Type Prediction in Source Code with Graph Neural Network Embeddings

Vitaly Romanov

Program Translation

Similarity Search

Classification

Туре Annotation Summarization

ML for Source Code

Program Element Naming

Language Modeling

Bug and Vulnerability Detection

def sum(xs: List[Int]) -> Int: val acc = 0 for x in xs: acc += x return acc

def sum(xs):
 return sum(xs)

4

elements in a list

from ExampleModule import ExampleClass

instance = ExampleClass(None)

def main():
 print(instance.method1())

main()

Majority of ML for source code is done using token representation of code (Naturalness hypotheses, Allamanis 2017)

Recent approaches explore using graph representation of source code

Introduction Sumary

- All ML tasks for source code require some level of understanding to process source code
- It would be beneficial to have a shared model
- Such models called pre-trained model
- Pre-trained models are widely adopted for images and text (BERT, ResNet)
- Existing pre-trained models for code are borrowed from NLP
- Pre-trained models specific for source code are not well studied, hard to evaluate
- Good pre-trained models will enable faster development of intelligent tools

Introduction Contributions

- Trained Graph Neural Network (GNN) embeddings for source code
- Performed experiments with different pre-training objectives
- Tested pre-trained embeddings on the task of type prediction for Python variables
- Studied the impact of GNN embedding dimensionality on the type prediction quality
- Tested a technique for combining existing NLP-based approaches with GNN embeddings

Existing Work Evaluation Challenges

- Pre-trained models enable faster training
- Pre-trained models allow achieve better prediction quality on various tasks
- They are not straightforward to evaluate due to disconnect between pretraining task and evaluation tasks
- Evaluation tasks for source code are not well defined

Existing Work Results

Method	Pre-training tasks	Evaluation Tasks
GraphCodeBERT (Guo et al, 2020)	MLM, Data-flow edges, token & data- flow alignment	code search, clone detection, code translation
PLBART (Ahmad et al, 2021)	MLM	code summarization, code generation code translation, code classification
σ1 (Liu et al, 2021a)	Metapath Random Walk, Heterogeneous Information	method name prediction, link prediction
CuBERT (Kanade et al, 2019)	MLM	Variable Misuse
AWD-LSTM-LM (Trevett et al, 2021)	Language Modeling	Code Search, Method Name Predictio
SLM (Alon et al, 2020)	Predicting AST Nodes, Predicting Subtokens	Autocompletion
TLM (Yang et al, 2019)	Token Prediction	Autocompletion
Ours	Name Prediction (similar to MLM), Edge Prediction, Node Type prediction	Type Prediction

Background **Classical NLP (pre 2008)**

 Tokenization Prefix Feature extraction Fratures Token Positio • Discrete feature space Token explosion Positio

Token	def	main	(arg1	,	arg2)	•	retur
Suffix	ef	in	(g1	,	g2)	• •	rn
Prefix	de	ma	(ar	,	ar)	• •	re
Token Position -1		def	main	(arg1	,	arg2)	• •
Token Position +1	main	(arg1	,	arg2)	:	return	1
Is number	0	0	0	0	0	0	0	0	0
Is punctuation	0	0	1	0	1	0	1	1	0
						Classifie	er		
	Ο	Ο	Ο	U-Int	Ο	U-Str	Ο	Ο	Ο

Background NLP after ~2005-2008

- To prevent feature space explosion, use dimensionality reduction
- Obtain token embeddings by decomposing token collocation matrix from a large dataset (pre-training)

 $A = E \cdot E^T, A_{ii} = 1$ if token t_i collocates with token t_j

- Rows of *E* are token embeddings

Background NLP after ~2008-2010

- $A = E \cdot E^T, A_{ii} = 1$ if token t_i collocates with token t_i
- $A \in R^{|V| \times |V|}$
- $E \in R^{|V| \times d}$, d embedding dimensionality
- Rows of *E* are token embeddings
- Features are no longer explainable, need to learn black box classifier
- Context is limited, but larger than before

Input	
Pre-trained	Token
Embedding	Embedding
Classification	Convolution
Model	context size

Background NLP state-of-the-art

- Modern methods trained with Masked Language Model (MLM) objective
- Context size is large
- Pre-train entire model instead of only token embeddings

Input	
of Pre-trained Model	Token Embedding
Internals	Contextual Embedding
Classification Model	
	Revsed Later

return

Background NLP state-of-the-art

- Most of the model is reused for new task
- Classifier in the end substituted for taskspecific classifier

Input	
als of Pre-trained Model	Token Embedding
Interna	Contextual Embedding
Classification Model	

Using pre-trained model

Background NLP models summary

Classical NLP	Early applications of embeddings	State-of-the-art NLP
High dimensional discrete features	Embedding vectors as low dimensional features	Embedding vectors are contextual a require a pre-trained model
Features are hand crafted	Embeddings are trained automatically to recover word collocations	Embedding model pre-trained to recover missing tokens
Trained for specific task	Embeddings are pre-trained on large corpus and reused across tasks	Embedding model is pre-trained of large corpus and reused across tas
Increasing context size leads to exploding feature space	Context size is small due to limited computational resources	Context size is large and requires a of computational resources

Background Examples of Embeddings for Source Code

Example of projecting vectors for tokens in C/C++ source code to 2D space (Harer et al. 2018)

Background Drawbacks of NLP models for Source Code

Problems:

- Source code is represented as a sequence of tokens
- Sequential representation does not reflect source code execution order
- Context size is limited and cannot incorporate imports and calls
- Elements of source code are processed as strings and not as aliased entities

Solution

Use Graph Neural Networks

Method Description Source Code Processing Pipeline

- Abstract Syntax Tree (AST) was chosen as a starting point for building graph representation of source code
- Additional edges added to connect different parts of source code (inheritance, calls, imports)
- Nodes that represent the same variable in a function are connected together
- Reduce the number of parameters with subword tokenization

Method Description GNN

- lacksquarean input
- GNNs are based on the principle of message passing
- Messages are vector representations of nodes

Graph Neural Network (GNN) is a class of Neural Network that takes graph as

Method Description GNN Message Passing Algorithm

Algorithm 1: Message passing algorithm for GNN

Data: Input graph **Result:** Model that produces embeddings for nodes in the graph initialize node embeddings randomly; **while** *training* **do**

for *n* message passing steps do

for each node, prepare message from it's own embedding;for each node, pass message to neighbours;for each node, aggregate messages from neighbours;for each node, update it's own embedding;

end

for nodes in training set, compute loss function; to minimize loss, update embeddings and GNN parameters; end

Method Description

Transformer

nodes.

Method Description Pre-training objectives

We experiment with several pre-training objectives

- Name prediction
- Edge prediction
- Node type prediction
- TransR objective (variant of edge prediction)

01	<pre>def scale(a):</pre>
02	return a * 5
03	
04	
05	
06	
07	
08	
09	
10	
11	
12	def condition(a, b, c)
13	if a > b:
14	return scale(c)
15	else:
16	return c
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	condition(1, 2, 3)

Method Description Pre-training objectives

Negative sample

Method Description Pre-training outcome

- The outcome of pre-training process is a GNN model that can be used for computing GNN embeddings
- GNN embeddings are not the same as token embeddings in NLP approaches GNN embeddings can be used for classifying individual nodes and for
- classifying subgraphs
- At the current stage, experiments completed only for classifying variables by type (node classification)

Type prediction Approaches for Type Prediction

- Classify embedding for node that represents variable (Type Prediction I)
- Use hybrid model to take advantage from sequential and graph representations (Type Prediction II)

Type prediction Approach for Type Prediction I

def sum(xs: List[Numbers]) -> int:

111111

Takes a list of integers, returns an integer

acc: int = 0 for x in xs: acc += x.value return acc

Type prediction Approach for Type Prediction II

def sum(xs: List[Numbers]) -> int:

Takes a list of integers, returns an integer

acc: int = 0 for x in xs: acc += x.value return acc

def sum (xs) : $\ln t = 0 \ln t = x$. return = 0

FunctionDef		
	Expr	
	F aulta au	
	ForLoop	
		Expr
		UAdd
	acc	Left
		x value
33		Number.

ExperimentsData Preparation

•	Remove type annotations and default values from code and graph		
•	Pre-train GNN model	ىب	0.25 -
•	Compute embeddings for nodes	datase	0.20 -
	that represent variables	in the o	0.15 -
•	Simplify type annotations (List[Int]	f type i	0.10 -
	-> List)	rtion o	0.05 -
•	Overall 2767 examples and 89 unique type labels	Propo	0.00 -

Use top 20 type labels (80%) as popular types

Experiments

Need to determine:

- 1. Are pre-trained graph embeddings useful for type prediction?
- 2. How type prediction quality is affected by embedding dimensionality?
- 3. Can GNN embeddings be used together with sequential embeddings?
- 4. Do GNN embeddings improve training speed?

Experiment Are pre-trained graph embeddings useful for type prediction?

- Pre-train GNN embeddings using pre-training objective
- Pre-training objective is not related to type prediction
- Take embeddings for nodes that correspond to variables
- Classify embeddings into Python types
- Random embeddings are used as baseline

Experiments How type prediction quality is affected by embedding dimensionality?

- Dimensionality of GNN embeddings can be controlled
- Increasing dimensionality leads to better performance
- CodeBERT (dimensionality 768) provided for reference

Experiments What are common mistakes?

- Vertical axis correct type
- Horizontal predicted type
- A lot of confusion with popular types (str, any)
- Confusion among ambiguous types (Union, List)

Confusion matrix for Python type prediction

<u>ک</u> ۔	X
0.01	0.79
0.50	
	0.25
	0.33
	0.16

Experiments Can GNN embeddings be used together with sequential embeddings?

- Need to determine
- Are pre-trained graph embeddings useful for type prediction?
- How type prediction quality is affected by embedding dimensionality?
- Can GNN embeddings be used together with sequential embeddings?
- Do GNN embeddings improve training speed?

Type Prediction II

Experiments Type Prediction Examples

Predicted

def_update_inplace(self **FRAMEORSERIES** , result **STR** , verify_is_copy **BOOL**):

NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future.

```
self._reset_cache()
self._clear_item_cache()
self._data = getattr(result, "_data", result)
self._maybe_update_cacher(verify_is_copy=verify_is_copy)
```

Ground Truth

def _update_inplace(self, result, verify_is_copy **BOOL_T**):

NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future.

self._reset_cache()
self._clear_item_cache()
self._data = getattr(result, "_data", result)
self._maybe_update_cacher(verify_is_copy=verify_is_copy)

Experiments Type Prediction Examples

Predicted

def __init__(self, string str):
 if not isinstance(string, str):
 raise TypeError("IsEqualIgnoringCase requires string")
 self.original_string = string
 self.lowered_string = string.lower()

Ground Truth

def __init__(self, string str):
 if not isinstance(string, str):
 raise TypeError("IsEqualIgnoringCase requires string")
 self.original_string = string
 self.lowered_string = string.lower()

42

Experiments Type Prediction Examples

Predicted

def parse_config_file(path **STR** , final **BOOL**):

return options.parse_config_file(path, final=final)

Ground Truth

def parse_config_file(path **str** , final **bool**):

return options.parse_config_file(path, final=final)

Experiments **Do GNN embeddings improve training speed?**

- ML models are trained in iterations (epochs)
- Pre-trained model improves training speed for Type Prediction II
- Top prediction accuracy improved

Improvement_i = Score_with_ GNN_i - Score_without_ GNN_i

Summary

- Created a GNN model for creating source code embeddings
- Designed an approach to use sequential representation of source code (NLP) together with graph representations
- Evaluated pertained embeddings on the task of type prediction for Python variables. Compared results with CodeBERT
- Using CodeBERT together with GNN embeddings allow to improve type prediction accuracy
- GNN embeddings improve training speed
- Pre-training gives best results using Name Prediction objective

Future Work

- Better to test on larger dataset
- approaches for predicting full type
- Need to evaluate on other tasks (variable misuse, search)

• Current results for the prediction achieved for simplified types. Can explore

Thank you