
Small program which demonstrates difficulties
with deductive verification automation

Dmitry Kondratyev

This talk is devoted to the memory of outstanding scientist Valery Nepomniaschy

Deductive verification of big progamming systems

▶ Deductive verification of 23 unmodified Linux kernel library
functions using using AstraVer toolset:
Efremov D., Mandrykin M., Khoroshilov A. Deductive Verification
of Unmodified Linux Kernel Library Functions. Lecture Notes in
Computer Science. 2018. vol 11245. pp. 216–234. DOI:
https://doi.org/10.1007/978-3-030-03421-4_15

▶ Deductive verification of JavaCard Virtual Machine implementation
(over 7,000 lines of C code):
Djoudi A., Hána M., Kosmatov N. Formal Verification of a
JavaCard Virtual Machine with Frama-C. Lecture Notes in
Computer Science. 2021. Volume 13047. pp. 427–444. DOI:
https://doi.org/10.1007/978-3-030-90870-6_23

https://doi.org/10.1007/978-3-030-03421-4_15
https://doi.org/10.1007/978-3-030-90870-6_23

Task of automation of deductive verification

Challenges:

1. Problem of loop invariants
2. Problem of error localization
3. Problem of automatic verification condition proving

Solutions:

1. Symbolic method of verification of definite iterations
2. Semantic labeling method
3. Strategies for proving verification conditions

The C-lightVer system: overview

▶ Correct methods / algorithms at each step.
▶ Solution:

“Restrictions that contribute to provability are what
make a programming language good.” Tony Hoare

▶ C-light language
▶ covers the majority of C99 (C0 — completely, Misra C —

almost);
▶ sets the calculation order;
▶ doesn’t have some low-level operations.

▶ C-kernel language
▶ is defined in terms of operational semantics;
▶ axiomatic semantics is correct with respect to operational one.

Problem of loop invariants

Inference rule for while loop

{P} prog; {I},
{I ∧ B} S {I},

I ∧ ¬B → Q

{P} prog; while B inv I do S {Q}

Solution for special case of loops:

Symbolic method of verification of definite iterations

Symbolic method of verification of definite iterations
Given
▶ memb(S) denotes the multiset of elements of a structure S
▶ empty(S) = true iff |memb(S)| = 0

let us define
1. choo(S) returns an arbitrary element of memb(S), if
¬empty(S).

2. rest(S) = S ′, where memb(S ′) = memb(S) \ {choo(S)}, if
¬empty(S).

A definite iteration corresponds to the form:

for x in S do v := body(v, x)

where
▶ S is a data structure
▶ x is a variable of type “element of S”
▶ v is a tuple of the loop variables excluding x
▶ body represents the loop body which does not alter x and

terminates for every x ∈ S

Replacement operation (rep function)

Let v0 denote the initial values of variables from v .

Let us define replacement operation rep(v , S , body) for this
loop

1. if empty(S), then rep(v0, S , body) = v0,
2. if ¬empty(S), then

rep(v0, S , body) = body(rep(v0, rest(S), body), choo(S)).

We suggest the following solution in the case of break statement
presence in a definite iteration: when the loop exit is occurred
by the execution of this statement, we assume that the loop
iterations are continued, but the values of v remain unchanged.

Special Case of Definite Iteration

for (i = 0; i < n; i ++) v := body(v, i) end,

where
▶ v — vector of modifying variables;
▶ a — one-dimensional array of n elements;
▶ a ∈ v ;
▶ body — acceptable construction.

Iteration over Changeble Data Structures with Loop Exit

If vec(a) = [a1, a2, . . . , an] then let rep(v , a, body , n):
▶ rep(v , a, body , 0) = v0,
▶ rep(v , a, body , i) =

body(rep(v , a, body , i − 1), an−i)
for each i = 1, 2, . . . , n.

If loop exit occured at iteration i (0 < i ≤ n), then for each j
(i ≤ j ≤ n):

rep(v , a, body , i) = rep(v , a, body , j)

Inference Rule:

{P} pr;{Q(v ← rep(v , S , body , n))}
{P} pr; for (i = 0; i < n; i ++) v := body(v, i) end{Q}

Problem of automatic verification condition proving

Automatic verification condition proving for programs
with loops

Challenges:
▶ break statements in loops
▶ rep functions in verification conditions
▶ problems of proofs by induction using SMT-solvers

Solutions:

Use of ACL2 theorem prover

Strategies for proving verification conditions

ACL2 theorem prover

We use ACL2 as theorem prover in the C-lightVer system.

Applicative Common Lisp (ACL) is an input language of the
ACL2 system.

The C-lightVer system generates verification conditions written
in ACL language.

Obtained verification conditions with applications of recursive
functions correspond to ACL2 logic based on computable
recursive functions

Strategies for proving verification conditions

Goal

ψ ≡ ϕ→ X ,

where X contains rep(n, . . .)

Two cases:
▶ ψ-lemma-1 : ϕ→ rep(n, . . .).loop-break
▶ ψ-lemma-2 : ϕ→ ¬rep(n, . . .).loop-break

Example

C-light program

1. /*@ requires (0 < n) && (n <= len(a));
2. ensures (grt-eql-cnt(n, key, a) == 0 ==>

\result == 0) &&
3. (grt-eql-cnt(n, key, a) > 0 ==>

\result == 1)
4. */
5. int grt_eql_key(int n, int key, int a[]){
6. int i, result = 0;
7. for (i = 0 ; i < n; i++){
8. if (a[i] >= key){result = 1; break;}}
9. return result;}

Example

vc-1

∀n, key , a
((0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int∧

a ∈ IntArr ∧ grt-eql-cnt(n, key , a) = 0
→

rep(n, key , a, 0).result = 0)
∧

(0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int∧
a ∈ IntArr ∧ grt-eql-cnt(n, key , a) > 0

→
rep(n, key , a, 0).result = 1))

Example
vc-1-lemma-1:

∀n, key , a
(0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int∧

a ∈ IntArr ∧ grt-eql-cnt(n, key , a) = 0
→

¬rep(n, key , a, 0).loop-break)

vc-1-lemma-2:

∀n, key , a
(0 < n ∧ n ≤ len(a) ∧ n ∈ Int ∧ key ∈ Int∧

a ∈ IntArr ∧ grt-eql-cnt(n, key , a) > 0
→

rep(n, key , a, 0).loop-break)

ACL2 has proved verification condition by induction on n using
these lemmas.

Conclusion

Towards automatic deductive verification of C programs:

1. Symbolic method of verification of definite iterations
2. Method of error localization
3. Strategies for proving verification conditions

Plans:
▶ Extensions of symbolic method of verification of definite

iterations
▶ Strategies for error localization
▶ New strategies for proving verification conditions

References

▶ Nepomniaschy, V.A., Ryakin, O.M.: Applied methods of program
verification. In: Radio and Communication, 256 p. Moscow (1988).
(in Russian)

▶ Nepomniaschy V.A. Symbolic method of verification of definite
iterations over altered data structures. Programming and Computer
Software. 2005. Volume 31. Issue 1. pp. 1–9. DOI:
https://doi.org/10.1007/s11086-005-0001-0

▶ Kondratyev D.A., Maryasov I.V., Nepomniaschy V.A.
The Automation of C Program Verification by the Symbolic
Method of Loop Invariant Elimination. Automatic Control and
Computer Sciences. 2019. Volume 53. Issue 7. pp. 653–662. DOI:
https://doi.org/10.3103/S0146411619070101

▶ Kondratyev D.A., Promsky A.V. The Complex Approach of the
C-lightVer System to the Automated Error Localization in
C-Programs. Automatic Control and Computer Sciences. 2020.
Volume 54. Issue 7. pp. 728–739. DOI:
https://doi.org/10.3103/S0146411620070093

https://doi.org/10.1007/s11086-005-0001-0
https://doi.org/10.3103/S0146411619070101
https://doi.org/10.3103/S0146411620070093

Small program which demonstrates difficulties
with deductive verification automation

Dmitry Kondratyev

This talk is devoted to the memory of outstanding scientist Valery Nepomniaschy

