
A subclass of Petri nets that allow
simple distributed execution

Arkady Klimov

Institute of Design Problems in Microelectronics
Moscow

arkady.klimov@gmail.com

The ruSTEP seminar, Problems Day 30.12.2022

The Plan

• Petri Nets

• The problem of distributedness and concurrency

• Asynchronous execution, directed nets

• What directed nets are

• Relevant classes of Petri Nets

• FC and S are directed, and what about AC?

• General view of AC net component

Petri Net, P/T-net
P/T-net is a bipartite directed graph of Places and Transitions

The current state is a marking 𝑀: 𝑃 ⟶ ℕ, where ℕ ={0,1,2,…}
(i.e. a number of tokens • at each place)

Transition t is enabled in 𝑀 if •t ≤M, where we treat •t as function 𝑃 ⟶ {0,1}
Transition acts as a state transformer: 𝑀′ = 𝑀 − •t + t •

Each IN arc captures a token, each OUT arc deposits a token

𝒩 = 𝑃, 𝑇, 𝐹 , 𝐹 ⊆ 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 , 𝑃 ∩ 𝑇 ≠ ∅

Σ = 𝒩, 𝑀0 , 𝑀0: 𝑃 ⟶ ℕ - initial marking

P/T-net

P/T-system

Notation: •t = {p |(p,t) ∈ F } , t • = {p |(t,p) ∈ F }, similarly •p , p •

Petri Net, P/T-net
P/T-net is a bipartite directed graph of Places and Transitions

The current state is a marking 𝑀: 𝑃 ⟶ ℕ, where ℕ ={0,1,2,…}
(i.e. a number of tokens • at each place)

Transition t is enabled in 𝑀 if •t ≤M, where we treat •t as function 𝑃 ⟶ {0,1}
Transition acts as a state transformer: 𝑀′ = 𝑀 − •t + t •

Each IN arc captures a token, each OUT arc deposits a token

𝒩 = 𝑃, 𝑇, 𝐹 , 𝐹 ⊆ 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 , 𝑃 ∩ 𝑇 ≠ ∅

Σ = 𝒩, 𝑀0 , 𝑀0: 𝑃 ⟶ ℕ - initial marking

P/T-net

P/T-system

Notation: •t = {p |(p,t) ∈ F } , t • = {p |(t,p) ∈ F }, similarly •p , p •

a conflict

Petri Net, P/T-net
P/T-net is a bipartite directed graph of Places and Transitions

The current state is a marking 𝑀: 𝑃 ⟶ ℕ, where ℕ ={0,1,2,…}
(i.e. a number of tokens • at each place)

Transition t is enabled in 𝑀 if •t ≤M, where we treat •t as function 𝑃 ⟶ {0,1}
Transition acts as a state transformer: 𝑀′ = 𝑀 − •t + t •

Each IN arc captures a token, each OUT arc deposits a token

𝒩 = 𝑃, 𝑇, 𝐹 , 𝐹 ⊆ 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 , 𝑃 ∩ 𝑇 ≠ ∅

Σ = 𝒩, 𝑀0 , 𝑀0: 𝑃 ⟶ ℕ - initial marking

P/T-net

P/T-system

Notation: •t = {p |(p,t) ∈ F } , t • = {p |(t,p) ∈ F }, similarly •p , p •

a conflict

Petri Net, P/T-net
P/T-net is a bipartite directed graph of Places and Transitions

The current state is a marking 𝑀: 𝑃 ⟶ ℕ, where ℕ ={0,1,2,…}
(i.e. a number of tokens • at each place)

Transition t is enabled in 𝑀 if •t ≤M, where we treat •t as function 𝑃 ⟶ {0,1}
Transition acts as a state transformer: 𝑀′ = 𝑀 − •t + t •

Each IN arc captures a token, each OUT arc deposits a token

𝒩 = 𝑃, 𝑇, 𝐹 , 𝐹 ⊆ 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 , 𝑃 ∩ 𝑇 ≠ ∅

Σ = 𝒩, 𝑀0 , 𝑀0: 𝑃 ⟶ ℕ - initial marking

P/T-net

P/T-system

Notation: •t = {p |(p,t) ∈ F } , t • = {p |(t,p) ∈ F }, similarly •p , p •

not a conflict

The problem of distributedness

• All input places of a single transition must be captured
simultaneously

• A regular (normal, good) distribution is a placement function
f:P→ℕ, that maps input places of a single transition to the
same location: p•∩q•≠∅ ⇒ f(p)=f(q)

• Then the mutual exclusion for synchronous capture can be
provided easily, though it is too restrictive

• Consider more refined distribution with each place in a
separate location

• There are several sophisticated protocols [Taubner,88],
[Thomas,91] with rollbacks

• We seek for a simpler protocol without rollbacks

Simple protocol, directed nets

Input places should be captured by each transition independently
one by one in an order

t1 t2 t3

a b
•

t1 t2

a b c
••

This net is Simple (each transition has at most one shared place).
It is possible to capture places asynchronously in a predefined
order (shared = last) without a risk of artificial deadlock in any
marking
Let’s call such nets directed. What are they structurally?

Let t2 capture b first. Then t1 will be disabled
with “artificial” deadlock implied (“artifitial”
means there was no deadlock originally)
Here a good solution is to capture first a by t1

and c by t2

This net is not directed. Each
predefined order for t2 may
cause a deadlock

Relevant Classes of Petri Nets

Name Sample Definition Note

Join-Free |•t|=1

Choice Free |p•|=1

Free Choice (FC)
•t1∩•t2≠∅ , t1≠t2

⇒ |•t1|=|•t2|=1

Extended Free Choice
(EFC)

Equal Conflict

•t1∩•t2≠∅ ⇒ •t1=•t2

p1•∩p2•≠∅ ⇒ p1•=p2•

Simple / Правильные
p1•∩p2•≠∅, p1≠p2

⇒ |p1•|=1 ⋁ |p2•|=1

Asymmetric choice
(AC)

Extended Simple (ES)
p1•∩p2•≠∅ ⇒ p1•⊆p2• ⋁ p2•⊆p1•

Example

1 1

1

3

2

The same net with transitions
shown as colored bands

Digits indicate order of places, i.e.
number of output transitions. Let them
be the capture ordering as well.
The “red” transition will capture the
two tokens.
Now let tokens to other three places
come

•

•

1 3 112
••

Consider the following AC net, which is not Simple.
Shared places are larger circles

Example

1 1

1

3

2

The same net with transitions
shown as colored bands

The “green” transition can’t capture its
2-place as it is captured by “red”. So it
won’t be enabled unless the “red”
transition fire and new tokens come.
The 3-place can now be captured by
either “red” or “blue” transition. In any
case one of them will be enabled and
hence artificial deadlock will not occur.

•

1 3 112
••

Consider the following Asymmetric Choice net, which is not Simple.
Shared places are shown as larger circles

• • •

•

•

•

•

The simulation of Directed net behavior by Simple net

Each transition with several places is transformed as follows

The ordering of places is defined by
numbers of their output transitions

New transitions and places
are considered as hidden,
and the old ones as visible

The resulting net is Simple as only old places may remain shared

The general tree view of Asymmetric Choice net CC
(connected component)

• Each transition is a path from the root to a place
• Each leaf forms a unique transition
• Each transition captures its tokens from top to root
• Captured tokens are shown as continuous gray band •

•

•

•

•

•

•

•

Lemma.
If enabled transition exist in the original
net then either root is captured or at least
one new token can be captured.
Proof. Consider enabled path and the
lowest captured place on it (if there are
none, the path can capture its first token).
If it is not the root then the path that
captured it can capture the next token

Corollary. No artificial deadlock can occur.

Does semantics preserve?

• Usual concept of simulation does not hold
• The problem is that hidden transitions are irreversible and may

disable some of the conflicting enabled transitions in original net
• The new weak simulation concept is proposed
• The idea is to define the base set B of markings of simulating net

which
a. has the home property and
b. allows all of the enabled transitions in the corresponding markings

of the original net

• Normal simulation (which does not hold in our case) can be
obtained by setting B=all markings

• The two problems are left:
1. To justify the concept of weak simulation
2. To prove that with the above transform we indeed get the net that

weekly simulates the original one (it is easy in case of live net, but
hard otherwise)

Spasibo!
?

