
Calculating Fibonacci numbers
using the Binet formula without
using floating point arithmetic

Faifel B.L.

SGTU by Yu.A. Gagarin,

Saratov

By now, many ways have been invented for
calculating Fibonacci numbers: from direct

recursion based on the formula:

Fn=Fn-1+Fn-2

to the matrix method described by D. Knuth

Binet's formula is located separately in this series
of algorithms, which has the form:

This formula seems attractive at first glance, but it
contains an irrational number, which in computer

calculations we are forced to represent in the form
of a floating point number (i.e. replace an infinite

non-periodic fraction with a finite one).

This means that the calculations will not be
accurate; a limitation error is introduced into

them.

The author once came across a publication in
which Binet's formula was used to calculate a

very large Fibonacci number, but the
implementation assumed the use of superhigh-

bit floating arithmetic (so that the required
number would completely fit into the

mantissa).

We'll take a completely different path!

Consider a set of numbers of the form:

where a and b are integers. It seems quite obvious that
this set is algebraically closed with respect to the

operations of ordinary addition and multiplication:

In addition, zero and unit belong to the set
under consideration in a trivial way:

Subtraction is quite naturally realized:

Now you can implement arithmetic on a set of
pairs (a, b), in which addition, subtraction and

multiplication will be described by the
formulas:

Thus, we can “safely forget” about √5 and
implement a direct calculation using the Binet

formula.

As a result, the numerator of the fraction will be a
pair of the form (0, r√5) = r√5. Dividing this

irrational number by √5 gives the desired integer
result. Naturally, in reality, dividing is not

required, it is enough to calculate (using the
above-described pair arithmetic) two binomials:

and then subtract A-B

def prod_pairs(a,b): # pairs multiplication
return (a[0]*b[0]+5*a[1]*b[1],a[0]*b[1]+a[1]*b[0])

def sub_pairs(a,b): # pairs subtracting
return (a[0]-b[0],a[1]-b[1])

def pow_pair(a,n): # exponentiation
c=a
for _ in range(n-1):

c=prod_pairs(c,a)
return c

def fib_bine(n): # Binet formula
x1=pow_pair((1,1),n)
x2=pow_pair((1,-1),n)
z=sub_pairs(x1,x2)
return z[1]//(2**n)

Is it possible to speed up this code? Yes, we
can, if we speed up the exponentiation.

To speed up exponentiation, there is a standard
approach, which is that to calculate xn, the

chain x -> x2 -> x4 -> ... -> x2k
is calculated until

2k <= n, and then x (n -2k).

def pow_pair(a,n):
if (n==1):

return a
c=copy(a)
k=1
while k*2<=n:

if k<=n:
c=prod_pairs(c,c)
k=k*2

p=n-k
if p>=1:

tmp=pow_pair(a,p)
return prod_pairs(tmp,c)

else:
return c

Using this technique allows us to calculate
Fibonacci numbers in a logarithmic time using
the Binet formula and without using floating

point arithmetic.

Below are the test results comparing the
computation time of Fibonacci numbers by

simple iteration:

def fib_ite(n):

c,p=0,1

for _ in range(n):

c,p=c+p,c

return c

Despite the apparent simplicity of the fib_ite
code, the fib_bine function performs

significantly better.

Thanks for your attention!

