Calculating Fibonacci numbers
using the Binet formula without
using floating point arithmetic

Faifel B.L.
SGTU by Yu.A. Gagarin,
Saratov

By now, many ways have been invented for
calculating Fibonacci numbers: from direct
recursion based on the formula:

I:n=|:n-1+|:n-2

to the matrix method described by D. Knuth

Binet's formula is located separately in this series
of algorithms, which has the form:

r n r n
1+V5) (1-V5
2 2

V5

F =

n

This formula seems attractive at first glance, but it
contains an irrational number, which in computer
calculations we are forced to represent in the form
of a floating point number (i.e. replace an infinite
non-periodic fraction with a finite one).

This means that the calculations will not be
accurate; a limitation error is introduced into
them.

The author once came across a publication in
which Binet's formula was used to calculate a
very large Fibonacci number, but the
implementation assumed the use of superhigh-
bit floating arithmetic (so that the required
number would completely fit into the
mantissa).

We'll take a completely different path!

Consider a set of numbers of the form:

x=a+vV5#b
where a and b are integers. It seems quite obvious that

this set is algebraically closed with respect to the
operations of ordinary addition and multiplication:

(a+bVs) +(c+dvVs)=((a+c)+ (b+d)V5)

a4+ bV5)(c +dvs) = ((ac+5bd) + (ad + be)Ws
()

In addition, zero and unit belong to the set
under consideration in a trivial way:

1=(1++5=0)

0=(0+ +v5=0)

Subtraction is quite naturally realized:

(a+ bw@] ~(c+ ch’g) =((a-c)+ (b-d)V5)

Now you can implement arithmetic on a set of
pairs (a, b), in which addition, subtraction and
multiplication will be described by the
formulas:

(a,b)+(c,d)=((a+c),(b+d))
{:ﬂj 'b) - {:E.l d} - {{f.', - E}.I {'h - d}}

(a,b) * (c,d) = ((ac + 5bd), (ad + bc))

Thus, we can “safely forget” about V5 and
implement a direct calculation using the Binet
formula.

As a result, the numerator of the fraction will be a
pair of the form (0, rv5) = rv5. Dividing this
irrational number by V5 gives the desired integer
result. Naturally, in reality, dividing is not
required, it is enough to calculate (using the
above-described pair arithmetic) two binomials:

14+ ‘ﬁ,.'llg n _ ‘ﬁ,.'llg n
A= (J n b= ()
oL o

and then subtract A-B

def prod_pairs(a,b): # pairs multiplication
return (a[0]*b[0]+5*a[1]*b[1],a[0]*b[1]+a[1]*b[0])
def sub_pairs(a,b): # pairs subtracting
return (a[0]-b[0],a[1]-b[1])
def pow_pair(a,n): # exponentiation
c=a
for _inrange(n-1):
c=prod_pairs(c,a)
return c
def fib_bine(n): # Binet formula
x1=pow_pair((1,1),n)
x2=pow_pair((1,-1),n)
z=sub_pairs(x1,x2)
return z[1]//(2**n)

Is it possible to speed up this code? Yes, we
can, if we speed up the exponentiation.

To speed up exponentiation, there is a standard
approach, which is that to calculate x", the
chain x -> x2 -> x4 -> ... -> x2" is calculated until
2k <=n, and then x (» 24,

def pow_pair(a,n):
if (n==1):
return a
c=copy(a)
k=1
while k*2<=n:
if k<=n:
c=prod_pairs(c,c)
k=k*2
p=n-k
if p>=1:
tmp=pow_pair(a,p)
return prod_pairs(tmp,c)
else:
return c

Using this technique allows us to calculate
Fibonacci numbers in a logarithmic time using
the Binet formula and without using floating

point arithmetic.

Below are the test results comparing the
computation time of Fibonacci numbers by
simple iteration:

def fib_ite(n):
c,p=0,1
for _in range(n):
c,p=c+p,C
return c

m— | teration

e B N 2T

000L6L
00006l
D00E 8T
[LLL1 R
00069t
[LLL1]
11115 8
D008ET
000T+T
DOOFEL
000LET
DOOET
DOOETT
UL
00066
D00 6
000=3
0008
000t £
0009
000£5
ooors
00EY
009E
0006E
(L1111 rdrd
D00sT
ooog

+ 000T

Despite the apparent simplicity of the fib_ite
code, the fib_bine function performs
significantly better.

Thanks for your attention!

