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By now, many ways have been invented for 
calculating Fibonacci numbers: from direct 

recursion based on the formula:

Fn=Fn-1+Fn-2

to the matrix method described by D. Knuth



Binet's formula is located separately in this series 
of algorithms, which has the form:

This formula seems attractive at first glance, but it 
contains an irrational number, which in computer 

calculations we are forced to represent in the form 
of a floating point number (i.e. replace an infinite 

non-periodic fraction with a finite one).



This means that the calculations will not be 
accurate; a limitation error is introduced into 

them.

The author once came across a publication in 
which Binet's formula was used to calculate a 

very large Fibonacci number, but the 
implementation assumed the use of superhigh-

bit floating arithmetic (so that the required 
number would completely fit into the 

mantissa).

We'll take a completely different path!



Consider a set of numbers of the form:

where a and b are integers. It seems quite obvious that 
this set is algebraically closed with respect to the 

operations of ordinary addition and multiplication:



In addition, zero and unit belong to the set 
under consideration in a trivial way:

Subtraction is quite naturally realized:



Now you can implement arithmetic on a set of 
pairs (a, b), in which addition, subtraction and 

multiplication will be described by the 
formulas:

Thus, we can “safely forget” about √5 and 
implement a direct calculation using the Binet

formula.



As a result, the numerator of the fraction will be a 
pair of the form (0, r√5) = r√5. Dividing this 

irrational number by √5 gives the desired integer 
result. Naturally, in reality, dividing is not 

required, it is enough to calculate (using the 
above-described pair arithmetic) two binomials:

and then subtract A-B



def prod_pairs(a,b): # pairs multiplication
return (a[0]*b[0]+5*a[1]*b[1],a[0]*b[1]+a[1]*b[0])

def sub_pairs(a,b):   # pairs subtracting
return (a[0]-b[0],a[1]-b[1])

def pow_pair(a,n):   # exponentiation
c=a
for _ in range(n-1):

c=prod_pairs(c,a)
return c

def fib_bine(n): # Binet formula
x1=pow_pair((1,1),n)
x2=pow_pair((1,-1),n)
z=sub_pairs(x1,x2)
return z[1]//(2**n)



Is it possible to speed up this code? Yes, we 
can, if we speed up the exponentiation.

To speed up exponentiation, there is a standard 
approach, which is that to calculate xn, the 

chain x -> x2 -> x4 -> ... -> x2k
is calculated until 

2k <= n, and then x (n -2k).



def pow_pair(a,n):
if (n==1):

return a
c=copy(a)
k=1
while k*2<=n:

if k<=n:
c=prod_pairs(c,c)
k=k*2

p=n-k
if p>=1:

tmp=pow_pair(a,p)
return prod_pairs(tmp,c)

else:
return c



Using this technique allows us to calculate 
Fibonacci numbers in a logarithmic time using 
the Binet formula and without using floating 

point arithmetic.

Below are the test results comparing the 
computation time of Fibonacci numbers by 

simple iteration:

def fib_ite(n):

c,p=0,1

for _ in range(n):

c,p=c+p,c

return c





Despite the apparent simplicity of the fib_ite 
code, the fib_bine function performs 

significantly better.



Thanks for your attention!


