Program specification paradigms and
the SpecifyThis contest

Dmitry Kondratyev

A.P. Ershov Institute of Informatics Systems
Siberian Branch of the Russian Academy of Sciences

Verify This contest

Program verification contest
VerifyThis contest: since 2011

Huisman M., Monti R., Ulbrich M., Weigl A. The VerifyThis
Collaborative Long Term Challenge. Lecture Notes in Com-
puter Science. 2020. Volume 12345. pp. 246-260. DOI:
https://doi.org/10.1007/978-3-030-64354-6_10

https://doi.org/10.1007/978-3-030-64354-6_10

Specify This
Program specification contest
Wias first held in 2022
Organized by VerifyThis community

VerifyThis and SpecifyThis are based on different approaches:
Specify This is not contest of solutions of predefined problems.

Specify This is a contest of researches about different approaches
to defining software specifications.

Specify This is a special track at ISoLA 2022 conference.

1 review paper and 7 research papers about SpecifyThis have
been published in ISoLA 2022 proceedings.

Program specification paradigms

"Programming paradigms" concept has been introduced in
the Turing Award lecture of Robert W. Floyd, entitled "The
Paradigms of Programming" (1978).

"Program specification paradigms" concept has been intro-
duced in the paper "SpecifyThis — Bridging Gaps Between
Program Specification Paradigms" resulted from Specify This
contest (2022).

Ahrendt W., Herber P., Huisman M., Ulbrich M. SpecifyThis
— Bridging Gaps Between Program Specification Paradigms.
Lecture Notes in Computer Science. 2022. Volume 13701.
pp. 3-6.

DOI: https://doi.org/10.1007/978-3-031-19849-6_1

Paper "SpecifyThis — Bridging Gaps Between Program Speci-
fication Paradigms" is a review of Specify This contest.

https://doi.org/10.1007/978-3-031-19849-6_1

Review of paper from Specify This contest

Review of the paper "Deductive Verification Based Abstrac-
tion for Software Model Checking" from SpecifyThis contest
(2022).

Amilon J., Lidstrom C., Gurov D. Deductive Verification Based
Abstraction for Software Model Checking. Lecture Notes in
Computer Science. 2022. Volume 13701. pp. 7-28. DOI:
https://doi.org/10.1007/978-3-031-19849-6_2

Previous approach of model checking for big programs: trans-
lation whole program to TLA™ specification and model check-
ing obtained specification.

Architecture of a lot of big programs may be considered as
reactive event-driven at high level and many proactive proce-
dures at low-level.

https://doi.org/10.1007/978-3-031-19849-6_2

Review of paper "Deductive Verification Based Abstraction
for Software Model Checking"

New approach from the paper "Deductive Verification Based Ab-
straction for Software Model Checking": deductive verification of
many proactive procedures in big program and using contracts of
these procedures instead of program code to generate TLA™ speci-
fication.

Specification obtained by new approach application contains
less states than specification obtained by direct translation of
whole program. Thus, specification obtained by new approach
may be model checked faster.

Two examples from the paper "Deductive Verification Based
Abstraction for Software Model Checking".

Two experiments from the paper "Deductive Verification
Based Abstraction for Software Model Checking"

First experiment is simple file open-close example.

Full model has been obtained by translation whole program to
TLA™ specification.

Full model contains 45574 unique states.
Verification time in the case of full model is 51 seconds.

Abstract model has been obtained by deductive verification of
program procedures and translation their contracts to TLA™
specification.

Abstract model contains 841 unique states.

Verification time in the case of abstract model is 5 seconds.

Second experiment from the paper "Deductive Verification
Based Abstraction for Software Model Checking"

Second experiment is a real software module taken from the auto-
motive industry.

Full model has been obtained by translation whole program to
TLA™ specification.

Full model contains 46265 unique states.
Verification time in the case of full model is 12 seconds.

Abstract model has been obtained by deductive verification
of program procedures and translation of their contracts to
TLA™ specification.

Abstract model contains 4552 unique states.

Verification time in the case of abstract model is 10 seconds.

Problems of the approach from the paper "Deductive
Verification Based Abstraction for Software Model
Checking"

Authors have not considered complexity of defining contracts
of program procedures. Authors have not considered methods
that can help to solve loop invariant problem in some cases.

Authors use WP plugin of Frama-C system for deductive ver-
ification. But authors have not considered complexity of de-
ductive verification.

Nevertheless, authors have presented very interesting combina-
tion of deductive verification and model checking.

Problem: annotating standrard libraries has not been
covered by Specify This contest

Possible solution:
The C-lightVer system: annotating C standard library

Promsky A.V. C program verification: Verification condition
explanation and standard library. Automatic Control and Com-
puter Sciences. 2012. Volume 46. Issue 7. pp. 394-401. DOI:
https://doi.org/10.3103/50146411612070127

https://doi.org/10.3103/S0146411612070127

stdio.h: fopen

/*@ requires valid _string(filename) && valid _string(mode);
assigns \nothing;
behavior update:
assumes mode == "r+b";

ensures \result res(filename);
behavior truncate or update:

assumes mode == "w-+b";
ensures \result == rew(filename);
behavior failure:
ensures \result == NULL;
complete behaviors update, truncate or update, ...,
failure;
*/
FILE *fopen(const char restrict *filename,

const char restrict *mode);

stdio.h: fread

/*@ requires \valid(stream) && size >= 0 && nmemb >=
assigns *ptr, stream;
behavior wrong_ read:

assumes size == 0 || nmemb == 0;

ensures \result == 0 && stream == \old(stream);
behavior good read:

assumes size > 0 || nmemb > 0;

ensures \exists int n;
n == \max(length(\old(stream))/size, nmemb) &&
stream == get(\old(stream), n, size) &&
\forall 0 <=i < n; *ptr[i] == buf(stream)][i] &&
\result == n;
complete behaviors wrong_read, good read,;
*
/
size_t fread(void * restrict ptr, size t size,
size_t nmemb, FILE * restrict stream);

stdio.h: EOF

/*@ axiomatic EOF {
logic FILE* f;
axiom eof-1: eof(left(f)) ==>
buf(left(f)) == \omega;
axiom eof-2: eof(f) <==> right(f) == empty_file;

*/

Copying file
#include <stdio.h>

/*@ requires \nothing;

assigns from, to, Buffer;

ensures \value == 1 ||

\value == 0 && (file(from) == file(to)) && eof(from) && eof(to);

*/
int main(){

FILE *from, *to;

char Buffer;

if ((from = fopen("example.txt", "r+b")) == NULL) return
if ((to = fopen("example.bak", "w+b")) == NULL) return

/*@ invariant left(from) == file(to) &&
(eof(from) ==> fbuf(from) == \omega) */

while(fread(&Buffer, 1, 1, from) = 0)
fwrite(&Buffer, 1, 1, to);

return

Problem: nature of program specification paradigms

Two approaches of defining program specifications:
» Set theoretic approach.

» Executable specifications.

Example

Verification benchmark "Java program verification challenge"
negate_first program from this benchmark

Implementation of negate_first in C programming language

void negate_first(int n, int* a) {
int i;
for (i = 0; i < n; i++) {
if (ali]l < 0) {ali]l = -alil; break;}}}
Problems illustrated by this program:
1. Array update
2. Possible break execution

Example: set theoretic approach

pre : Jold : int[].a # nullA
a = old)

post: Vi. (0 </ < Length —
(old[i] < OA
(Vj.0<j<i= old[j]) >0)) =
a[i] = —old[i]A
old[i] > 0 = a[i] = old[i]

inv : 0 <1< LengthA
(Vj.0<j<i=
(alj] = 0A
alj] = old[j]

Example: executable specifications
negate_first: precondition:

(ap = a) A (0 < n) A (n < length(ao))
negate_first: postcondition:

(—found _negative(n, ag) — a = ap)A
(found _negative(n, apg) — a = update(ap,
count _index(n, ap), —ao[count _index(n, aop)]))

found _negative predicate checks presence of a negative element in
the array. count-index function computes index of the first nega-
tive element in the case of its presence in the array.

Recursive function may be generated instead of loop invariant in
the case of finite iteration:

Kondratyev D.A., Maryasov |.V., Nepomniaschy V.A. The Automa-
tion of C Program Verification by the Symbolic Method of Loop
Invariant Elimination. Automatic Control and Computer Sciences.
2019. Volume 53. Issue 7. pp. 653-662. DOI:
https://doi.org/10.3103/S0146411619070101

https://doi.org/10.3103/S0146411619070101

References

1. Ahrendt W., Herber P., Huisman M., Ulbrich M. SpecifyThis — Bridging Gaps
Between Program Specification Paradigms. Lecture Notes in Computer Science.
2022. Volume 13701. pp. 3-6. DOL:
https://doi.org/10.1007/978-3-031-19849-6_1

2. Amilon J., Lidstrom C., Gurov D. Deductive Verification Based Abstraction
for Software Model Checking. Lecture Notes in Computer Science. 2022.
Volume 13701. pp. 7-28. DOL:
https://doi.org/10.1007/978-3-031-19849-6_2

3. Huisman M., Monti R., Ulbrich M., Weigl A. The VerifyThis Collaborative Long
Term Challenge. Lecture Notes in Computer Science. 2020. Volume 12345. pp.
246-260. DOI:
https://doi.org/10.1007/978-3-030-64354-6_10

4. Promsky A.V. C program verification: Verification condition explanation and
standard library. Automatic Control and Computer Sciences. 2012. Volume 46.
Issue 7. pp. 394-401. DOI: https://doi.org/10.3103/50146411612070127

5. Kondratyev D.A., Maryasov |.V., Nepomniaschy V.A. The Automation of C
Program Verification by the Symbolic Method of Loop Invariant Elimination.
Automatic Control and Computer Sciences. 2019. Volume 53. Issue 7. pp.
653-662. DOI:
https://doi.org/10.3103/50146411619070101

https://doi.org/10.1007/978-3-031-19849-6_1
https://doi.org/10.1007/978-3-031-19849-6_2
https://doi.org/10.1007/978-3-030-64354-6_10
https://doi.org/10.3103/S0146411612070127
https://doi.org/10.3103/S0146411619070101

Program specification paradigms and
the SpecifyThis contest

Dmitry Kondratyev

A.P. Ershov Institute of Informatics Systems
Siberian Branch of the Russian Academy of Sciences

