
Vitaly Romanov

Type Prediction in Source Code
with Graph Neural Network
Embeddings

1

Introduction
Source code analysis with ML

ML for
Source Code

Program Element
Naming

Type
Annotation

Bug and
Vulnerability

Detection

Language
Modeling

Classification

Similarity
Search

Program
Translation

Summarization

2

Introduction
Source code analysis with ML

6LPLODULW\�6HDUFK
�����

3URJUDP�7UDQVODWLRQ
����

6XPPDUL]DWLRQ
�����

&ODVVLILFDWLRQ
�����

3URJUDP�(OHPHQW�1DPLQJ
�����

7\SH�$QQRWDWLRQ
����

%XJ�DQG�9XOQHUDELOLW\�
�����

/DQJXDJH�0RGHOLQJ
����

3

Introduction
Source code analysis with ML

ßßããöö łłŏŏęęόόŨłŨłνν RRÿÿłłŊŊϐϐAAěěŊŊϑϑύύ ϒϒЉЉ AAěěŊŊνν
ŢŢ¾¾ēē ¾¾ÙÙÙÙ ЇЇ ΊΊ
ööĢĢľľ ŨŨ ÿÿěě ŨłŨłνν

¾¾ÙÙÙÙ ЃЃЇЇ ŨŨ
ľľããŊŊŏŏľľěě ¾¾ÙÙÙÙ

ßãöϰłŏęόŨłύν
ϰϰϰϰϰςςςϰЇϰΊ
ϰϰϰϰϰöĢľϰŨϰÿěϰŨłν
ϰϰϰϰϰϰϰϰϰϰςςςϰЃЇϰŨ
ϰϰϰϰϰľãŊŏľěϰςςς

ßãöϰłŏęόŨłνϰRÿłŊϐAěŊϑύϰϒЉϰςςςν
ϰϰϰϰϰ¾ÙÙϰЇϰΊ
ϰϰϰϰϰöĢľϰŨϰÿěϰŨłν
ϰϰϰϰϰϰϰϰϰϰ¾ÙÙϰЃЇϰŨ
ϰϰϰϰϰľãŊŏľěϰ¾ÙÙ

ÿěŊϰłŏęόÿěŊϰϐϑϰŨłύώ
ϰϰϰϰϰÿěŊϰ¾ÙÙϰЇϰΊξ
ϰϰϰϰϰöĢľόŨνŨłύ
ϰϰϰϰϰϰϰϰϰ¾ÙÙϰЃЇϰŨξ
ϰϰϰϰϰľãŊŏľěϰ¾ÙÙξ
ϰϏ

�ŏęę¾ľũνϰ
ϰ�ϰöŏěÙŊÿĢěϰŊĢϰ
ϰÙĢęĻŏŊãϰ¾ϰłŏęϰĢöϰ
ϰãēãęãěŊłϰÿěϰ¾ϰēÿłŊßãöϰłŏęόŨłύν

ϰϰϰϰϰľãŊŏľěϰłŏęόŨłύ

Type prediction

Translation

Variable Name

Prediction

Clone detection

Summarization

4

Introduction
Source code analysis with ML

öľĢęϰ&Ũ¾ęĻēãXĢßŏēãϰÿęĻĢľŊϰ&Ũ¾ęĻēã�ē¾łł
ϰ
ϰÿěłŊ¾ěÙãϰЇϰ&Ũ¾ęĻēã�ē¾łłόZĢěãύ
ϰ
ϰßãöϰę¾ÿěόύν
ϰϰϰϰϰĻľÿěŊόÿěłŊ¾ěÙãλęãŊüĢß΋όύύ
ϰ
ϰę¾ÿěόύ

Majority of ML for source code is done
using token representation of code

(Naturalness hypotheses, Allamanis 2017)

Recent approaches explore using graph
representation of source code

5

Introduction
Summary

• All ML tasks for source code require some level of understanding to process source
code

• It would be beneficial to have a shared model

• Such models called pre-trained model

• Pre-trained models are widely adopted for images and text (BERT, ResNet)

• Existing pre-trained models for code are borrowed from NLP

• Pre-trained models specific for source code are not well studied, hard to evaluate

• Good pre-trained models will enable faster development of intelligent tools

6

Introduction
Contributions

• Trained Graph Neural Network (GNN) embeddings for source code

• Performed experiments with different pre-training objectives

• Tested pre-trained embeddings on the task of type prediction for Python
variables

• Studied the impact of GNN embedding dimensionality on the type prediction
quality

• Tested a technique for combining existing NLP-based approaches with GNN
embeddings

7

Existing Work
Evaluation Challenges

• Pre-trained models enable faster training

• Pre-trained models allow achieve better prediction quality on various tasks

• They are not straightforward to evaluate due to disconnect between pre-
training task and evaluation tasks

• Evaluation tasks for source code are not well defined

8

Existing Work
Results

Method Pre-training tasks Evaluation Tasks

GraphCodeBERT (Guo et al, 2020)   MLM, Data-flow edges, token & data-
flow alignment

code search, clone detection, code
translation

PLBART (Ahmad et al, 2021)
 MLM code summarization, code generation,
code translation, code classification

σ1 (Liu et al, 2021a) Metapath Random Walk,
Heterogeneous Information

Maximization, Motif, Node Tying MLM

method name prediction, link
prediction

CuBERT (Kanade et al, 2019)
 MLM Variable Misuse

AWD-LSTM-LM (Trevett et al, 2021)   Language Modeling Code Search, Method Name Prediction

SLM (Alon et al, 2020) Predicting AST Nodes, Predicting
Subtokens Autocompletion

TLM (Yang et al, 2019) Token Prediction Autocompletion

Ours Name Prediction (similar to MLM),
Edge Prediction, Node Type prediction Type Prediction

9

Background
Classical NLP (pre 2008)

• Tokenization

• Feature extraction

• Discrete feature space
explosion

10

Background
NLP after ~2005-2008

• To prevent feature space explosion, use dimensionality reduction

• Obtain token embeddings by decomposing token collocation
matrix from a large dataset (pre-training)

• Rows of are token embeddingsE

A = E ⋅ ET, Aij = 1 if token ti collocates with token tj

11

Background
NLP after ~2008-2010

•

• , d - embedding
dimensionality

• Rows of are token
embeddings

• Features are no longer
explainable, need to learn black
box classifier

• Context is limited, but larger
than before

A ∈ R|V|×|V|

E ∈ R|V|×d

E

A = E ⋅ ET, Aij = 1 if token ti collocates with token tj

12

Background
NLP state-of-the-art

• Modern methods
trained with Masked
Language Model
(MLM) objective

• Context size is large

• Pre-train entire model
instead of only token
embeddings

13

Background
NLP state-of-the-art

• Most of the model is
reused for new task

• Classifier in the end
substituted for task-
specific classifier

14

Background
NLP models summary

Classical NLP Early applications of embeddings State-of-the-art NLP

High dimensional discrete features Embedding vectors as low
dimensional features

Embedding vectors are contextual and
require a pre-trained model

Features are hand crafted Embeddings are trained automatically
to recover word collocations

Embedding model pre-trained to
recover missing tokens

Trained for specific task Embeddings are pre-trained on large
corpus and reused across tasks

Embedding model is pre-trained on
large corpus and reused across tasks

Increasing context size leads to
exploding feature space

Context size is small due to limited
computational resources

Context size is large and requires a lot
of computational resources

15

Background
Examples of Embeddings for Source Code

Example of projecting vectors for tokens in C/C++ source code to 2D space (Harer et al. 2018)

16

Background
Drawbacks of NLP models for Source Code

Problems:

• Source code is represented as a sequence of tokens

• Sequential representation does not reflect source code execution order

• Context size is limited and cannot incorporate imports and calls

• Elements of source code are processed as strings and not as aliased entities

Solution

• Use Graph Neural Networks

17

Method Description
Source Code Processing Pipeline

�!��"��!� ��#� �!� � ��"" #�!�$�� ���

 #���'� ���"�� ��""

�$��#���

�"�
��������" ��!

��&�"#!��� #�"�"
��$!��

	���

%��$�#�

18

Method Description
Transform Source Code Into a Graph

• Abstract Syntax Tree (AST) was chosen as a starting point for building graph
representation of source code

• Additional edges added to connect different parts of source code (inheritance,
calls, imports)

• Nodes that represent the same variable in a function are connected together

• Reduce the number of parameters with subword tokenization

19

Method Description
Transform Source Code Into a Graph

20

Method Description
Transform Source Code Into a Graph

21

Method Description
Transform Source Code Into a Graph

22

Method Description
Transform Source Code Into a Graph

23

Method Description
Transform Source Code Into a Graph

24

Method Description
GNN

• Graph Neural Network (GNN) is a class of Neural Network that takes graph as
an input

• GNNs are based on the principle of message passing

• Messages are vector representations of nodes

25

Method Description
GNN Message Passing Algorithm

Algorithm 1: Message passing algorithm for GNN
Data: Input graph
Result: Model that produces embeddings for nodes in the graph
initialize node embeddings randomly;
while training do

for n message passing steps do
for each node, prepare message from it’s own embedding;
for each node, pass message to neighbours;
for each node, aggregate messages from neighbours;
for each node, update it’s own embedding;

end
for nodes in training set, compute loss function;
to minimize loss, update embeddings and GNN parameters;

end

1

26

Method Description
Difference between GNN and Transformer

Transformer creates fully connected

graph between each token in current context.

Embeddings created for tokens.

GNN model uses only connections defined

in the original graph. Embeddings created for

nodes.

Both models aim at producing embeddings for source code. These models share similarity

In how embeddings are computed

27

Method Description
Pre-training objectives

We experiment with
several pre-training
objectives

• Name prediction

• Edge prediction

• Node type prediction

• TransR objective
(variant of edge
prediction)

28

Method Description
Pre-training objectives

29

Method Description
Pre-training outcome

• The outcome of pre-training process is a GNN model that can be used for
computing GNN embeddings

• GNN embeddings are not the same as token embeddings in NLP approaches

• GNN embeddings can be used for classifying individual nodes and for
classifying subgraphs

• At the current stage, experiments completed only for classifying variables by
type (node classification)

30

Type prediction
Approaches for Type Prediction

• Classify embedding for node that represents variable (Type Prediction I)

• Use hybrid model to take advantage from sequential and graph
representations (Type Prediction II)

31

Type prediction
Approach for Type Prediction I

&ODVVLI\�9DULDEOH

32

Type prediction
Approach for Type Prediction II

33

Type prediction
Approach for Type Prediction II

34

Experiments
Data Preparation

• Remove type annotations and
default values from code and graph

• Pre-train GNN model

• Compute embeddings for nodes
that represent variables

• Simplify type annotations (List[Int]
-> List)

• Overall 2767 examples and 89
unique type labels

• Use top 20 type labels (80%) as
popular types

3
UR
SR
UWL
RQ
�R
I�W
\S
H�
LQ
�WK
H�
GD
WD
VH
W

����

����

����

����

����

����

VWU

2S
WLRQ

DO LQW $Q\ 8QL
RQ ERR

O

&DO
ODE
OH 'LF

W
E\W
HV IORD

W

'HV
FULS

WLRQ /LVW

$OO�
2WK

HU

35

Experiments

Need to determine:

1. Are pre-trained graph embeddings useful for type prediction?

2. How type prediction quality is affected by embedding dimensionality?

3. Can GNN embeddings be used together with sequential embeddings?

4. Do GNN embeddings improve training speed?

36

Experiment
Are pre-trained graph embeddings useful for type prediction?

• Pre-train GNN embeddings using
pre-training objective

• Pre-training objective is not related
to type prediction

• Take embeddings for nodes that
correspond to variables

• Classify embeddings into Python
types

• Random embeddings are used as
baseline

+
LWV
#
�

�

��

��

��

��

5DQGRP *11�
�1DPH3UHG�

*11�
�(GJH3UHG�

*11��1RGH&OI� *11��7UDQV5�

$OO 3RSXODU

7\SH�3UHGLFWLRQ�,

37

Experiments
How type prediction quality is affected by embedding dimensionality?

• Dimensionality of GNN
embeddings can be controlled

• Increasing dimensionality leads
to better performance

• CodeBERT (dimensionality 768)
provided for reference

38

Experiments
What are common mistakes?

• Vertical axis - correct type

• Horizontal - predicted type

• A lot of confusion with popular
types (str, any)

• Confusion among ambiguous
types (Union, List)

39

Experiments
Can GNN embeddings be used together with sequential embeddings?

• Need to determine

• Are pre-trained graph embeddings
useful for type prediction?

• How type prediction quality is affected
by embedding dimensionality?

• Can GNN embeddings be used
together with sequential embeddings?

• Do GNN embeddings improve training
speed?

+
LWV
#
�

�

��

��

��

��

1DPH3UHG &11 &RGH%(57 &11���
1DPH3UHG

&RGH%(57���
1DPH3UHG

$OO�7\SHV 3RSXODU�7\SHV

7\SH�3UHGLFWLRQ�,,

40

Experiments
Type Prediction Examples

Predicted

def _update_inplace(self FRAMEORSERIES , result STR , verify_is_copy BOOL = True) :

 # NOTE: This does *not* call __finalize__ and that's an explicit
 # decision that we may revisit in the future.

 self._reset_cache()
 self._clear_item_cache()
 self._data = getattr(result, "_data", result)
 self._maybe_update_cacher(verify_is_copy=verify_is_copy)

Ground Truth

def _update_inplace(self, result, verify_is_copy BOOL_T = True) :

 # NOTE: This does *not* call __finalize__ and that's an explicit
 # decision that we may revisit in the future.

 self._reset_cache()
 self._clear_item_cache()
 self._data = getattr(result, "_data", result)
 self._maybe_update_cacher(verify_is_copy=verify_is_copy)

41

Experiments
Type Prediction Examples

Predicted

def __init__(self, string STR) :
 if not isinstance(string, str):
 raise TypeError("IsEqualIgnoringCase requires string")
 self.original_string = string
 self.lowered_string = string.lower()

Ground Truth

def __init__(self, string STR) :
 if not isinstance(string, str):
 raise TypeError("IsEqualIgnoringCase requires string")
 self.original_string = string
 self.lowered_string = string.lower()

42

Experiments
Type Prediction Examples

Predicted

def parse_config_file(path STR , final BOOL = True) :

 return options.parse_config_file(path, final=final)

Ground Truth

def parse_config_file(path STR , final BOOL = True) :

 return options.parse_config_file(path, final=final)

43

Experiments
Do GNN embeddings improve training speed?

• ML models are trained in iterations
(epochs)

• Pre-trained model improves training
speed for Type Prediction II

• Top prediction accuracy improved

Improvementi = Score_with_GNNi − Score_without_GNNi

44

Summary

• Created a GNN model for creating source code embeddings

• Designed an approach to use sequential representation of source code (NLP)
together with graph representations

• Evaluated pertained embeddings on the task of type prediction for Python variables.
Compared results with CodeBERT

• Using CodeBERT together with GNN embeddings allow to improve type prediction
accuracy

• GNN embeddings improve training speed

• Pre-training gives best results using Name Prediction objective

45

Future Work

• Better to test on larger dataset

• Current results for the prediction achieved for simplified types. Can explore
approaches for predicting full type

• Need to evaluate on other tasks (variable misuse, search)

46

Thank you

47

