
Formal Operational Semantics in
Practice

(K-framework and its industrial
applications)

 2

Formal verification is not as formal as one might think

● We use formal methods to
prove properties of programs
written in languages that are
not formally defined.

● Different compilers often has
different views on language
standard.

● Frama-C has its own
understanding of C standard
and in some places it is not
the same as of GCC, for
instance.

● Clang and GCC often
disagree between
themselves about user
program behavior.

 3

A lot of efforts to support tools for each language

C

Java

JavaScript

Another language

Interpreter

Compiler

Model checker

Symbolic execution

Deductive verification

 4

Unified approach - K

C

Java

JavaScript

Another language

Interpreter

Compiler

Model checker

Symbolic execution

Deductive verification

 5

What is K?

● First of all - it is a formalism
for defining an operational
semantics

● K-framework is an
operational semantics
framework

● Based on Matching Logic
● Ideas came from rewriting

logic (mostly from Maude)

● Given a K specification user
will get:
– Fast interpreter
– Symbolic execution engine
– Model checker
– Verification engine

 6

Holy Grail

● I think that it won’t be very
far from truth if I say that
almost every programmer
wants to implement his own
ideal programming language.

● If a programmer did not even
try to implement his own
programming language he or
she cannot be considered as
a true programmer :)

● And a search for ideal
programming language
lasted and lasted

● And finally it was found! :)

 7

A dream come true

● Implement your own
programming language in 30
minutes

● Easiest syntax definition
you’ve ever seen

● Intuitive way of semantics
definition (small step structural
operational semantics)

● A bunch of tools out of the box

● Tools for free:
– Fast llvm-based interpreter –

start program in your own
language instantly

– Symbolic execution engine –
explore properties of
programs in your language

– Prover – prove claims about
programs in your own
language

 8

The K vision

 9

Some history
● The inventor and main ideologist is

Grigore Rosu, he is an USA scientist
● Almost 20 years ago the story had

begun
● Initial implementation of K was in

Maude and was done without clear
understanding of its theoretical
grounds

● Then a long work was started that had
led to a new family of logic: Matching
Logic and Reachability Logic

● Personal page:
https://fsl.cs.illinois.edu/people/grigore-
rosu/

 10

K has rigorous foundations

● K is a formalism based on
Matching Logic

● Both are mechanized in
MetaMath

● There is a
ML proof-checker and ITP

● Many important proofs are
mechanized

● There are a lot of
publications about K, ML, etc

● There is a site, solely
dedicated to Matching Logic

https://fsl.cs.illinois.edu/publications/chen-lucanu-rosu-2020-trb.pdf
https://github.com/kframework/matching-logic-proof-checker/tree/main/theory
https://github.com/kframework/matching-logic-proof-checker
https://fsl.cs.illinois.edu/publications/moore-pena-rosu-2018-esop.pdf
https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publications.html
http://www.matching-logic.org/

 11

A few words about ML

 12

K in practice

● A lot of industrial projects are
bases on K-framework:
– Tools for WASM
– EVM formalization and toolbox
– C language semantics and

various tools (RV-match, RV)
– X86_64 ISA formalization
– Boogie semantics
– Ocaml semantics
– and many others

● There are a lot of blog posts
related to K usage

● There is a nice website with a
bunch of
K tutorials, lessons, and videos

https://runtimeverification.com/blog/category/k
https://kframework.org/

 13

A one of many use-cases and success stories

● Formalization of Etherium
Virtual Machine
– Full support of EVM

functionality
– Proving Etherium byte-code

program properties
– Symbolic execution with

abstracted environment,
abstract state-space exploration

– Tight integration with Etherium
tools, KEVM may be a drop-in
replacement of EVM

● KEVM helps to verify a set of
complex
smart-contracts of Maker DAO

● KEVM in the core of Firefly – a
tool for model-checking
properties of protocols of
smart-contracts, expressed as
LTL formulae

https://github.com/makerdao/mkr-mcd-spec

 14

K-framework links
● https://kframework.org/ - tutorials, documentation, etc
● https://runtimeverification.com/blog/from-0-to-k-tutorial - a good

introduction into K from simple examples to proofs
● https://github.com/kframework - repo with a lot of open-sourced

semantics, tools, etc
● https://github.com/kframework/k-exercises
● https://fsl.cs.illinois.edu/publications/rosu-2017-marktoberdorf.p

df
 - introduction into K by examples

● https://runtimeverification.com/blog/category/k - blog posts
about K-framework and its applications

https://kframework.org/
https://runtimeverification.com/blog/from-0-to-k-tutorial
https://github.com/kframework
https://github.com/kframework/k-exercises
https://fsl.cs.illinois.edu/publications/rosu-2017-marktoberdorf.pdf
https://fsl.cs.illinois.edu/publications/rosu-2017-marktoberdorf.pdf
https://runtimeverification.com/blog/category/k

 15

Matching Logic, etc links

● http://www.matching-logic.org/ - main website
● https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publi

cations.html
 - publications

● https://fsl.cs.illinois.edu/publications/chen-lucanu-rosu-2020-tr
b.pdf
 - highly recommended intro into ML

● https://fsl.cs.illinois.edu/publications/moore-pena-rosu-2018-e
sop.pdf
 - method of program verification in ML

http://www.matching-logic.org/
https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publications.html
https://fsl.cs.illinois.edu/people/grigore-rosu/grigore-rosu-publications.html
https://fsl.cs.illinois.edu/publications/chen-lucanu-rosu-2020-trb.pdf
https://fsl.cs.illinois.edu/publications/chen-lucanu-rosu-2020-trb.pdf
https://fsl.cs.illinois.edu/publications/moore-pena-rosu-2018-esop.pdf
https://fsl.cs.illinois.edu/publications/moore-pena-rosu-2018-esop.pdf

 16

Matching Logic, etc links

● https://fsl.cs.illinois.edu/publications/stefanescu-park-yuwen-li-
rosu-2016-oopsla.pdf
 - how to achieve language-independent formal verification

● https://fsl.cs.illinois.edu/publications/rosu-2016-rv.pdf - Finite
trace LTL

https://fsl.cs.illinois.edu/publications/stefanescu-park-yuwen-li-rosu-2016-oopsla.pdf
https://fsl.cs.illinois.edu/publications/stefanescu-park-yuwen-li-rosu-2016-oopsla.pdf
https://fsl.cs.illinois.edu/publications/rosu-2016-rv.pdf

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16

