
Deep.Foundation
World will never be the same 

again because it won't have to 
repeat itself



What is it?
Associative graph data store. Authorization 
and authentication. Graph selectors based 

permission system. Versioned cross 
compatible models. Autoscaling architecture.

GUI for work with it.
Open Source.



Open ADDD API
(Associative Data Driven 

Development)
Associative graph as core data solution.

The behaviors and handlers API is not 
directly accessible, everything is 

controlled by the state of the links.



Models
in associative graph

Versioned cross compatible models 
packages.

Model contains:
Collection of types for links.

Permissions for model types operations.
Handlers written on any lang code.



Model handlers
Language independent handlers of 

based on model data changes 
events. Write in GUI or your IDE.



Model based 
permissions

Rules written on built-in models links. Describes 
how links of model types can be inserted 
relative to each other and other models.

You can add new rules around atomic models 
without changing existing ones.

No need to support each possible query by 
permissions in advance.



Model as Package
Install any model from package 

registries as npm.
deepcase install deep-notify deep-notify-sms deep-notify-sms-

providerName

Publish a next version of your model 
directly from GUI.



Autoscaling
Kuber out of box DB, GQL and 
handlers runtimes scaling and 

monitoring.



Crossplatform
One button wrap any app for 

IOS/Android/MacOS/Windows/Linux 
or as independent OS.

One button publish to stores.



Tree based 
permissions

No more roles embedded in the code!
Who, on the basis of what, to what data, 

for what operations, in what range - All of 
this can be specified using graph 

selector rules.



What if?



Model permissions editor
Easy to create, compare, control 
access and compatables, handle 
events and write UI for models.



Model handlers editor
Write in GUI handler on any lang, and 

apply to events for links based on 
selector.



Model handler executor
Any handlers automatically up/down 
needed runtime processes in kuber. 

You need just do what you do.



Graph data customizable editor
Write queries and parses, send to 
views just in GUI. Wrap it and pack 

data layers to npm package, 
distribute and update from GUI 

already.



npm models packer
In database only random generated 

names for ids and tables. Only 
package that built this data knows 

business concepts. Dependent 
packages can deploy any business 

logic just after install.



What then?
No need to think about:

data architecture;
mutations and data to code 

refactoring;
in-project concept dependencies.

Just do what you do.



-70% of 
refactoring

As if you could automate the universe 
without rewriting



Code reuse
Before: Only programmers need it. Development 
has become more pleasant, but for business it 

has not become more flexible and cheaper.

Models reuse
After: Business needs. Allows you to isolate 

software solutions on the server, while 
maintaining the integrity and coherence of their 

common data.



Continuous 
variability

You no longer need to:
restart the project as it has reached the ceiling 

of its variability;
hire an architect who understands how the 

whole project works.



Not limited by 
compatibility

Any concept, its models, behavior and 
interfaces can be easily installed or 

removed from npm. Everything else will 
continue to work. You can always see how 

structures intersect with each other.



Market size
More 20 000 000 of coders

Each 1/4 new IT projects on earth in 
2022



What cost?
500 000 $

12 month to complete stage 1
open and transparent 

development



Fully OpenSource
precedent of project 
development where

humanity is a direct investor 
and all parts of the project are 

transparent
(yes, no any hidden part)



Stage 1
one year

PostgreSQL: partitioning, indexes, auto balanced 
materialized-path, nested-sets and some others

HasuraGQL
Kuber: configs and one command install/start/stop

GUI: viewer, models editor, code editor based on web vsc, 
packer to app or server, installer/remover/comparer

Documentation
Examples

Ready partnerships with hosting around the world for one 
click installation planetary solutions

OpenSource.



Stage 2
next five years

Core associative links database written on C
with incredible performance and many new features as:

Store strings, numbers, and any streams in a recognizable 
and searchable state. The ability to find links that are similar 
in structure, mentions or indirectly derived meanings. Custom 

analytical tools. Formation of models based on data flow.
All without custom tables or storages.

Local semantic repositories.
Fully stage 1 compatible.

Fully OpenSource.



What we want?
As humanity, we have a main enemy:

we cannot act together.
Our main goal is to make available to 

humanity an infinite flexibility and 
compatibility of concepts in 

development. Stage 1 - at the project 
level.

Stage 2 - at the level of meanings.



What will?



Deep.Foundation
We will create a culture of open 
development and livelihood for 

developers around the world who 
have dedicated their lives to 

automating humanity.



Deep.Links
Solutions for work with associative 

data and associative models as 
packages in multiple package 

management systems.



LinksPlatform
Solutions to store associative links 
graph superfast, super effective.



Deep.View
Solutions for easy build 

react/angular/vue and others grids 
with inline IDE and integrated 

DeepGraph solutions.



Deep.Case
All solutions in one easy case.



Deep.Space
SaaS product. Cloud solution of 

Deep.Case to speed up the launch of 
projects


