Formal Operational Semantics in
Practice

(K-framework and its industrial &‘

applications) A\

Formal verification is not as formal as one might think

[N

* We use formal methods to * Frama-C has its own
prove properties of programs understanding of C standard
written in languages that are and in some places it is not
not formally defined. the same as of GCC, for

- Different compilers often has instance.

different views on language » Clang and GCC often

standard. disagree between
themselves about user
program behavior.

S
A lot of efforts to support tools for each language _@

Interpreter
C
Compiler
Java
Model checker
JavaScript
Symbolic execution
Another language

Deductive verification
~

Unified approach - K _&s

Interpreter
C
Compiler
Java
/ Model checker
JavasScript
Symbolic execution
Another language

Deductive verification

S
What i1s K?

* First of all - it is a formalism * Given a K specification user

for defining an operational will get:
semantics - Fast interpreter

» K-framework is an - Symbolic execution engine
operational semantics ~ Model checker
framework

- Verification engine
* Based on Matching Logic

* ldeas came from rewriting
logic (mostly from Maude)

*—v——

Holy Grall
[N
| think that it won’t be very * And a search for ideal
far from truth if | say that programming language
almost every programmer lasted and lasted

wants to implement his own

. . * And finally it was found! :)
iIdeal programming language.

* |f a programmer did not even
try to implement his own
programming language he or
she cannot be considered as
a true programmer)

N

A dream come true

* Implement your own * Tools for free:
programming language in 30 - Fast llvm-based interpreter —
minutes start program in your own

- Easiest syntax definition language instantly
you've ever seen - Symbolic execution engine —

explore properties of
programs in your language

- Prover — prove claims about
programs in your own
* A bunch of tools out of the box language

* Intuitive way of semantics
definition (small step structural
operational semantics)

*_'-w

The K vision

Test-case
generator

Runtime
monitor Deductive

program verifier

Formal Language Definition
(Syntax and Semantics) Model
C, C++, Java, JavaScript, checker

Solidity, Python, EVM, LLVM

Interpreter

Symbolic
executer

Semantic
debugger

Some history

The inventor and main ideologist is
Grigore Rosu, he is an USA scientist

Almost 20 years ago the story had
begun

Initial implementation of K was in
Maude and was done without clear
understanding of its theoretical
grounds

Then a long work was started that had
led to a new family of logic: Matching
Logic and Reachability Logic

Personal page:
https://fsl.cs.illinois.edu/people/grigore-
rosu/

K has rigorous foundations

K is a formalism based on * There are a lot of

Matching Logic publications about K, ML, etc
Both are mechanized in * There is a site, solely
MetaMath dedicated to Matching Logic
Thereis a

ML proof-checker and ITP

Many important proofs are
mechanized

10

https://fsl.cs.illinois.edu/publications/chen-lucanu-rosu-2020-trb.pdf
https://github.com/kframework/matching-logic-proof-checker/tree/main/theory
https://github.com/kframework/matching-logic-proof-checker
https://fsl.cs.illinois.edu/publications/moore-pena-rosu-2018-esop.pdf
https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publications.html
http://www.matching-logic.org/

A few words about ML

Matching Logic: The Underlying Core Logic of K

Type Systems

N

First-Order Logic with
Least Fixpoints

Seperation Logic with
Recursive Definitions

Initial Algebra

Semantics

A

/

Modal p-Logic

Reachability Logic

Order-Sorted
Algebras

A
Separation Logic

N

A-Calculus

A

Many-Sorted
Algebras

First-Order Logic

Equational Logic

Rewriting Logic

Temporal Logics
Hoare Logic

(CTLCTL.CTL ...}

Polyadic and/or
Hybrid Modal Logic

Dynamic Logic

/ Normal Modal Logic

Propositional Logic

11

D,

K In practice

* Alot of industrial projects are There are a lot of blog posts

bases on K-framework: related to K usage

- Tools for WASM » There is a nice website with a
- EVM formalization and toolbox bunch of

- C language semantics and K tutorials, lessons, and videos

various tools (RV-match, RV)
- X86_ 64 ISA formalization
- Boogie semantics
- Ocaml semantics
- and many others

*v——
12

https://runtimeverification.com/blog/category/k
https://kframework.org/

D,

A one of many use-cases and success stories

 Formalization of Etherium * KEVM helps to verify a set of
Virtual Machine complex
- Full support of EVM smart-contracts of Maker DAO

functionality

- Proving Etherium byte-code
program properties

 KEVM In the core of Firefly —a
tool for model-checking

- Symbolic execution with properties of protocols of
abstracted environment, smart-contracts, expressed as

abstract state-space exploration LTL formulae

- Tight integration with Etherium
tools, KEVM may be a drop-in
replacement of EVM

~’

13

https://github.com/makerdao/mkr-mcd-spec

D,

K-framework links

https://kframework.org/ - tutorials, documentation, etc

https://runtimeverification.com/blog/from-0-to-k-tutorial - a good
Introduction into K from simple examples to proofs

https://github.com/kframework - repo with a lot of open-sourced
semantics, tools, etc

https://github.com/kframework/k-exercises

ngtps://fsl.cs.iIIinois.edu/pubIications/rosu-ZO17—marktoberdorf.p

- introduction into K by examples

nttps://runtimeverification.com/blog/category/k - blog posts
about K-framework and its applications
14

https://kframework.org/
https://runtimeverification.com/blog/from-0-to-k-tutorial
https://github.com/kframework
https://github.com/kframework/k-exercises
https://fsl.cs.illinois.edu/publications/rosu-2017-marktoberdorf.pdf
https://fsl.cs.illinois.edu/publications/rosu-2017-marktoberdorf.pdf
https://runtimeverification.com/blog/category/k

S
Matching Logic, etc links _&

* http://www.matching-logic.org/ - main website

* https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publi
cations.html

- publications

. Bttpds%://fsl.cs.iIIinois.edu/publications/chen-lucanu—rosu-ZOZO—tr
P
- highly recommended intro into ML

. https:/d/]:sl.cs.iIIinois.edu/pubIications/moore-pena—rosu-2018-e
Sop.p
- method of program verification in ML

N

15

http://www.matching-logic.org/
https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publications.html
https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publications.html
https://fsl.cs.illinois.edu/publications/chen-lucanu-rosu-2020-trb.pdf
https://fsl.cs.illinois.edu/publications/chen-lucanu-rosu-2020-trb.pdf
https://fsl.cs.illinois.edu/publications/moore-pena-rosu-2018-esop.pdf
https://fsl.cs.illinois.edu/publications/moore-pena-rosu-2018-esop.pdf

v
Matching Logic, etc links _&

* https://fsl.cs.illinois.edu/publications/stefanescu-park-yuwen-li-
rosu-2016-oopsla.pdf
- how to achieve language-independent formal verification

* https://fsl.cs.illinois.edu/publications/rosu-2016-rv.pdf - Finite
trace LTL

N
16

https://fsl.cs.illinois.edu/publications/stefanescu-park-yuwen-li-rosu-2016-oopsla.pdf
https://fsl.cs.illinois.edu/publications/stefanescu-park-yuwen-li-rosu-2016-oopsla.pdf
https://fsl.cs.illinois.edu/publications/rosu-2016-rv.pdf

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16

