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The Plan

• Petri Nets

• The problem of distributedness and concurrency

• Asynchronous execution, directed nets

• What directed nets are

• Relevant classes of Petri Nets

• FC and S are directed, and what about AC?

• General view of AC net component



Petri Net, P/T-net
P/T-net is a bipartite directed graph of Places and Transitions

The current state is a marking 𝑀: 𝑃 ⟶ ℕ, where ℕ ={0,1,2,…} 
(i.e. a number of tokens • at each place)

Transition t is enabled in 𝑀 if  •t ≤M,  where we treat •t  as function 𝑃 ⟶ {0,1}
Transition acts as a state transformer:   𝑀′ = 𝑀 − •t  + t •

Each IN arc captures a token, each OUT arc deposits a token

𝒩 = 𝑃, 𝑇, 𝐹 , 𝐹 ⊆ 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 , 𝑃 ∩ 𝑇 ≠ ∅

Σ = 𝒩, 𝑀0 , 𝑀0: 𝑃 ⟶ ℕ - initial marking

P/T-net

P/T-system

Notation:    •t = {p |(p,t) ∈ F } , t • = {p |(t,p) ∈ F },  similarly •p , p •
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Petri Net, P/T-net
P/T-net is a bipartite directed graph of Places and Transitions

The current state is a marking 𝑀: 𝑃 ⟶ ℕ, where ℕ ={0,1,2,…} 
(i.e. a number of tokens • at each place)
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P/T-net
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Notation:    •t = {p |(p,t) ∈ F } , t • = {p |(t,p) ∈ F },  similarly •p , p •

not a conflict



The problem of distributedness

• All input places of a single transition must be captured 
simultaneously

• A regular (normal, good) distribution is a placement function 
f:P→ℕ, that maps input  places of a single transition to the 
same location:  p•∩q•≠∅ ⇒ f(p)=f(q)

• Then the mutual exclusion for synchronous capture can be 
provided easily, though it is too restrictive 

• Consider more refined distribution with each place in a 
separate location

• There are several sophisticated protocols [Taubner,88], 
[Thomas,91] with rollbacks

• We seek for a simpler protocol without rollbacks 



Simple protocol, directed nets

Input places should be captured by each transition independently 
one by one in an order 

t1 t2 t3

a                b             
•

t1 t2

a                b               c 
••

This net is Simple (each transition has at most one shared place). 
It is possible to capture places asynchronously in a predefined 
order (shared = last) without a risk of artificial deadlock in any 
marking
Let’s call such nets directed. What are they structurally?

Let t2 capture b first. Then t1 will be disabled 
with “artificial” deadlock implied (“artifitial” 
means there was no deadlock originally)
Here a good solution is to capture first a by t1

and c by t2 

This net is not directed. Each 
predefined order for t2 may 
cause a deadlock



Relevant Classes of Petri Nets

Name Sample Definition Note

Join-Free |•t|=1

Choice Free |p•|=1

Free Choice (FC)
•t1∩•t2≠∅ , t1≠t2

⇒ |•t1|=|•t2|=1

Extended Free Choice
(EFC)

Equal Conflict

•t1∩•t2≠∅ ⇒ •t1=•t2

p1•∩p2•≠∅ ⇒ p1•=p2•

Simple / Правильные
p1•∩p2•≠∅,  p1≠p2

⇒ |p1•|=1 ⋁ |p2•|=1

Asymmetric choice 
(AC)

Extended Simple (ES)
p1•∩p2•≠∅ ⇒ p1•⊆p2• ⋁ p2•⊆p1•



Example

1 1

1

3

2

The same net with transitions 
shown as colored bands

Digits indicate order of places, i.e. 
number of output transitions. Let them 
be the capture ordering as well. 
The “red” transition will capture the 
two tokens. 
Now let tokens to other three places 
come

•

•

1 3 112
••

Consider the following AC net, which is not Simple.
Shared places are larger circles



Example

1 1

1

3

2

The same net with transitions 
shown as colored bands

The “green” transition can’t capture its 
2-place as it is captured by “red”. So it 
won’t be enabled unless the “red” 
transition fire and new tokens come.
The 3-place can now be captured by 
either “red” or “blue” transition. In any 
case one of them will be enabled and 
hence artificial deadlock will not occur.

•

1 3 112
••

Consider the following Asymmetric Choice  net, which is not Simple. 
Shared places are shown as larger circles

• • •

•

•

•

•



The simulation of Directed net behavior by Simple net

Each transition with several  places is transformed as follows

The ordering of places is defined by 
numbers of their output transitions

New transitions and places 
are considered as hidden, 
and the old ones as visible

The resulting  net is Simple as only old places may remain shared



The general tree view of Asymmetric Choice net CC 
(connected component)

• Each transition is a path from the root to a place
• Each leaf forms a unique transition
• Each transition captures its tokens from top to root
• Captured tokens are shown as continuous gray band •

•

•

•

•

•

•

•

Lemma.
If enabled transition exist in the original 
net then either root is captured or at least 
one new token can be captured.
Proof. Consider enabled path and the 
lowest captured place on it (if there are 
none, the path can capture its first token). 
If it is not the root then the path that 
captured it can capture the next token

Corollary. No artificial deadlock can occur.



Does semantics preserve?

• Usual concept of simulation does not hold
• The problem is that hidden transitions are irreversible and may 

disable some of the conflicting enabled transitions in original net
• The new weak simulation concept is proposed
• The idea is to define the base set B of markings of simulating net 

which
a. has the home property and 
b. allows all of the enabled transitions in the corresponding markings 

of the original net

• Normal simulation (which does not hold in our case) can be 
obtained by setting B=all markings

• The two problems are left:
1. To justify the concept of weak simulation
2. To prove that with the above transform we indeed get the net that 

weekly simulates the original one (it is easy in case of live net, but 
hard otherwise)



Spasibo!
?


