-trained model


• Pre-trained models are widely adopted for images and text (BERT, ResNet)


• Existing pre-trained models for code are borrowed from NLP


• Pre-trained models specific for source code are not well studied, hard to evaluate


• Good pre-trained models will enable faster development of intelligent tools
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Introduction
Contributions

• Trained Graph Neural Network (GNN) embeddings for source code


• Performed experiments with different pre-training objectives


• Tested pre-trained embeddings on the task of type prediction for Python 
variables


• Studied the impact of GNN embedding dimensionality on the type prediction 
quality


• Tested a technique for combining existing NLP-based approaches with GNN 
embeddings
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Existing Work
Evaluation Challenges

• Pre-trained models enable faster training


• Pre-trained models allow achieve better prediction quality on various tasks


• They are not straightforward to evaluate due to disconnect between pre-
training task and evaluation tasks


• Evaluation tasks for source code are not well defined
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Existing Work
Results

Method  Pre-training tasks  Evaluation Tasks  

GraphCodeBERT (Guo et al, 2020)   MLM, Data-flow edges, token & data-
flow alignment 


code search, clone detection, code 
translation

PLBART (Ahmad et al, 2021) 
 MLM code summarization, code generation, 
code translation, code classification

σ1 (Liu et al, 2021a) Metapath Random Walk, 
Heterogeneous Information 

Maximization, Motif, Node Tying MLM 


method name prediction, link 
prediction

CuBERT (Kanade et al, 2019) 
 MLM Variable Misuse

AWD-LSTM-LM (Trevett et al, 2021)   Language Modeling Code Search, Method Name Prediction

SLM (Alon et al, 2020) Predicting AST Nodes, Predicting 
Subtokens Autocompletion

TLM (Yang et al, 2019) Token Prediction Autocompletion

Ours Name Prediction (similar to MLM), 
Edge Prediction, Node Type prediction Type Prediction
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Background
Classical NLP (pre 2008)

• Tokenization


• Feature extraction


• Discrete feature space 
explosion
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Background
NLP after ~2005-2008

• To prevent feature space explosion, use dimensionality reduction


• Obtain token embeddings by decomposing token collocation 
matrix from a large dataset (pre-training)


• Rows of  are token embeddingsE

A = E ⋅ ET, Aij = 1 if token ti collocates with token tj
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Background
NLP after ~2008-2010

• 


• , d - embedding 
dimensionality


• Rows of  are token 
embeddings


• Features are no longer 
explainable, need to learn black 
box classifier


• Context is limited, but larger 
than before

A ∈ R|V|×|V|

E ∈ R|V|×d

E

A = E ⋅ ET, Aij = 1 if token ti collocates with token tj
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Background
NLP state-of-the-art

• Modern methods 
trained with Masked 
Language Model 
(MLM) objective


• Context size is large


• Pre-train entire model 
instead of only token 
embeddings
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Background
NLP state-of-the-art

• Most of the model is 
reused for new task


• Classifier in the end 
substituted for task-
specific classifier
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Background
NLP models summary

Classical NLP Early applications of embeddings State-of-the-art NLP

High dimensional discrete features Embedding vectors as low 
dimensional features

Embedding vectors are contextual and 
require a pre-trained model

Features are hand crafted Embeddings are trained automatically 
to recover word collocations

Embedding model pre-trained to 
recover missing tokens

Trained for specific task Embeddings are pre-trained on large 
corpus and reused across tasks

Embedding model is pre-trained on 
large corpus and reused across tasks

Increasing context size leads to 
exploding feature space

Context size is small due to limited 
computational resources

Context size is large and requires a lot 
of computational resources
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Background
Examples of Embeddings for Source Code

Example of projecting vectors for tokens in C/C++ source code to 2D space (Harer et al. 2018) 
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Background
Drawbacks of NLP models for Source Code

Problems:


• Source code is represented as a sequence of tokens


• Sequential representation does not reflect source code execution order


• Context size is limited and cannot incorporate imports and calls 


• Elements of source code are processed as strings and not as aliased entities


Solution


• Use Graph Neural Networks
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Method Description
Source Code Processing Pipeline
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Method Description
Transform Source Code Into a Graph

• Abstract Syntax Tree (AST) was chosen as a starting point for building graph 
representation of source code


• Additional edges added to connect different parts of source code (inheritance, 
calls, imports)


• Nodes that represent the same variable in a function are connected together


• Reduce the number of parameters with subword tokenization 
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Method Description
Transform Source Code Into a Graph
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Method Description
Transform Source Code Into a Graph
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Transform Source Code Into a Graph

22



Method Description
Transform Source Code Into a Graph
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Method Description
Transform Source Code Into a Graph
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Method Description
GNN

• Graph Neural Network (GNN) is a class of Neural Network that takes graph as 
an input


• GNNs are based on the principle of message passing


• Messages are vector representations of nodes
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Method Description
GNN Message Passing Algorithm

Algorithm 1: Message passing algorithm for GNN
Data: Input graph
Result: Model that produces embeddings for nodes in the graph
initialize node embeddings randomly;
while training do

for n message passing steps do
for each node, prepare message from it’s own embedding;
for each node, pass message to neighbours;
for each node, aggregate messages from neighbours;
for each node, update it’s own embedding;

end
for nodes in training set, compute loss function;
to minimize loss, update embeddings and GNN parameters;

end

1
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Method Description
Difference between GNN and Transformer

Transformer creates fully connected

graph between each token in current context. 


Embeddings created for tokens.

GNN model uses only connections defined 

in the original graph. Embeddings created for 


nodes.

Both models aim at producing embeddings for source code.  These models share similarity

In how embeddings are computed
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Method Description
Pre-training objectives

We experiment with 
several pre-training 
objectives


• Name prediction


• Edge prediction


• Node type prediction


• TransR objective 
(variant of edge 
prediction)
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Method Description
Pre-training objectives
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Method Description
Pre-training outcome

• The outcome of pre-training process is a GNN model that can be used for 
computing GNN embeddings


• GNN embeddings are not the same as token embeddings in NLP approaches


• GNN embeddings can be used for classifying individual nodes and for 
classifying subgraphs


• At the current stage, experiments completed only for classifying variables by 
type (node classification)

30



Type prediction
Approaches for Type Prediction

• Classify embedding for node that represents variable (Type Prediction I)


• Use hybrid model to take advantage from sequential and graph 
representations (Type Prediction II)
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Type prediction
Approach for Type Prediction I
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Type prediction
Approach for Type Prediction II
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Type prediction
Approach for Type Prediction II
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Experiments
Data Preparation

• Remove type annotations and 
default values from code and graph


• Pre-train GNN model


• Compute embeddings for nodes 
that represent variables


• Simplify type annotations (List[Int] 
-> List)


• Overall 2767 examples and 89 
unique type labels


• Use top 20 type labels (80%) as 
popular types
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Experiments

Need to determine:


1. Are pre-trained graph embeddings useful for type prediction?


2. How type prediction quality is affected by embedding dimensionality?


3. Can GNN embeddings be used together with sequential embeddings?


4. Do GNN embeddings improve training speed?
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Experiment
Are pre-trained graph embeddings useful for type prediction?

• Pre-train GNN embeddings using 
pre-training objective


• Pre-training objective is not related 
to type prediction


• Take embeddings for nodes that 
correspond to variables


• Classify embeddings into Python 
types


• Random embeddings are used as 
baseline
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Experiments
How type prediction quality is affected by embedding dimensionality?

• Dimensionality of GNN 
embeddings can be controlled


• Increasing dimensionality leads 
to better performance


• CodeBERT (dimensionality 768) 
provided for reference
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Experiments
What are common mistakes?

• Vertical axis - correct type


• Horizontal - predicted type


• A lot of confusion with popular 
types (str, any)


• Confusion among ambiguous 
types (Union, List)
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Experiments
Can GNN embeddings be used together with sequential embeddings?

• Need to determine


• Are pre-trained graph embeddings 
useful for type prediction?


• How type prediction quality is affected 
by embedding dimensionality?


• Can GNN embeddings be used 
together with sequential embeddings?


• Do GNN embeddings improve training 
speed?
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Experiments
Type Prediction Examples

Predicted

def _update_inplace( self FRAMEORSERIES , result STR , verify_is_copy BOOL = True) :

        # NOTE: This does *not* call __finalize__ and that's an explicit
        # decision that we may revisit in the future.

        self._reset_cache()
        self._clear_item_cache()
        self._data = getattr(result, "_data", result)
        self._maybe_update_cacher(verify_is_copy=verify_is_copy)

Ground Truth

def _update_inplace(self, result, verify_is_copy BOOL_T = True) :

        # NOTE: This does *not* call __finalize__ and that's an explicit
        # decision that we may revisit in the future.

        self._reset_cache()
        self._clear_item_cache()
        self._data = getattr(result, "_data", result)
        self._maybe_update_cacher(verify_is_copy=verify_is_copy)
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Experiments
Type Prediction Examples

Predicted

def __init__(self, string STR ) :
        if not isinstance(string, str):
            raise TypeError("IsEqualIgnoringCase requires string")
        self.original_string = string
        self.lowered_string = string.lower()

Ground Truth

def __init__(self, string STR ) :
        if not isinstance(string, str):
            raise TypeError("IsEqualIgnoringCase requires string")
        self.original_string = string
        self.lowered_string = string.lower()
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Experiments
Type Prediction Examples

Predicted

def parse_config_file( path STR , final BOOL = True) :

    return options.parse_config_file(path, final=final)

Ground Truth

def parse_config_file( path STR , final BOOL = True) :

    return options.parse_config_file(path, final=final)
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Experiments
Do GNN embeddings improve training speed?

• ML models are trained in iterations 
(epochs)


• Pre-trained model improves training 
speed for Type Prediction II


• Top prediction accuracy improved

Improvementi = Score_with_GNNi − Score_without_GNNi
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Summary

• Created a GNN model for creating source code embeddings


• Designed an approach to use sequential representation of source code (NLP) 
together with graph representations


• Evaluated pertained embeddings on the task of type prediction for Python variables. 
Compared results with CodeBERT 


• Using CodeBERT together with GNN embeddings allow to improve type prediction 
accuracy


• GNN embeddings improve training speed


• Pre-training gives best results using Name Prediction objective
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Future Work

• Better to test on larger dataset


• Current results for the prediction achieved for simplified types. Can explore 
approaches for predicting full type


• Need to evaluate on other tasks (variable misuse, search)
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Thank you
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